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a b s t r a c t

Recent advances in linear localization of sensor networks allow sensors to localize themselves by
using inter-sensor measurements, such as distances, bearings and interior angles. According to earlier
works, linear localization algorithms’ performance is relatively poor, which, however, has not been
adequately addressed in the existing literature. The aim of this paper is to improve the performance
of linear and continuous localization algorithms. More specifically, we focus on improving three key
aspects of linear localization algorithms’ performance, i.e., the stability margin, convergence rate and
robustness against measurement noises. Firstly, we propose a unified description for networks’ linear
localization algorithms, given different types of measurements, and show that the stability margin,
convergence rate and robustness of linear localization algorithms are commonly determined by one
parameter, namely, the minimum eigenvalue of the network’s localization matrix. Secondly, by carefully
choosing the decision variable, we formulate the performance optimization problem as an eigenvalue
optimization problem, and show the non-differentiability of the eigenvalue optimization problem.
Thirdly, we propose a distributed optimization algorithm, which guarantees the convergence to an
optimal solution of the eigenvalue optimization problem. Finally, simulation examples validate the
effectiveness of the proposed distributed optimization algorithm.

© 2024 Elsevier Ltd. All rights are reserved, including those for text and datamining, AI training, and
similar technologies.
1. Introduction

Sensor networks have been widely used in many engineering
cenarios, such as industrial manufacturing and multi-robot co-
rdination (Kleiner & Dornhege, 2007; Zhao, 2018). For a static
etwork consisting of anchor sensors and free sensors, the aim
f network localization is to determine/estimate the positions
f the free sensors using their sensor measurements with re-
pect to their neighbors and the positions of the anchor sensors,
hich, from a mathematical point of view, is a typical problem of
olving nonlinear equations. To avoid multiple equilibria existing
n the nonlinear equations, linear and distributed localization
lgorithms have been proposed recently in Chen (2022), Diao, Lin,
nd Fu (2014), Lin, Han, Zheng, and Fu (2016) and Zhao and
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Zelazo (2016), in which the only equilibrium of the estimating
dynamics is the desired solution.

The existing linear localization algorithms can be mainly cate-
gorized into three classes according to the available sensor mea-
surements among the sensors: distance-based localization (Diao
et al., 2014; Xia, Yu, & He, 2022), bearing-based localization
(Bishop, Anderson, Fidan, Pathirana, & Mao, 2009; Cao, Han, Lin,
& Xie, 2021; Li, Luo and Zhao, 2019; Zhao & Zelazo, 2016),
and angle-based localization (Chen, 2022; Chen, Cao, Xie, Li and
Feroskhan, 2022; Fang, Li, & Xie, 2020; Jing, Wan, & Dai, 2021).
According to Cao et al. (2021), Chen (2022), Diao et al. (2014)
and Lin, Fu, and Diao (2015), under the designed linear local-
ization algorithms, the estimated positions of the free sensors
globally and exponentially converge to the true positions. Besides
the convergence of linear localization algorithms, other indices
of these algorithms’ performance, such as robustness, are also
worthy of investigation since they play an important role in en-
gineering practices. From existing works (Chen, 2022, 2022; Fang
et al., 2020; Lin et al., 2016; Zhao & Zelazo, 2016), the stability
margin, convergence rate and robustness are three important
performance indices of linear localization algorithms. Firstly, the
stability margin not only verifies linear localization algorithms’
stability, but also quantifies how much system uncertainties can

be tolerated before system instability occurs. According to Chen

data mining, AI training, and similar technologies.
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2022), Fang et al. (2020) and Zhao and Zelazo (2016), all the
igenvalues of the defined network’s localization matrix deter-
ining the localization system’s stability are real, which indicates

hat the value of the stability margin equals the minimum eigen-
alue of the localization matrix. Secondly, it is expected that the
ocalization error could converge to zero as fast as possible, which
s commonly determined by the minimum eigenvalue of the
ocalization matrix (Chen, 2022; Fang et al., 2020; Zhao & Zelazo,
016). Thirdly, when considering the existence of measurement
oises, the linear localization systems are still exponentially sta-
le, provided that the norm of a defined error matrix is less
han the minimum eigenvalue of the localization matrix (Chen,
022; Fang et al., 2020). This indicates that the robustness of
inear localization algorithms against measurement noises also
epends on the minimum eigenvalue of the localization ma-
rix. From the aforementioned introduction, linear localization
lgorithms’ stability margin, convergence rate and robustness
gainst measurement noises, are commonly determined by the
inimum eigenvalue of the localization matrix. However, the
inimum eigenvalue of the localization matrix is associated with

he network’s topology and sensors’ positions, which are fixed.
ccording to the simulation examples in our earlier work (Chen,
ie, Li, Fang and Feroskhan, 2022), the minimum eigenvalue
f the angle-based network’s localization matrix approximately
quals 0.03, which indicates that the proposed angle-based lo-
alization algorithm is of poor robustness and low convergence
ate, that is, the position estimation error needs more than 300
econds to decay to 10% of the initial error. Therefore, it is crucial
o investigate how to increase the minimum eigenvalue of the
ocalization matrix.

Obviously, increasing the minimum eigenvalue of the local-
zation matrix is an eigenvalue optimization problem. Due to
he nonlinearity from the decision variables, such as sensors’
ositions, to the minimum eigenvalue of the localization matrix,
ow to increase the minimum eigenvalue of the localization
atrix is a challenging problem. Another challenge is the non-
ifferentiability of the eigenvalue optimization problem when the
igenvalue’s algebraic multiplicity is greater than one (Overton,
988, 1992). In our earlier work (Liang, Chen, Li, Mei, & Xie, 2023),
e propose a centralized approach to address this problem. Based
n it, in this paper we aim to develop a distributed optimization
lgorithm to solve this problem, which is more applicable to
arge-scale networks. The main difficulties of developing a dis-
ributed algorithm are in two aspects. Firstly, there exist three
ypes of constraints in this eigenvalue optimization problem,
.e., the local feasible set constraint, the linear matrix inequality
LMI) constraint and the vector equality constraint. The presence
f multiple constraints increases the optimization problem’s com-
lexity, making the algorithm design more challenging. Secondly,
he coupling of the problem’s cost function and constraints means
hat sensors must update their decision variables based on both
ocal information and the information related to other sensors,
hich is challenging for sensor networks without central agents.
Related works on improving specific localization performance

f Multi-Agent Systems (MAS) are presented in Schoof, Chap-
an, and Mesbahi (2017), Sun, Yu, and Anderson (2015), Trinh,
an Tran, and Ahn (2019) and Zhu and Hu (2009). A centralized
lgorithm is proposed in Trinh et al. (2019) to ensure minimal
earing rigidity of MAS. The concept of stiffness matrix is in-
roduced in Zhu and Hu (2009) to characterize the formation
igidity. A novel Gramian matrix-based approach is proposed
n Sun et al. (2015) to enhance the worst-case rigidity level of
AS, using a decentralized algorithm. In Schoof et al. (2017),
dge-weighted optimization techniques are proposed, which sig-
ificantly contributes to ensuring the overall formation perfor-

ance of the MAS. In contrast to the existing literature that

2

primarily aims to enhance the formation rigidity, our focus in
this paper is on improving the linear localization algorithms’
performance in terms of convergence rate, stability margin and
robustness against noise.

Distributed algorithms for constraint optimization problems
have been studied in many works, including (Li, Deng, Zeng
and Hong, 2021; Li, Zeng, Hong and Ji, 2021; Nedic, Ozdaglar,
& Parrilo, 2010; Van Tran, Sun, Anderson, & Ahn, 2022; Wang,
Yang, Guo, Wen, & Huang, 2022). Authors in Van Tran et al.
(2022) introduce an innovative approach to formulate the graph
matching problem as a convex relaxation problem, replacing the
untractable feasible set with a relaxed one, and further present
a distributed algorithm to solve it. Refs. Li, Deng et al. (2021)
and Li, Zeng et al. (2021) introduce slack variables and consensus
constraints to solve optimization problems with coupled LMI con-
straints. Additionally, Wang et al. (2022) presents an algorithm
for optimization problems involving equality constraints. For a
comprehensive overview, we refer readers to Yang et al. (2019).
However, the algorithms mentioned above, which primarily focus
on addressing optimization problems with one or two types of
constraints, cannot be directly applied in this paper due to the
presence of three types of constraints.

Motivated by the aforementioned discussions, in this paper
we propose a distributed continuous-time optimization algorithm
to address the eigenvalue optimization problem. Specifically, the
projection operator is used to deal with the feasible set con-
straint. Furthermore, to tackle the coupled LMI and vector equal-
ity constraints, we decouple the constraints and then introduce
a consensus protocol for the Lagrangian multipliers used in the
proposed algorithm. Our approach can tackle a class of optimiza-
tion problems with different types of constraints, demonstrating
its flexibility and applicability. The main contributions of this
paper are summarized as follows. Firstly, we propose a unified
description for networks’ linear localization algorithms, and show
that the stability margin, convergence rate and robustness of
linear localization algorithms are commonly determined by the
minimum eigenvalue of the network’s localization matrix. Sec-
ondly, by carefully choosing the decision variable, we formulate
the performance optimization problem as a constrained eigen-
value optimization problem, and show the non-differentiability
of this problem. Thirdly, we propose a distributed optimiza-
tion algorithm to obtain an optimal solution of the eigenvalue
optimization problem.

The remainder of this paper is organized as follows. We for-
mulate the optimization problem in Section 2. Centralized and
distributed optimization algorithms are proposed in Section 3 and
Section 4, respectively. Section 5 provides simulation examples to
validate our algorithms.

2. Problem formulation

2.1. Notations

Consider a two-dimensional and static sensor network consist-
ing of na ∈ N (na ≥ 2) anchor sensors and nf ∈ N free sensors.
he set of anchor sensors is denoted by Va = {1, 2, . . . , na} with

known positions represented by pa = [pT1, . . . , p
T
na ]

T
∈ R2na . The

et of free sensors is represented by Vf = {na + 1, . . . , n} =

− Va, where V denotes the set of all sensors and |Vf | = nf =

− na. The positions of these free sensors, which need to be
etermined, are denoted by pf = [pTna+1, . . . , p

T
n]

T
∈ R2nf . We

ssume that there are no overlapping points in p = [pTa, p
T
f ]

T
∈

2n. Define
∑

g as the fixed global coordinate frame, and let each
ree sensor i ∈ Vf hold a fixed and local coordinate frame

∑
i

o conduct distance/bearing/angle measurements with respect to
ts neighbors. Define p as the position of sensor i in

∑
and
i g
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i as the position of sensor i in

∑
j. Let In denote the n-by-n

dentity matrix, 1n the n-by-1 column vector of all ones, ⊗ the
ronecker product, λmax the maximum eigenvalue, and λmin the
inimum eigenvalue of a real matrix. Denote by R(θ ) the rotation
atrix with rotation angle θ . Define Sn and Sn

+
as the sets of n-by-

symmetric matrices and symmetric and positive semi-definite
atrices, respectively. The set of complex numbers is denoted by
. The inner product of matrices is defined by ⟨X1, X2⟩ = tr(XT

1X2),
here tr(·) denotes the trace of a matrix. Let ∥·∥ and ∥·∥F be the
uclidean norm of a vector and the Frobenius norm of a matrix,
espectively. Let col(X1, . . . , Xn) ∈ Rn2×n be the stacked column
atrix of Xi ∈ Rn×n. Let diag(x) where x ∈ Rn denote a n-by-n
iagonal matrix with diagonal elements x.
For a convex set X ⊂ Rn, the projection of x ∈ Rn onto X is

efined by

X (x) = argmin
y∈X

∥x − y∥ .

hile for a symmetric matrix X ∈ Rn×n which satisfies the eigen-
alue decomposition X = UTdiag[λ1, . . . , λn]U , the projection of

X onto Sn
+

can be written as

PSn
+
(X) = Udiag[(λ1)+, . . . , (λn)+]UT,

where (λi)+ = max {λi, 0}.
According to Li, Zeng et al. (2021), the basic property of the

projection operator is

⟨X − PΩ (X), Y − PΩ (X)⟩ ≤ 0, (1)

where Ω ⊂ Rn×n, Y ∈ Ω and X ∈ Rn×n.
The first-order convex condition holds for a convex function

F (·) : Rm×n
→ R, i.e.,

F (Y ) − F (X) ≥ ⟨∇F (X), Y − X⟩ , (2)

where X ∈ Rm×n, Y ∈ Rm×n, and ∇F (X) ∈ Rm×n.

2.2. A unified description for measurement-induced linear equations

The distance measurement between sensors i ∈ V and j ∈ V
can be described by

dij = ∥pi − pj∥ ∈ R+. (3)

The bearing measurement from sensor i to sensor j is a unit
vector, which can be written as

bij =
pj − pi

∥pj − pi∥
∈ R2. (4)

The interior angle αkij ∈ [0, 2π ) rotating from ray
−→
ij to ray

−→
ik

under the counterclockwise direction can be described by

αkij =

{
arccos(bTijbik), if bTijR(

π
2 )bik ≥ 0,

2π − arccos(bTijbik), otherwise,
(5)

which can be obtained from local bearing measurements biij and
i
ik. By saying local bearings (resp. bearings), we mean that the
easurements are obtained in the sensor’s local (resp. aligned)
oordinate frame.
Since (3)–(5) are nonlinear with respect to p, finding solution

f directly from pa and some inter-sensor distance/bearing/angle
easurements is a nonlinear problem (Bishop et al., 2009). In-
tead, to solve the network localization problem in a linear man-
er, Diao et al. (2014) associates four sensors’ inter-sensor dis-
ance measurements together to establish a distance-induced
inear equation, i.e.,

p − a (d)I p − a (d)I p − a (d)I p = 0, (6)
2 i ij 2 j ik 2 k il 2 l

3

here aij(d) ∈ R, aik(d) ∈ R, ail(d) ∈ R are the barycentric
coordinates of pi with respect to pj, pk and pl, which are only
related to distance measurements among the four sensors i, j, k, l
(see Diao et al., 2014 for the detailed calculation). Subsequently,
we will give the formulation of the bearing-induced linear equa-
tion. There are two cases for bearing measurements, namely
bearing measurements when sensors have aligned and unaligned
coordinate frames, respectively. For the case where sensors share
an aligned coordinate frame (Zhao & Zelazo, 2016), the basic
unit to establish a bearing-induced linear equation is an edge
(i, j), i.e., Pbij (pj − pi) = 0, where Pbij = (I2 − bijbTij) ∈ R2×2.

hile for the case where sensors have unaligned coordinate
rames (Lin et al., 2016), the basic unit to establish a bearing-
nduced linear equation is a triple (i, j, k), i.e., b′

ij(p
′

j − p′

i) +
′

ik(p
′

k − p′

i) = 0, where x′
= x1 + ix2 ∈ C is defined as the

omplex expression of x = [x1, x2]T ∈ R2. In this paper, we
onsider the latter case and the former case can be seen as a
pecial form of the latter case. According to the fact that the
ield of matrices of the special form

[ x1 −x2
x2 x1

]
combined by matrix

ddition and matrix multiplication, is isomorphic to the field of
omplex numbers x′ combined by complex addition and complex
ultiplication (Ahlfors, 1953, Section 1.3), the bearing-induced

inear equation can be reformulated as Bij(Pj − Pi)+ Bik(Pk − Pi) =

2×2, where Bij ∈ R2×2, Bik ∈ R2×2, Pi ∈ R2×2, Pj ∈ R2×2,
k ∈ R2×2 denote the matrix representation of b′

ij, b
′

ik, p
′

i , p
′

j and
′

k, respectively. Multiplying [1, 0]T on both sides of this equation,
ne can obtain the bearing-induced linear equation

ij(pj − pi) + Bik(pk − pi) = 0. (7)

lso, an angle-induced linear equation is established in Chen
2022) as(
sinαjkiI2 − sinαijkRT(αkij)

)
pi

+
(
sinαijkRT(αkij)

)
pj − sinαjkiI2pk = 0,

(8)

hose coefficient matrices are only related to angle measure-
ents αjki, αkij and αijk.
Before showing the important role of (6)–(8) in the network

inear localization, we first describe them in a unified framework.
ince (6)–(8) associate with more than two sensors, instead of
sing graphs consisting of inter-sensor edges to describe the
etwork topology, we define a multigraph M = {U1, . . . ,Um|m ∈
+
} ⊂

∏m
i=1 V to describe the communication and sensing topol-

gy of the sensor network, where Ul = {(i1, . . . , is)|i1 ̸= i2 ̸=

· · ̸= is, {i1, . . . , is} ⊂ V, s ∈ N+
} denotes an associated basic

nit of the network topology, l ∈ {1, 2, . . . ,m} denotes the index
f each unit, and s ∈ N+ is the number of vertices in each unit.

Then, the sensor network with every type of measurements can
be described by a multi-point framework F(V,M, p), where V is
the vertex set with |V| = n ∈ N+, M is the multigraph with
|M| = m ∈ N+, and p ∈ R2n. Clearly, for distance measurements,
the basic unit is a quadruple, while for bearing measurements the
basic unit is an edge, and for angle measurements, the basic unit
is a triplet. Since each unit Ul of M gives one linear equation, one
can construct m linear equations from M. The compact form of
these m linear equations can be written as Mp = 0 where M ∈

R2m×2n is called as the measurement matrix with the following
structure

· · · sensor i · · · sensor j · · · sensor k · · ·⎡⎢⎢⎢⎣
⎤⎥⎥⎥⎦

unit U1 · · · · · · · · · · · · · · · · · · · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

unit Ul · · · AUl
i · · · AUl

j · · · AUl
k · · ·

· · · · · · · · · · · · · · · · · · · · · · · ·

unit Um · · · · · · · · · · · · · · · · · · · · ·

,

(9)
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here {i, j, k} ⊂ V , AUl
i ∈ R2×2, AUl

j ∈ R2×2, AUl
k ∈ R2×2 corre-

spond to those coefficient matrices established from (6)–(8), which
are only related to those available sensor measurements. To
clearly show the communication relationship within F(V,M, p),
we define an undirected graph GM(V, E) where (i, j) ∈ E if
∃(i1, . . . , is) ∈ M and {i, j} ⊆ {i1, . . . , is}.

2.3. A unified description for linear network localization algorithms

Based on the established linear equations, we now describe
the existing linear localization algorithms in a unified form. Fol-
lowing the ingenious formulation of bearing-based linear net-
work localization (Zhao & Zelazo, 2016), one can formulate the
general linear localization problem as a least-square optimization
problem with the following cost function

J(p̂f ) =

∑
Ul∈M

∥AUl
i1
p̂i1 + AUl

i2
p̂i2 + · · · + AUl

is p̂is∥
2

=p̂TMTMp̂,
(10)

here p̂i1 represents the estimate of sensor i1’s position, p̂i =

i, ∀i ∈ Va, and the definitions of matrices AUl
i1
, · · · , AUl

is can be
ound in (9). Let L = MTM ∈ R2n×2n. By partitioning matrix

= [Ma Mf ] into anchor sensors’ part Ma ∈ R2m×2na and free
ensors’ part Mf ∈ R2m×2nf , the matrix L can be written in the
orm of

= MTM =

[
Laa Laf
Lfa Lff

]
∈ R2n×2n, (11)

here Laa = MT
aMa ∈ R2na×2na , Laf = MT

aMf ∈ R2na×2nf ,
fa = MT

f Ma ∈ R2nf ×2na , and Lff = MT
f Mf ∈ R2nf ×2nf . We

all Lff the network’s localization matrix since it plays a key role
n network linear localization. Taking the gradient of (10) along
ˆ f = [p̂Tna+1, . . . , p̂

T
n]

T yields the unified localization algorithm

̇̂
f (t) = − ∇p̂f J(p̂f ) = −Lff p̂f (t) − Lfapa

= − Lff (p̂f (t) − pf ),
(12)

here pf = −L−1
ff Lfapa since Lff pf + Lfapa = 0, and Lff is

onsingular if and only if the corresponding network is localiz-
ble (Chen, 2022; Diao et al., 2014; Lin et al., 2016). Writing (12)
nto component forms under different measurement cases easily
erifies that (12) is distributed (Chen, 2022; Diao et al., 2014;
hao & Zelazo, 2016).
When considering the existence of measurement noises, we

enote the error matrices due to measurement noises by ∆Lff and
Lfa, and define L̂ff = Lff + ∆Lff and L̂fa = Lfa + ∆Lfa. Then, the
istributed localization algorithm (12) becomes

̇̂
f (t) = − L̂ff p̂f (t) − L̂fapa

= − L̂ff
(
p̂f (t) + L̂−1

ff L̂fapa
)
,

(13)

hich holds if L̂ff is nonsingular.
Now, we give the condition for the nonsingularity of L̂ff .

emma 1 (Chen, Cao et al., 2022; Fang et al., 2020; Lin et al.,
016; Zhao & Zelazo, 2016). Given a localizable network F (V,M, p)
ith nonsingular Lff , then L̂ff is nonsingular if the error matrix ∆Lff
atisfies

∆Lff
 < λmin

(
Lff

)
. (14)

roposition 2 (Chen, 2022; Diao et al., 2014; Zhao & Zelazo, 2016).
or a sensor network F(V,M, p) with continuous localization algo-
ithm (12),
4

a) the system (12) is asymptotically stable iff the network is local-
zable which holds iff Lff is nonsingular;
b) the convergence speed of localization error p̃f (t) = p̂f (t) − pf is
higher if λmin(Lff ) is larger;
(c) the robustness of (13) against measurement noises is higher if
λmin(Lff ) is larger.

Proposition 2 indicates that a larger λmin(Lff ) will make posi-
ive effects on the performance of linear localization algorithms.
roposition 2 serves as a general result for linear localization ap-
roaches based on different types of measurements (Chen, 2022;
iao et al., 2014; Zhao & Zelazo, 2016). This is because all these
ocalization approaches in the literature are developed based on
he corresponding measurement-induced linear equations (6),
7), (8) and the gradient descent of their least square errors (12).

. Centralized eigenvalue optimization algorithm

.1. Selection of the decision variable

It is expected to maximize λmin(Lff ) since a larger λmin(Lff )
mplies better performance of linear localization algorithms ac-
ording to Proposition 2. Note that if AUl

i1
pi1 + AUl

i2
pi2 + · · · +

AUl
is pis = 0, Ul ∈ M is a measurement-induced linear equation,

√
βlA

Ul
i1
pi1 +

√
βlA

Ul
i2
pi2 + · · · +

√
βlA

Ul
is pis = 0, ∀βl ∈ R+ is also

a measurement-induced linear equation of the network, which
provides us a freedom to adjust the values of βl, l = 1, . . . ,m
such that λmin(Lff ) can be improved. Specifically, since Mp = 0
are linear equations of F,

(diag[
√

β1, . . . ,
√

βm] ⊗ I2)Mp = 0 (15)

are also linear equations of F. From (15), the new Lff is modified
to

Lff (β) =
((
diag[

√
β1, . . . ,

√
βm] ⊗ I2

)
Mf

)T
·
(
diag[

√
β1, . . . ,

√
βm] ⊗ I2

)
Mf

=β1eT1e1 + β2eT2e2 + · · · + βmeTmem
=β1E1 + β2E2 + · · · + βmEm,

(16)

here Mf = [eT1, . . . , e
T
m]

T
∈ R2m×2nf , and ei ∈ R2×2nf . Note that a

normalization is needed for β = [β1, . . . , βm]
T

∈ Rm to guarantee
he feasibility of the problem, namely

∑m
i=1 βi = 1. Then the

problem to be solved is formulated as follows:

max
β

λmin(Lff (β)) = max
β

λmin
( m∑
i=1

βiEi
)

s.t. βi > 0,
m∑
i=1

βi = 1.

(17)

In the above, β is the weight of units in the network F(V,

M, p). To optimize the weight of units for localization, we in-
troduce a normalized constraint on the sum of βi. Notably, the
optimal value of βi maintains proportionality when the sum of βi
takes different values. In other words, if the constraint is changed
to

∑m
i=1 βi = c > 0, the optimal weight becomes βi = cβ∗

i ,
and the optimal eigenvalue λi = cλ∗

i , ∀i = 1, . . . ,m, where
β∗

i , λ
∗

i are the optimal weight and eigenvalue of (17), respectively.
This indicates the trivial extension from the current results to the
scenario where

∑m
i=1 βi has different values.

Remark 3. Directly increasing the gain kc of the localization
law (13), denoted as ̇̂pf (t) = −kc L̂ff

(
p̂f (t) + L̂−1

ff L̂fapa
)
is not a

suitable option for improving system performance due to two
main reasons, despite its ability to improve the convergence rate.
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irstly, raising kc leads to a larger variance of the localization
rror, compromising robustness. This conflicts with our goal of
imultaneously improving both convergence rate and robustness.
econdly, introducing kc is a special case of (17), where β1 =

· · = βm = kc . However, under the constraint
∑m

i=1 βi =

kc , this is not the optimal solution, which implies suboptimal
nergy utilization when considering

∑m
i=1 βi = mkc as an energy

onstraint. Additionally, finite-time localization algorithms, com-
only used, show two drawbacks. Firstly, they involve a large
agnitude of gain (Galicki, 2015) in the localization law, whose
ide effects have been mentioned above. Secondly, their impact
n estimation dynamics under measurement noise is unknown
ue to nonlinearity from measurements to overall dynamics.
pecifically, while a nonlinear finite-time localization law may
erform well without noise, it may diverge with the presence
f noise (Aldana-López, Seeber, Haimovich, & Gómez-Gutiérrez,
023; Orlov, Kairuz, & Aguilar, 2021).

.2. Multiplicity analysis for λ(Lff (β))

In this subsection, we analyze the algebraic multiplicity of
min(Lff (β)). We first present the following lemma.

emma 4. For βi > 0, i = 1, . . . ,m, Lff (β) can be described by

Lff (β) =

⎡⎣ a1I2 b12R(θ12) ··· b1nf R(θ1nf )

b12RT(θ12) a2I2 ··· ···
... ... ... ...

b1nf R
T(θ1nf ) ... ... anf I2

⎤⎦, (18)

where ai =
∑

Ul∈M
βld

Ul
i , ∀i = 1, . . . , nf , d

Ul
i ∈ R+, bij ∈ R+

and θij ∈ R denote the corresponding coefficient and rotation angle
after normalizing

∑
Ul∈M

βld
Ul
ij R(θ

Ul
ij ), dUl

ij ∈ R+, θ
Ul
ij ∈ R, i ̸= j,

respectively.

The proof of Lemma 4 can be found in Appendix A. Lemma 4
provides a unified description for Lff (β) of different linear local-
ization algorithms. Based on Lemma 4, we present the following
results.

Theorem 5 (Liang et al., 2023, Theorem 2). Suppose that βi >

0, ∀i = 1, . . . ,m. The algebraic multiplicity of λj(Lff (β)) is equal
to the geometric multiplicity of λj(Lff (β)), ∀j = 1, . . . , 2nf , which is
always an even number. □

From Theorem 5, one can derive that the algebraic multiplic-
ity of λmin

(
Lff (β)

)
is always at least two, which indicates that

λmin
(
Lff (β)

)
is non-differentiable according to Overton (1988,

1992). We refer readers to our CDC paper (Liang et al., 2023) for
the proof of the theorem.

3.3. Eigenvalue optimization approach

To overcome the difficulty due to the non-differentiability of
(17), we transform the problem into a SDP (Helmberg, Rendl,
Vanderbei, & Wolkowicz, 1996; Jarre, 1993), i.e.,

min
λ,β

λ

s.t λI +

m∑
i=1

βiEi ⪰ 0,

βi > 0, i = 1, . . . ,m,
m∑
i=1

βi = 1,

(19)

where β = [β1, . . . , βm]
T

∈ B, which denotes the feasible set of
β . In more detail, let B =

∏m B , where B = {0 < β < 1}. Here
i=1 i i i

5

we use a relaxed convex set B motivated by Van Tran et al. (2022)
due to the intractability of the exact set. We have the following
result.

Lemma 6. The set of solutions of the problem (19) is nonempty
and compact.

The proof of Lemma 6 can be found in Appendix B. Lemma 6
indicates that there always exists an optimal solution of the
problem (19), which shows that the problem is meaningful to
solve.

We use the interior-point algorithm (Boyd & Vandenberghe,
2004; Helmberg et al., 1996; Jarre, 1993) to solve the prob-
lem (19), since this algorithm is effective to solve eigenvalue
optimization problems with inequality constraints. By utilizing
the logarithmic barrier functions log(·) and log det(·), we ap-
proximately reformulate the equality and inequality constrained
optimization problem (19) as an equality constrained problem

min
x

wfc(x) + φ(x)

s.t. bTcx = 1,
(20)

where

fc(x) = aTcx,

φ(x) = −

m∑
i=1

log xi − log det E(x),

E(x) = λI +

m∑
i=1

βiEi.

Here, x =
[
βT, λ

]T
∈ Rm+1, ac = [0, . . . , 0, 1]T ∈ Rm+1, bc =

[1, . . . , 1, 0]T ∈ Rm+1, and w ∈ R+. Denote the domain of φ(x) by
dom φ = {x ∈ Rm+1

⏐⏐xi > 0, i = 1, . . . ,m, xm+1 < 0, E(x) ⪰ 0}.
Note that if x is a strictly feasible solution of (20), namely, x ∈

dom φ∩
{
x|x ∈ Rm+1, bTcx = 1

}
, it also satisfies all the constraints

in (19). The cost function wfc(x)+φ(x) is convex since the sum of
convex functions wfc(x) and φ(x) is also convex, which indicates
that the problem (20) has a global optimal solution. Besides, since
the cost function in (20) is second-order differentiable due to
the second-order differentiability of wfc(x) and φ(x), we can use
Newton’s methods (Boyd & Vandenberghe, 2004, Section 9.5) to
solve (20) when w is fixed. The scalar w denotes a weighted
parameter, which is updated according to

wk+1 = µwk, (21)

where µ > 1 and k = 1, 2, . . . denotes the iteration sequence
number. The choice of the parameter µ involves a trade-off in
the numbers of inner and outer steps required in Algorithm 1.
According to Boyd and Vandenberghe (2004, Section 11.3), for µ

in a range from around 3 to 100 or so, the total number of steps,
namely the result of the number of the inner steps multiplies
the number of the outer steps, remains approximately constant,
which indicates that choice of µ is not particularly critical.

The complete process of the interior-point method is shown
in Algorithm 1. At each iteration k, we compute the central point
x∗(wk) starting from the previously computed central point by
utilizing the Newton’s method to solve (20) when w = wk. Then
we calculate wk+1 following (21). The scalar ϵ ∈ R+ denotes
the accurate threshold and the stop criterion mc

wk
< ϵ, where mc

enotes the number of inequality constraints in (19).
Denote the optimal value of fc(x) in (19) by f ∗. Note that x∗ is

the optimal solution of (20), which is an approximation problem
of (19). The gap between f ∗ and f (x∗) can be described by the
following proposition. Letmc = m+1 denote the number of terms
log(·) in φ(x) of (20).
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Algorithm 1 Interior-point method to solve (20)

Require: Strictly feasible x, initial w0 > 0, factor µ, and tolerance
ϵ.
for k = 1, 2, · · · do
Compute the central point x∗(wk) by minimizing (20),
starting at x.
Update x by x = x∗(wk).
if mc

wk
< ϵ then

Quit the loop.
end if
Calculate wk+1 following (21).

end for
return The optimization solution x to the problem (19).

Proposition 7 (Boyd & Vandenberghe, 2004, Section 11.2). Consider
the optimization problem (20). Assume w > 0, µ > 1 and ϵ > 0.
For every strictly feasible initial x(w0), under Algorithm 1, the gap
associated with x∗(w) is described as

fc
(
x∗(w)

)
− f ∗

c ≤
mc

w
, (22)

.e., x∗(w) is no more than mc
w
-suboptimal.

Proposition 7 shows that the gap mc
w

converges to zero when
goes to infinity, which indicates that the optimal solution x∗(w)

f (20) is close enough to that of (19) when the gap mc
w

is less than
he specified accurate threshold ϵ.

emark 8. We give a complexity analysis for Algorithm 1. We ob-
erve that the expected threshold ϵ is achieved after

⌈ log(mc/ϵw0)
logµ

⌉
centering steps. This determination arises from solving the in-
equality mc

w
≤ ϵ, where w is defined in (21) and mc

w
represents the

ctual accuracy bound given in Proposition 7. According to Boyd
nd Vandenberghe (2004, Section 11.5.2), the required number of
ewton steps at every centering step is mc (µ−1−logµ)

γ1
+ γ2, where

γ1 ∈ R, γ2 ∈ R are some constants. Then the total number
of Newton steps is

⌈ log((m+1)/ϵw0)
logµ

⌉( (m+1)(µ−1−logµ)
γ1

+ γ2
)
, which

indicates that the total number of Newton steps increases with
m, i.e., the number of units in the network, increases.

4. Distributed eigenvalue optimization algorithm

In this section, we present a distributed eigenvalue optimiza-
tion approach to obtain the optimal β∗. To develop a distributed
algorithm, we need to decouple (19) while maintaining equiva-
lence with the original problem. Firstly, we define the decision
variable of unit i as xi = [λi, βi]

T with the feasible set Xi ={
xi ∈ R2

|λi ∈ R, βi ∈ Bi
}
, ∀i ∈ M. Letting λ =

∑m
i=1 λi results

in the decomposition of the cost function into m separable local
functions, namely

∑m
i=1 a

Txi, where a = [1, 0]T ∈ R2. With the
introduction of xi, the LMI in (19) becomes

∑m
i=1 (λiI + βiEi) ⪰

0, successfully decoupling this constraint. Lastly, the equality
constraint

∑m
i=1 βi = 1 is equivalently expressed as

∑m
i=1 c

Txi −
1i=1(i), where c = [0, 1]T ∈ R2, 1i=1(i) denotes the indicator
function, i.e., 1i=1(i) = 1 if i = 1 and 1i=1(i) = 0 otherwise. After
the decomposition, the optimization problem is transformed into

min
x∈X

m∑
i=1

aTxi

s.t.
m∑

(λiI + βiEi) ⪰ 0, (23)

i=1

6

m∑
i=1

(
cTxi − 1i=1(i)

)
= 0,

where x = [xT1, . . . , x
T
m]

T
∈ R2m, and X =

∏m
i=1 Xi ∈ R2m.

The optimization problem (23) is effectively decoupled while
preserving its equivalence with the original problem (19). It is
noteworthy that no unit needs to be aware of its index i. We just
need to formulate the equality constraint of arbitrary a unit i as
hi(xi) = cTxi − 1, while the equality constraints of other units are
denoted as hj(xj) = cTxj, j ∈ M\ {i}, before deploying the sensor
network to a practice scenario.

4.1. Distributed optimization algorithm design

For notation simplicity, let f (x) =
∑m

i=1 fi(xi) =
∑m

i=1 a
Txi,

G(x) =
∑m

i=1 Gi(xi) =
∑m

i=1 −BT
i (xi⊗I2nf ), where Bi =

[
I2nf , E

T
i

]T
∈

R4nf ×2nf , and h(x) =
∑m

i=1 hi(xi) =
∑m

i=1

(
cTxi − 1i=1(i)

)
. The

Lagrange function L1(x, R, ν) for (23) is given by

1(x, R, ν) =

m∑
i=1

fi(xi) +

m∑
i=1

⟨R,Gi(x)⟩ + ν

m∑
i=1

hi(x), (24)

here R ∈ S
2nf
+ and ν ∈ R are the Lagrange multipliers.

Lemma 9. There exists a dual solution (R∗, ν∗) of the problem (24).

Proof. Obviously, (23) is convex and satisfies Slater’s condition,
ensuring strong duality (Boyd & Vandenberghe, 2004, Section
5.2.3). This indicates the existence of a dual solution (R∗, ν∗) such
that f (x∗) = L1(x∗, R∗, ν∗), where x∗

= argminx∈X f (x). □

For such a convex optimization problem (23) with zero duality
gap, based on Lemma 9, finding its optimal solution is equivalent
to seeking the saddle point (x∗, R∗, ν∗) of (24).

Lagrange multipliers R and ν in (24) serve as global dual
variables, associated with decision variables of all units. However,
each unit is unable to directly access the values of R and ν as there
is no central agent. To solve it, we construct a modified Lagrange
function, i.e.,

L2(x,R, ν) =

m∑
i=1

(fi(xi) + ⟨Ri,Gi(xi)⟩ + νihi(xi))

s.t. Ri = Rj, νi = νj, ∀i, j ∈ M,

(25)

where R = [RT
1, . . . , R

T
m]

T
∈ R2mnf ×2nf , ν = [ν1, . . . , νm]

T
∈

Rm. The dual variables Ri and νi of unit i are local estimated
Lagrangian multipliers for R and ν, respectively. Consensus con-
straints for Ri and νi are introduced and once satisfied, we can say
that Ri and νi converge to R and ν, respectively. Thus, the optimal
solution of (25) equals to that of (24).

The distributed optimization algorithm for solving (25) is de-
signed as

ẋ(t) = 2k1(x̂ − x),

Ṙ(t) = k1(R̂ − R),
ν̇(t) = k1(ν̂ − ν),

U̇ (t) = k2LRR,

η̇(t) = k2Lν,

(26)

where x̂ = PX
(
x − ∇xL2(x,R + Ṙ, ν + ν̇)

)
, R̂ = P

S
(2nf )m

+

(
R +

∇RL2(x,R, ν)−LRR−LRU
)
, ν̂ = PRm ( ν+∇νL2(x,R, ν)−Lν−Lη ),

LR = L ⊗ I2nf , L denotes the corresponding Laplace matrix of the
graph GM, U = [UT

1 , . . . ,U
T
m]

T
∈ R2mnf ×2nf , η = [η1, . . . , ηm]

T
∈

m (2nf )m ∏m 2nf
R , S+ = i=1 S+ , and k1, k2 ∈ R are constant gains to be
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pecified. The component form of (26) for each unit i ∈ M is

ẋi(t) = 2k1
(
x̂i − xi

)
,

Ṙi(t) = k1
(
R̂i − Ri

)
,

ν̇i(t) = k1
(
ν̂i − νi

)
,

U̇i(t) = k2
∑
j∈Ni

(
Ri − Rj

)
,

η̇i(t) = k2
∑
j∈Ni

(
νi − νj

)
,

(27)

where x̂i = 2k1PXi

(
xi − a +

[
⟨ I2nf , Ri + Ṙi ⟩ , ⟨ Ei, Ri + Ṙi ⟩

]T
−

vi + v̇i) c
)
, R̂i = P

S
2nf
+

(
Ri − BT

i (xi ⊗ I2nf ) −
∑

j∈Ni

(
Ri − Rj

)
−

j∈Ni

(
Ui − Uj

))
, ν̂i =

(
νi + cTxi − 1i=1(i) −

∑
j∈Ni

(
νi − νj

)
−

∑
j∈Ni

(
ηi − ηj

) )
, and Ni denotes the neighbor set of unit i.

Indeed, algorithm (26) can be viewed as a projected primal–
dual algorithm. To handle the feasible set constraint, we in-
troduce the projection operators PX and P

S
(2nf )m

+

for x and R,

respectively. Referring to Antipin (1994, Theorem 1), damping
terms Ṙ and ν̇ are included in the update law of x to ensure
the convergence of dynamics (26) from a control perspective. The
auxiliary variables U and η represent integral terms of R and
ν, respectively, which are necessary. That’s because substituting
U into the update law of R reveals two components: one is
∇RL2(x,R, ν) used to maximize the Lagrange function (25), and
the other is the proportional-integral (PI) controller ensuring each
local estimation Ri dynamically tracks the true dual variable R in
(24) and achieves consensus. The role of η is analogous.

Remark 10. It is worth mentioning that our algorithm has two
different aspects comparing to the existing works. Firstly, the
algorithm proposed in this paper can deal with the optimization
problem with three different types of constraints, simultaneously,
which can be uncoupled and coupled, vector and matrix con-
straints, demonstrating its flexibility and applicability. Secondly,
existing works such as Li, Deng et al. (2021) and Li, Zeng et al.
(2021) decouple LMI constraints using high-dimensional slack
variables. The introduction of slack variables pose a significant
burden on storage and computation for sensors. In contrast, our
approach avoids it, thus easing burdens on sensors.

Remark 11. Here we discuss the identification, interaction and
scalability of this algorithm. For the identification of basic units,
each sensor only needs to establish communication links and
conduct measurements with respect to its neighbors that form
a unit, which can be done in a distributed manner (Chen, Lin, &
Xie, 2024) or in the network design stage to ensure the network
localizability (Chen, 2022). Since the interaction is among units
and each unit consists of multiple sensors, the communication
between units is similar to that among routers. Thus, those low-
level interacting mechanisms from communication engineering
can be an alternative here for implementing the inter-unit com-
munication. Based on the definition of scalability in Rana and
Stout (2000), our algorithm is scalable since the proposed algo-
rithm for each unit only depends on the communication with its
neighbor units, no matter how many number of units in the net-
work. It is worth mentioning that the overall localization system’s
performance is a property of the whole network, rather than a
local property and that is why the algorithm for performance
optimization requires to compute eigenvalues of the localization
matrix with its dimension scaling up with the number of free

sensors.

7

4.2. Optimality and convergence analysis

According to Le, Chen, Li, Yan, and Xi (2019) and Li, Zeng et al.
(2021), the graph GM needs to be connected if we expect the
algorithm (26) works. Then we give the following assumption.

Assumption 12. The graph GM is connected and undirected.

The relationship between the optimal solution of problem (25)
and the equilibrium point of dynamics (26) is addressed in the
following theorem.

Theorem 13. Under Assumption 12, x∗ is an optimal solution of
(23) iff there exists (R∗, ν∗,U∗, η∗) such that (x∗,R∗, ν∗,U∗, η∗) is
an equilibrium point of (26).

The proof of this theorem is provided in Appendix C. As stated
in Theorem 13 we know that finding the equilibrium point of
(26) is equivalent to finding the optimal solution of (25). Here, we
establish the following theorem on the convergence of dynamics
(26).

Theorem 14. Suppose Assumption 12 holds. If the constant gains
k1 and k2 satisfy
k1
k2

≥
λmax(L)

2
, (28)

here λmax(L) denotes the largest eigenvalue of the Laplacian ma-
rix L, the trajectory (x(t),R(t), ν(t),U (t), η(t)) converges to an
equilibrium point (x∗,R∗, ν∗,U∗, η∗) under (26).

The proof of Theorem 14 can be found in Appendix D.
Theorems 13 and 14 indicate that under the proposed algorithm
(26), one can find the optimal solution of (25).

Next, the convergence rate of the algorithm (26) is discussed.
It is difficult to analyze the convergence rate of (26) directly,
since the existence of various constraints and non-smooth terms.
Referring to Li, Xie and Hong (2019), we provide an indirect
convergence rate.

Theorem 15. Assume the conditions in Theorem 13 hold, then

lim
t→∞

inf
(ẋ +

Ṙ
F +

U̇
F +

ν̇
 +

η̇
)

O
( 1
√
t

)
.

(29)

The proof of Theorem 15 can be found in Appendix E.

. Simulation results

This section presents simulation examples to validate the ef-
ectiveness of the proposed algorithms.

The sensor network is an angle-based network shown in Fig. 1,
hich consists of m = 13 triangles. The form of the triangles is
3, 6, 11), (4, 6, 7), (6, 7, 9), (4, 5, 7), (5, 7, 8), (7, 8, 10), (1, 9, 10),
(2, 4, 5), (1, 8, 10), (3, 6, 9), (2, 5, 8), (6, 11, 4) and (4, 6, 12). The
positions of three anchor sensors are p1 = [2.5, −21.7]T, p2 =

[13.7, 10.6]T and p3 = [−19.3, 0]T. The positions of free sensors
are p4 = [−2.0, 16.8]T, p5 = [4.5, 10.5]T, p6 = [−13.4, 1.0]T,
p7 = [0.6, −0.3]T, p8 = [9.2, 0.5]T, p9 = [−8.7, −15.4]T, p10 =

[0, −8.3]T, p11 = [−7.7, 12.7]T and p12 = [−8.3, 9.9]T. The initial
decision variables are xi(0) = [λi, βi]

T
= [0, 1

m ]
T, and the dual

variables are Ri(0) = I2nf and νi(0) = 1, ∀i ∈ M. The gain
coefficients are specified as k1 = 1.2, k2 = 0.03.

Through Algorithm 1, we obtain the optimal solution
β∗

= [ 0.053323 0.060983 0.001535 0.090534 0.044165
0.010316 0.047960 0.056141 0.057161 0.109001

T
(30)
0.092911 0.078914 0.297038 ] .
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Fig. 1. Network topology with 12 nodes and 13 triangles.

Fig. 2. Position estimation errors without measurement noises.

Note that λmin
(
Lff (β∗)

)
= 0.008876 ≈ 2.5 · λmin(Lff (β(0))),

hich is improved effectively.
It is worth noting that the weight β∗

13 corresponding to triangle
4, 6, 12) obviously increases a lot with respect to β13(0), while
he weight β∗

3 corresponding to triangle (6, 7, 9) has a significant
ecrease from its initial value β3(0). One physical interpretation
or this is that the eigenvalues of E13 defined in (16) are relatively
mall, which is one of the reasons that makes λmin(Lff (β)) small. If
arge coefficient β13 is given in the front of E13, λmin(Lff (β)) can be
ncreased. While the eigenvalues of E3 is relatively large, and due
o the normalization constraint of β , giving a small coefficient β3
n the front of E3 will not cause a decrease in λmin(Lff (β)).

Fig. 2 shows the evolution of the position estimation error
p̂f (t) − pf

 without the existence of measurement noises under
he localization algorithm (12). The convergence rate of the po-
ition estimation error to zero is faster after using the proposed
 o

8

erformance optimization method, which validates that our per-
ormance optimization method can improve the convergence rate
f the localization algorithm (12).
To simulate noisy sensor environments, each element of the

rror matrices ∆Lff and ∆Lfa is generated by white noises. Fig. 3
hows the evolution of the position estimation error

p̂f (t) − pf


hen considering the existence of measurement noises under
he localization algorithm (13). When

∆Lff
 = 0.002710 <

min
(
Lff (β(0))

)
< λmin

(
Lff (β∗)

)
, the left panel of Fig. 3 shows that

he stable position estimation error is less after using the pro-
osed performance optimization method. When λmin

(
Lff (β(0))

)
<

∆Lff
 = 0.006166 < λmin

(
Lff (β∗)

)
, The right panel of Fig. 3

shows that the localization algorithm (13) has better robustness
against measurement noises after using the performance opti-
mization method. These two simulation examples validate that
our performance optimization method can improve the stability
margin and robustness of the localization algorithm.

To validate the effectiveness of the distributed optimization al-
gorithm (26), we primarily demonstrate its capability to yield the
optimal solution, which coincides with the optimal solution (30)
obtained through the centralized Algorithm 1. Let λmin

(
Lff (β∗)

)
be abbreviated as λ∗

min for simplicity. The minimum eigenvalue of
Lff at time instant t is represented as λmin(t) = λmin(

∑m
i=1 βi(t)Ei).

Two panels of Fig. 4 show the evolution of convergence er-
rors

⏐⏐λmin(t) − λ∗

min

⏐⏐ and ∥β(t) − β∗∥, respectively. Both of them
asymptotically converge to zero under the proposed distributed
optimization algorithm. These two simulation results verify the
results of Theorems 13 and 14, i.e., the algorithm (26) will con-
verge to the equilibrium point, which is also the optimal solution
of the problem (25).

Fig. 5 shows the trajectories of consensus errors 1
2

∑m
i=1∑m

j=1

Ri(t) − Rj(t)

F and 1

2

∑m
i=1

∑m
j=1

νi(t) − νj(t)
. The results

how that Ri and νi, i ∈ M could converge to the same asymp-
otically.

. Conclusions

This paper aims to improve the performance of linear localiza-
ion algorithms. Firstly, we have proposed a unified description
or linear localization algorithms, and shown that the stability
argin, convergence rate and robustness of linear localization
lgorithms are commonly determined by the minimum eigen-
alue of the network’s localization matrix. Secondly, by carefully
hoosing the decision variable, we have formulated the per-
ormance optimization problem as an eigenvalue optimization
roblem. Thirdly, we have proposed centralized and distributed
ptimization algorithms to obtain the optimal solution of the
Fig. 3. Position estimation errors with the existence of measurement noises.



L. Chen, C. Liang, Y. Li et al. Automatica 171 (2025) 111903

t

Fig. 4. Convergence errors of λmin(t) and β(t).
Fig. 5. Consensus errors of R(t) and ν(t).
c
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s
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i
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eigenvalue optimization problem. Finally, simulation examples
have validated the algorithms’ effectiveness.
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Appendix A. Proof of Lemma 4

Firstly, we conduct basic trigonometric calculations for the
angle-induced coefficient matrices. According to (8), the coeffi-
cient matrices are specialized to AUl

i = sinαjkiI2−sinαijkRT(αkij) ∈

R2×2, AUl
j = sinαijkRT(αkij) ∈ R2×2, and AUl

k = − sinαjkiI2 ∈ R2×2.
One has

(AUl
i )TAUl

i = ε
Ul
i I2,

(AUl
i )TAUl

j =

[
ε
Ul
ij,1 ε

Ul
ij,2

−ε
Ul
ij,2 ε

Ul
ij,1

]
= ε

Ul
ij R(θ

Ul
ij ), (A.1)

where ε
Ul
i ∈ R+, ε

Ul
ij,1 ∈ R and ε

Ul
ij,2 ∈ R are constants related

o those interior angles within U , and θ
Ul

∈ R denotes the
l ij

9

orresponding rotation angle. Then, according to the definition of
ff (β) given in (16) and (A.1), one can have

ff (β) =β1eT1e1 + · · · + βmeTmem

=

⎡⎣ a1I2 ··· b1nf R(θ1nf )

...
...

...
b1nf R

T(θ1nf ) ··· anf I2

⎤⎦,
(A.2)

here ai =
∑

Ul∈M
βlε

Ul
i , bij ∈ R and θij ∈ R are the corre-

ponding coefficient and rotation angle after normalizing
∑

Ul∈M

lε
Ul
ij R(θ

Ul
ij ).

Secondly, from the generalized barycentric coordinate defined
n Diao et al. (2014) we know that the physical meaning of the
nit Ul is the lth distance-induced linear equation. Let aUl

li ∈ R,
∈ {1, . . . , n} denotes the lth sensor’s generalized barycentric
oordinate with respect to sensor i. Then for the distance-induced
inear Eq. (6), if we have a barycentric coordinate for every
ensor’s position, the localization matrix Lff can be specialized to

ff (β) =
(
β1eT1e1 + · · · + βmeTmem

)
⊗ I2

=

⎡⎣ a1I2 ··· b1nf R(0)

...
...

...
b1nf R

T(0) ··· anf I2

⎤⎦.

The diagonal element is defined as aiI2 =
∑

Ul∈M
βl(a

Ul
li )

2I2,
nd the off-diagonal element is defined as bijR(0) =

∑
Ul∈M

la
Ul
li a

Ul
lj

[
1 0
0 1

]
, i ̸= j.

Finally we consider the bearing-based localization network.

et BUl
ij =

[
a
Ul
ij −b

Ul
ij

Ul Ul

]
∈ R2×2, which denotes the weight matrix
bij aij
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=

w
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or sensor i with respect to sensor j in unit Ul. We have

(BUl
ij )

TBUl
ij =

[
a
Ul
ij −b

Ul
ij

b
Ul
ij a

Ul
ij

]T[
a
Ul
ij −b

Ul
ij

b
Ul
ij a

Ul
ij

]
= (rUl

ij )2I2,

(BUl
ij )

TBUl
ik =

[
a
Ul
ij −b

Ul
ij

b
Ul
ij a

Ul
ij

]T[
a
Ul
ik −b

Ul
ik

b
Ul
ik a

Ul
ik

]
= rUl

ij rUl
ik R(ϕUl

ik − ϕ
Ul
ij ),

where i ̸= j ̸= k, rUl
ij =

√
(aUl

ij )2 + (bUl
ij )2, cosϕ

Ul
ij = aUl

ij /rUl
ij , and

sinϕ
Ul
ij = bUl

ij /rUl
ij . Based on the bearing-induced linear Eq. (7),

Lff (β) can be described by

Lff (β) = β1eT1e1 + · · · + βmeTmem

=

⎡⎣ a1I2 ··· b1nf R(θ1nf )

...
...

...
b1nf R

T(θ1nf ) ··· anf I2

⎤⎦,

where ai =
∑

Ul∈M
βl(r

Ul
l1 )2, bij ∈ R, θij ∈ R are the correspond-

ing coefficient and rotation angle respectively after normalizing∑
Ul∈M

βlr
Ul
li rUl

lj R(ϕUl
lj − ϕ

Ul
li ). Consequently, we can conclude the

esult.

ppendix B. Proof of Lemma 6

Firstly, we will prove that B is compact and convex. We can
uppose on the contrary that βi = 0, ∃i ∈ M is possible. It
s obvious that Ei, ∀i ∈ M is positive definite, so if the ini-
ial β(0) satisfies the constraints, then one has straightforward
min(Lff (β(0))) > 0. If β∗

i = 0 after optimization, it is easy to
rove that λmin

(
Lff (β∗)

)
= 0 < λmin(Lff (β(0))), which implies

contradiction since the purpose of the optimization is to max-
mize the minimum eigenvalue. Therefore, we conclude that βi
will not converge to zero and must be greater than a lower bound
when we optimize β , i.e., βi ≥ ϵ1, where 1 > ϵ1 > 0. Similarly,
e can derive that βi will not converge to one and must be less
han an upper bound when we optimize β , i.e., βi ≤ 1−ϵ2, where
> ϵ2 > 0, since βi = 1 indicates βj, j ∈ {1, . . . ,m} \i = 0 due

o the constraint
∑m

i=1 βi = 1 and βi > 0, i = 1, . . . ,m. Using
he above mentioned analysis, we conclude that B is compact and
onvex.
Secondly, we prove that the set of solutions of the problem

19) is nonempty and compact. Since the set B is convex and
ounded, there exists no nonzero direction of recession according
o Bertsekas (2009, Proposition 1.4.2), which indicates that the
omain of the cost function f (λ) and B has no common nonzero
irection of recession. Since f (λ) = λ is convex, and the con-
ergence direction of f (λ) is −∞, we can always find a scalar

∈ R that satisfies w ≤ λmin(Lff (β(0))), which indicates that
he epigraph of the cost function epi (f (λ)) = {(λ, w)|f (λ) ≤ w}

s closed. Under the above analysis, the set of solutions of f (λ) is
onempty and compact according to Bertsekas (2009, Proposition
.3.2).

ppendix C. Proof of Theorem 13

Assume that (x∗, R∗, ν∗) is the saddle point of (24), which
atisfies the KKT condition according to Scherer and Weiland
2000, Theorem 1.16) and Antipin (1994), i.e.,
∗

= PX
(
x∗

− ∇xL2(x∗, R∗, ν∗)
)
, (C.1a)

(x∗) ⪯ 0,
⟨
R∗,G(x∗)

⟩
= 0, (C.1b)

(x∗) = 0. (C.1c)

Define U∗
=

[
(U∗

1 )
T, . . . , (U∗

m)
T
]T

∈ R2mnf ×2nf and η∗
=

∗ ∗
]T m ∗ ∗ ∗ ∗ ∗
η1, . . . , ηm ∈ R . Assume (x ,R , ν ,U , η ) is an equilibrium I

10
oint of (26), which satisfies

=PX
(
x∗

− ∇ f̄ (x∗) − ∇Ḡ(x∗)R∗
− ∇h̄(x∗)ν∗

)
− x∗, (C.2a)

=P
S
(2nf )m

+

(
R∗

+ Ḡ(x∗) − LRR∗
− LRU∗

)
− R∗, (C.2b)

=h̄(x∗) − Lν∗
− Lη∗, (C.2c)

=LRR∗, (C.2d)

=Lν∗, (C.2e)

here ∇ f̄ (x) = [∇
Tf1(x1), . . . ,∇Tfm(xm)]T ∈ R2m, Ḡ(x) = [GT

1(x1),
. . ,GT

m(xm)]
T

∈ R4mnf ×2nf , ∇Ḡ(x∗)R∗
= [

⟨
I2nf , R

∗

1

⟩
,
⟨
E1, R∗

1

⟩
, . . . ,

I2nf , R
∗
m

⟩
,
⟨
Em, R∗

m

⟩
]
T

∈ R2m, h̄(x) = [h1(x1), . . . , hm(xm)]T ∈

m, ∇h̄(x∗)ν∗
= [∇

Th1(x1)ν∗

1 , . . . ,∇
Thm(xm)ν∗

m]
T

∈ R2m, and
hi(xi) = c ∈ R2. Strictly speaking, ∇Ḡ(x∗)R∗ and ∇h̄(x∗)ν∗ are

mprecise mathematical expressions relative to their definitions,
nd however, we use this expressions for easy reading.
We first prove (C.1) ⇒ (C.2). Define R∗

= 1m ⊗ R∗ and ν∗
=

mν∗, and then R∗ and ν∗ hold for (C.2d) and (C.2e), respectively.
Take any s ∈ R, and let s = 1m ⊗ s, and then s holds for

s = 0 and s ∈ ker(L), where ker(L) = {x|x ∈ Rm, Lx = 0} denotes
he null space of L. Since (C.1c) holds, sTh̄(x∗) = msh(x∗) =

, which indicates that h̄(x∗) ∈ range(L), where range(L) =

y ∈ Rm
|y = Lx, ∃x ∈ Rm} according to Horn and Johnson (2012,

ection 0.6.6). Therefore there exists η∗ satisfying (C.2c).
Let R∗

= 1m ⊗ R∗, which indicates that R∗
∈ ker(LR).

ased on (C.1b), one can derive that
⟨
R∗, Ḡ(x∗) − LR(R∗

+ U∗)
⟩
=

⟨R∗,G(x∗)⟩ −
⟨
R∗, LR(R∗

+ U∗)
⟩

= 0, which indicates that
¯ (x∗) − LR(R∗

+ U∗) ∈ N
S
(2nf )m

+

(R∗), where N
S
(2nf )m

+

(R∗) = {X ∈

(2nf )m

+ |
⟨
X,R∗

⟩
⪯ 0} denotes the normal cone of R∗. Then it is

asy to verify that P
S
(2nf )m

+

(R∗
+ Ḡ(x∗)−LRR∗

−LRU∗) = R∗, which

ndicates that (C.2b) holds.
Besides, from (C.1a), PX (x − ∇xL2(x∗, R∗, ν∗)) is equal to

X (∇Ḡ(x∗)R∗
−∇h̄(x∗)ν∗), which indicates that (C.2a) holds.

Secondly, we prove (C.1) ⇐ (C.2). If (x∗,R∗, ν∗,U∗, η∗) is an
quilibrium point of (C.2), we obtain

̇ = 0, η̇ = 0,

hich indicates that the block-matrix elements of R∗ and ν∗

onverge to the same, respectively.
Assume R∗

= 1m ⊗ R∗ and ν∗
= 1m ⊗ ν∗. The Eq. (C.2b) is

quivalent to
∗

⪰ 0, (C.3a)⟨
R∗, Ḡ(x∗) − LRR∗

− LRU∗
⟩
⪯ 0, (C.3b)

here (C.3b) holds since only when (C.3b) holds, P
S
(2nf )m

+

(R∗
+

¯ (x∗) − LRR∗
− LRU∗) = R∗ holds. Since R∗ is semi-definite

ositive, one can further infer that (C.3b) holds only when

¯ (x∗) − LRR∗
− LRU∗

⪯ 0. (C.4)

eft multiplying 1T
m ⊗ I2nf on both sides of (C.4), one has(

1T
m ⊗ I2nf

) (
Ḡ(x∗) − LRR∗

− LRU∗
)(

1T
m ⊗ I2nf

)
Ḡ(x∗) = G(x∗) ⪯ 0,

(C.5)

here the first equation holds under the fact (1T
m ⊗ I2nf )LR = 0.

ince P
S
(2nf )m

+

(R∗
+ Ḡ(x∗) − LRR∗

− LRU∗) = R∗ and LRR∗
= 0, we

ave⟨
R∗,G(x∗)

⟩
= 0. (C.6)
n light of (C.3), (C.5) and (C.6), (C.1b) holds.
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V
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s

=

w⟨
ν

n
∇

x
i
−

h

=

=

Then left multiplying 1T
m on both sides of (C.2c), one has

1T
m

(
h̄(x∗) − Lν∗

− Lη∗
)

= 1T
mh̄(x

∗) = h(x∗) = 0,

which shows that (C.1c) holds.
From (C.2a) we have

PX
(
x∗

− ∇ f̄ (x∗) − ∇Ḡ(x∗)R∗
− ∇h̄(x∗)ν∗

)
− x∗

=PX
(
x∗

− ∇ f̄ (x∗) − ∇Ḡ(x∗)(1m ⊗ R∗)

− ∇h̄(x∗)
(
1m ⊗ ν∗

) )
−x∗

=PX
(
x∗

− ∇xL2(x∗, R∗, ν∗)
)
− x∗

=0,

which indicates that (C.1a) holds. The result follows.

Appendix D. Proof of Theorem 14

Define an auxiliary function as

M(x,R,U , ν, η) = f (x) +
1
2

R̂2

F
+

1
2

ν̂
2

.

In the following, let M and M∗ denote M(x,R,U , ν, η) and
M(x∗,R∗,U∗, ν∗, η∗) for simplicity, respectively.

Define the Lyapunov function as

V = V1 + V2 + V3 + V4 + V5 + V6, (D.1)

where

V1 =M − M∗
−

(
x − x∗

)T
∇xM∗

−
⟨
R − R∗, ∇RM∗

⟩
−

⟨
U − U∗, ∇UM∗

⟩
−

(
ν − ν∗

)T
∇νM∗

−
(
η − η∗

)T
∇ηM∗,

V2 =
1
2

x − x∗
2

,

V3 =
1
2

R − R∗
2
F ,

V4 =
⟨
col(R − R∗,U − U∗),

[
3
2 LR +

k2
2k1

L2R LR
LR

k1
k2
I

]
col(R − R∗,U − U∗)

⟩
,

V5 =
1
2

ν − ν∗
2

,

6 =colT(ν − ν∗, η − η∗)

[
3
2 L +

k2
2k1

L2 L
L k1

k2
I

]
col(ν − ν∗, η − η∗).

Because of the convexity of the function M , it holds V1 ≥ 0. To
see the positive semi-definiteness of V3 + V4, it needs to verify

the matrix
[ 1

2 I+
3
2 LR+

k2
2k1

L2R LR

LR
k1
k2

I

]
is positive semi-definite, which is

satisfied if k1
k2

≥
λ2max(L)

1+3λmax(L)
based on Schur complements (Horn &

ohnson, 2012, 0.8.5). This condition is satisfied if k1
k2

≥
λmax(L)

2 ,

ince λ2max(L)
1+3λmax(L)

≤
λmax(L)

2 . Similarly, V5 + V6 is also positive semi-

definite. Consequently, the Lyapunov function V (t) ≥ 0 for all
t ≥ 0.

Firstly, we derive the analytical form of V̇1, i.e.,

V̇1 =
(
∇xM − ∇xM∗

)T ẋ +
⟨
R̂ − R∗, (I − LR) Ṙ

⟩
−

⟨
R̂ − R∗, LRU̇

⟩
+

(
ν̂ − ν∗

)T
(I − L) ν̇

−
(
ν̂ − ν∗

)T Lη̇
=

(
∇ M − ∇ M∗

)T ẋ +
⟨
R̂ − R∗, Ṙ

⟩

x x

11
−
⟨
R̂ − R∗, LR

(
U̇ + Ṙ

)⟩
+

(
ν̂ − ν∗

)T
ν̇

−
(
ν̂ − ν∗

)T L (η̇ + ν̇) . (D.2)

Combining the first term in (D.2) and the definition of V2, we
have(

∇xM − ∇xM∗
)T ẋ + V̇2

=2k1
(
∇xM − x + x̂

)T (
x̂ − x∗

)
+ 2k1

(
x − x̂ − ∇xM∗

)T(
x̂ − x∗

)
+ 2k1

(
∇xM − ∇xM∗

)T (
x∗

− x
)

+ 2k1
(
x − x∗

)T (
x̂ − x

)
≤2k1

(
∇xM − ∇xM∗

)T (
x∗

− x
)
− 2k1

x̂ − x
2

− 2k1
(
∇ f̄ (x) − ∇ f̄ (x∗)

)T (
x − x∗

)
− 2k1

(
∇Ḡ(x)R̂

− ∇Ḡ(x∗)R∗
)T (

x − x∗
)
− 2k1

(
∇h̄(x)ν̂ − ∇h̄(x∗)ν∗

)T(
x − x∗

)
− 2k1

x̂ − x
2

≤ − 2k1
(
∇Ḡ(x)R̂ − ∇Ḡ(x∗)R∗

)T (
x − x∗

)
− 2k1

(
∇h̄(x)ν̂ − ∇h̄(x∗)ν∗

)T (
x − x∗

)
− 2k1

x̂ − x
2

, (D.3)

here ∇Ḡ(x)R̂ is defined as
[⟨
I2nf , R̂1

⟩
,
⟨
E1, R̂1

⟩
, . . . ,

⟨
I2nf , R̂m

⟩
,

Em, R̂m
⟩]

T
∈ R2m, ∇h̄(x)ν̂ is defined as ∇h̄(x)ν̂ = [∇

Th1(x1)
ˆ1, . . . ,∇

Thm(xm)ν̂m]
T

∈ R2m, ∇hi(xi) = c ∈ R2, and the defi-
itions of ∇Ḡ(x∗)R∗ and ∇h̄(x∗)ν∗ are similar with ∇Ḡ(x)R̂ and
h̄(x)ν̂, respectively. The first inequality holds since 2k1(∇xM −

+ x̂)T
(
x̂ − x∗

)
≤ 0 and −2k1∇T

xM
∗
(
x̂ − x∗

)
≤ 0 accord-

ng to (1), and the second inequality holds since −2k1(∇ f̄ (x)
∇ f̄ (x∗))T(x − x∗) ≤ 0 due to the convexity of f (x).
From the second term in (D.2) and the definition of V3, we

ave⟨
R̂ − R∗, Ṙ

⟩
+ V̇3

− k1
R̂ − R

2
F + 2k1

⟨
R̂ − R∗, Ḡ(x) − LR(R + U )

⟩
+ 2k1

⟨
R̂ − R∗, R̂ − R − Ḡ(x) + LR(R + U )

⟩
≤ − k1

R̂ − R
2
F + 2k1

⟨
R̂ − R∗, Ḡ(x) − LR(R + U )

⟩
− k1

R̂ − R
2
F + 2k1

⟨
R̂ − R∗, Ḡ(x) − Ḡ(x∗)

⟩
+ 2k1

⟨
R̂ − R∗, Ḡ(x∗) − LRU∗

⟩
+ 2k1

⟨
R̂ − R∗, LRU∗

⟩
− 2k1

⟨
R̂ − R∗, LR(R + U )

⟩
≤ − k1

R̂ − R
2
F + 2k1

⟨
R̂ − R∗, Ḡ(x) − Ḡ(x∗)

⟩
+ 2k1

⟨
R̂ − R∗, LRU∗

⟩
− 2k1

⟨
R̂ − R∗, LR (R + U)

⟩
, (D.4)

where the first inequality holds since
⟨
R̂ − R∗,

(
R̂ − R − Ḡ(x) +

LR(R+U )
)⟩

≤ 0 according to (1), and the second inequality holds
since

⟨
R̂−R∗, Ḡ(x∗)−LRU∗

⟩
=

⟨
R̂−R∗,R∗

+ Ḡ(x∗)−LR(R∗
+U∗)−

R∗
⟩
≤ 0. Besides, the second term in (D.4) can be derived as

2k1
⟨
R̂ − R∗, Ḡ(x) − Ḡ(x∗)

⟩
=2k1

⟨
R̂, Ḡ(x) − Ḡ(x∗) − ∇Ḡ(x)(x − x∗)

⟩
+ 2k1

⟨
R̂, ∇Ḡ(x)(x − x∗)

⟩
− 2k1

⟨
R∗, Ḡ(x) − Ḡ(x∗) − ∇G(x∗)(x − x∗)

⟩
− 2k1

⟨
R∗, ∇G(x∗)(x − x∗)

⟩
≤2k1

(
∇Ḡ(x)R̂ − ∇Ḡ(x∗)R∗

)T (
x − x∗

)
, (D.5)

where ∇Ḡ(x∗)(x− x∗) is defined as [∇
TG1(x1)(x1 − x∗)⊗ I2nf , . . . ,

GT
m(xm)(xm − x∗) ⊗ I2nf ] ∈ R2mnf ×2nf , ∇Gi(xi) =

[
I2nf , E

T
i

]T
∈

R4nf ×2nf , and the equalities ⟨ R̂, Ḡ(x)−Ḡ(x∗)−∇Ḡ(x)(x−x∗) ⟩ = 0



L. Chen, C. Liang, Y. Li et al. Automatica 171 (2025) 111903

a
G
∇

c

=

=

i
d
h

≤

=

w
≤

≤

s

w
a

nd − ⟨ R∗, Ḡ(x) − Ḡ(x∗) − ∇Ḡ(x∗)(x − x∗) ⟩ = 0 hold since
(x) is an affine function, i.e., Ḡ(x) − Ḡ(x∗) = ∇Ḡ(x)(x − x∗) =

Ḡ(x∗)(x − x∗). Furthermore, the third and fourth terms in (D.4)
an be formulated as

2k1
⟨
R̂ − R∗, LRU∗

⟩
− 2k1

⟨
R̂ − R∗, LR (R + U)

⟩
2k1

⟨
R̂ − R, LRU∗

⟩
+ 2k1

⟨
R − R∗, LRU∗

⟩
− 2k1

⟨
R̂ − R, LRR

⟩
− 2k1

⟨
R̂ − R, LRU

⟩
− 2k1

⟨
R − R∗, LRR

⟩
− 2k1

⟨
R − R∗, LRU

⟩
2
⟨
U∗, LR Ṙ

⟩
+

2k1
k2

⟨
U∗, U̇

⟩
− 2

⟨
R − R∗, LR Ṙ

⟩
− 2

⟨
U , LR Ṙ

⟩
− 2k1

⟨
R, LRR

⟩
−

2k1
k2

⟨
U , U̇

⟩
= − 2

⟨
U − U∗, LR Ṙ

⟩
−

2k1
k2

⟨
U − U∗, U̇

⟩
− 2

⟨
R − R∗, LR Ṙ

⟩
− 2k1

⟨
R, LRR

⟩
, (D.6)

n which the derivation is based on the fact LRR∗
= 0 and the

ynamics (26). Substituting (D.5) and (D.6) into (D.4), one can
ave⟨
R̂ − R∗, Ṙ

⟩
+ V̇3

− k1
R̂ − R

2
F + 2k1

(
∇Ḡ(x)R̂ − ∇Ḡ(x∗)R∗

)T(
x − x∗

)
− 2

⟨
U − U∗, LR Ṙ

⟩
−

2k1
k2

⟨
U − U∗, U̇

⟩
− 2

⟨
R − R∗, LR Ṙ

⟩
− 2k1

⟨
R, LRR

⟩
.

(D.7)

From the third term in (D.2) and the definition of V4, one has

−
⟨
R̂ − R∗, LR

(
U̇ + Ṙ

)⟩
+ V̇4

= −
⟨
R̂ − R, LR Ṙ

⟩
−

⟨
R − R∗, LR Ṙ

⟩
−

⟨
R̂ − R, LRU̇

⟩
−

⟨
R − R∗, LRU̇

⟩
+

⟨
R − R∗,

(
3LR +

k2
k1

L2R
)
Ṙ
⟩

+
2k1
k2

⟨
U − U∗, U̇

⟩
+ 2

⟨
R − R∗, LRU̇

⟩
+ 2

⟨
U − U∗, LR Ṙ

⟩
−

1
k1

⟨
Ṙ, LR Ṙ

⟩
+ 2

⟨
R − R∗, LR Ṙ

⟩
+ k2

⟨
R, L2RR

⟩
+

2k1
k2

⟨
U − U∗, U̇

⟩
+ 2

⟨
U − U∗, LR Ṙ

⟩
≤2

⟨
R − R∗, LR Ṙ

⟩
+ k2

⟨
R, L2RR

⟩
+

2k1
k2

⟨
U − U∗, U̇

⟩
+ 2

⟨
U − U∗, LR Ṙ

⟩
, (D.8)

here the inequality holds since −
1
k1

⟨
Ṙ, LR Ṙ

⟩
≤ 0 and −

1
k2

⟨
U̇ , U̇

⟩
0.
Based on (D.7) and (D.8), one can derive that⟨
R̂ − R∗, Ṙ

⟩
−

⟨
R̂ − R∗, LR

(
U̇ + Ṙ

)⟩
+ V̇3 + V̇4

− k1
R̂ − R

2
F + 2k1

(
∇Ḡ(x)R̂ − ∇Ḡ(x∗)R∗

)T(
x − x∗

)
−

⟨
R,

(
2k1LR − k2L2R

)
R
⟩
. (D.9)

Similar with the derivation of (D.9), one has(
ν̂ − ν∗

)T
ν̇ −

(
ν̂ − ν∗

)T L (η̇ + ν̇) + V̇5 + V̇6

≤ − k1
ν̂ − ν

2
+ 2k1

(
∇h̄(x)ν̂ − ∇h̄(x∗)ν∗

)T(
∗
) T ( 2) (D.10)
x − x − ν 2k1L − k2L ν.
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Based on (D.1), (D.2), (D.9) and (D.10), the derivative of the
Lyapunov function can be calculated as

V̇ =V̇1 + V̇2 + V̇3 + V̇4 + V̇5 + V̇6

≤ − 2k1
x̂ − x

2
− k1

R̂ − R
2
F − k1

ν̂ − ν
2

− νT (
2k1L − k2L2

)
ν −

⟨
R,

(
2k1LR − k2L2R

)
R
⟩

≤ 0,

(D.11)

where the last inequality holds since the matrices 2k1L−k2L2 and
2k1LR − k2L2R are both positive semi-definite under the condition
in Theorem 14, and then we can easily conclude that all terms in
(D.11) are negative semi-definite.

By the definition of V and the fact V (t) ≤ V (0), one can
indicate that the variables x,R,U , ν, η are all bounded. Note that
according to the definition of V , if any variable in (x,R,U , ν, η)
goes to infinity, the Lyapunov function V will go to infinity,
i.e., V → ∞ as ∥x∥ + ∥ν∥ + ∥η∥ + ∥R∥F + ∥U∥F → ∞, which
hows that the set D =

{
(x,R,U , ν, η)|V̇ (x,R,U , ν, η) ≤ 0

}
is unbounded according to Khalil (2002). Let E be the set of all
points in D where V̇ = 0, and let L be the largest invariant set
in E . According to LaSalle’s theorem (Khalil, 2002, Theorem 4.4),
the trajectory (x(t),R(t),U (t), ν(t), η(t)) will converge to the set
L as t → ∞. By analyzing the result in (D.11), one can indicate
that the set L =

{
(x,R,U , ν, η)|x̂ = x, R̂ = R, ν̂ = ν, LRR =

0, Lν = 0
}
. Obviously, L is the set of equilibrium points of

(26). Consequently, the trajectory (x(t),R(t),U (t), ν(t), η(t)) will
converge to the equilibrium point of (26). This ends the proof.

Appendix E. Proof of Theorem 15

According to (D.11), one can obtain that

V̇ ≤ − 2k1
x̂ − x

2
− k1

ν̂ − ν
2

− k1
R̂ − R

2
F

−
⟨
R,

(
2k1LR − k2L2R

)
R
⟩
− νT (

2k1L − k2L2
)
ν

≤ −
1
2k1

∥ẋ∥2
−

1
k1

Ṙ2
F −

ϵ

k22

U̇2
F

−
1
k1

∥ν̇∥2
−

ϵ

k22
∥η̇∥

2

≤ − d1
(
∥ẋ∥2

+
Ṙ2

F +
U̇2

F + ∥ν̇∥2
+ ∥η̇∥

2)
≤ −

d1
4

(
∥ẋ∥ +

Ṙ
F +

U̇
F + ∥ν̇∥ + ∥η̇∥

)2
,

here ϵ ∈ R+ satisfies 2k1LR −k2L2R ⪰ ϵL2R and 2k1L−k2L2 ⪰ ϵL2,
nd d1 = min

{ 1
2k1

, ϵ

k22

}
.

By contradiction, if limt→∞ inf
(
∥ẋ∥ +

Ṙ
F +

U̇
F + ∥ν̇∥ +

∥η̇∥
)

̸= O
( 1

√
t

)
, we assume that ∥ẋ∥+

Ṙ
F +

U̇
F +∥ν̇∥+∥η̇∥ ≥

d2√
t
when t ≥ tth, where d2 ∈ R+, and tth denotes some threshold

time. Then we have

V (t) ≤V (tth) +

∫ t

tth

−
d1
4

·
d22
s2

ds

=V (tth) +
d1d22
4

ln tth −
d1d22
4

ln t,

from which we can indicate that V (t) < 0 when t is large enough,
which is a contradiction with the fact that V (t) ≥ 0 for all t ≥ 0.
This ends the proof.
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