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A B S T R A C T   

Seawater intrusion in coastal aquifers is a significant problem that can be addressed through the construction of 
subsurface dams or physical cut-off barriers. An alternative method is the use of microbially induced carbonate 
precipitation (MICP) to reduce the hydraulic conductivity of the porous medium and create a physical barrier. 
However, the effectiveness of this method depends on various factors, and the scientific literature presents 
conflicting results, making it challenging to generalise the findings. To overcome this challenge, a statistical and 
machine learning (ML) approach is employed to infer the causes for the reduction in hydraulic conductivity and 
identify the optimum MICP parameters for preventing seawater intrusion. The study involves data curation, 
exploratory analysis, and the development of various models to fit the input data (k-Nearest Neighbours – kNN, 
Support Vector Regression – SVR, Random Forests – RF, Gradient Boosting – XgBoost, Linear model with 
interaction terms, Ensemble learning algorithms with weighted averages – EnL-WA and stacking – EnL-Stack). 
The models performed reasonably well in the region where permeability reduction is sensitive to carbonate 
increase capturing the permeability reduction profile with respect to cementation level while demonstrating that 
they can be used in initial assessments of the specific conditions (e.g., soil properties). The best performing al-
gorithms were the EnL-Stack and RF followed by XgBoost and SVR. The MICP method is effective in reducing 
hydraulic conductivity provided that the various biochemical parameters are optimised. Critical biochemical 
parameters for successful MICP formulations are the bacterial optical density, the urease activity, calcium 
chloride concentration and flow rate as well as the interaction terms across the properties of the porous media 
and the biochemical parameters. The models were used to identify the optimum MICP formulation for various 
porous media properties and the maximum permeability reduction profiles across cementation levels have been 
derived.   

1. Introduction 

In recent years, the transition to a climate change adaptation era has 
necessitated the use of modern technologies and techniques to manage 
water resources. One such strategy is the use of microbially induced 
carbonate precipitation (MICP), a technique that involves introducing 
bacteria into a medium to produce calcium carbonate, which solidifies 
soil and granular networks. This approach was applied for various 
purposes in water resources management, including erosion control in 
seawater environments, drought mitigation, soil stabilization, and 

reduction of seepage (Hu et al., 2021; Kim et al., 2020; Lambert and 
Randall, 2019; Lin et al., 2023; Liu et al., 2021; Wang et al., 2022; Yu 
and Rong, 2022). It can also mitigate groundwater contamination by 
immobilizing contaminants in the subsurface through the precipitation 
of calcium carbonate or to control the fracturing behaviour (Kon-
stantinou et al., 2023b; Rajasekar et al., 2021b; Wang et al., 2023a). 
Moreover, MICP is also being utilised in controlled laboratory-scale 
studies to investigate groundwater flow and transport by creating arti-
ficial specimens with customized properties and characteristics and then 
conducting fluid flow experiments (Gago et al., 2020; Kirk et al., 2012; 
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Konstantinou et al., 2023a; Konstantinou et al., 2022; Konstantinou 
et al., 2021a; Konstantinou and Biscontin, 2022; Singh et al., 2015). 

Apart from the above applications, MICP could potentially be used as 
a tool to generate a physical barrier for seawater intrusion (SWI) control 
during excessive exploitation of freshwater in aquifers close to the coast. 
Seawater intrusion leads to deterioration of freshwater quality and 
damages the groundwater supply, posing a significant threat to the 
environment and public health. Various methods and curative measures 
have been developed to tackle this issue, such as the reduction of the 
pumping rates (Nasiri et al., 2021), the generation of hydraulic barriers 
by injecting freshwater into the aquifer (Saad et al., 2022; Zhang et al., 
2022), the construction of subsurface dams and cut-off walls (Chang 
et al., 2019; Fang et al., 2021; Kaleris and Ziogas, 2013; Luyun et al., 
2009; Shen et al., 2020; Yang et al., 2021), the use of surface water 
recharge canals (Motallebian et al., 2019) and, recently, the generation 
of physical barriers/cut-off walls (Abdoulhalik et al., 2017; Laabidi and 
Bouhlila, 2021; Sun et al., 2021; Xie et al., 2023). Laabidi and Bouhlila 
(2021) proposed the generation of a calcite cut-off wall by mixing 
naturally occurring chemicals, namely aqueous solutions of sodium 
carbonate (Na2CO3) and calcium chloride (CaCl2). Along the same lines, 
the precipitation of carbonate via MICP could be a potential solution 
that falls within the same category. Although the potential of the MICP 
application to prevent seawater intrusion in groundwater has been 
discussed in the literature, no experiments have been conducted spe-
cifically for this purpose (Dawoud, 2020; Mortensen et al., 2011; Phillips 
et al., 2013). 

Since the primary MICP mechanism for this specific application is the 
reduction in the permeability of the porous medium, there are four 
critical groups of factors to consider when designing an effective MICP- 
based seawater intrusion barrier (see Fig. 1). These include the 
biochemical factors affecting MICP (bacterial strains, urease activity, 
flow rates, and retention times), the MICP methods (e.g. gravity-based 
injection, flow rate or pressured controlled and inclusions of sub-
strates in the injecting fluids), the properties of the porous medium 
(grain size, width of particle size distribution, grain shape, and relative 
density), and the environmental conditions (temperature, seawater or 
freshwater, and pH). Although some of these factors have been studied 
in previous research (Al Qabany and Soga, 2013; Lin et al., 2020; Wang 
and Nackenhorst, 2020a), they were not explicitly investigated for the 
purpose of seawater intrusion control. At the same time, the findings of 
the previous studies cannot be unified to generalise the conclusions in 
terms of interpreting the underlying factors and identifying an optimum 
MICP recipe because of the different formulations of each study. 

In addition, the hydraulic performance of MICP-treated porous 
media is influenced by various other factors, including the grain char-
acteristics of the media. According to Konstantinou et al. (2023c), grain 
shape, angularity, and size distribution have a significant effect on the 
hydraulic conductivity and strength of MICP-treated sand. The study 

concluded that understanding the influence of grain characteristics on 
MICP-treated porous media is crucial for the successful implementation 
of MICP for both strengthening soils and controlling permeability. 

As stated previously, the findings of these studies cannot be extrap-
olated to draw conclusions with respect to seawater intrusion control 
since the MICP formulation, grain characteristics and other environ-
mental factors are inconsistent across the literature. This study adopts a 
statistical and machine learning approach to overcome this issue and 
build models to predict the reduction in hydraulic conductivity, to assess 
the application of MICP and fine-tune its parameters for designing a 
physical calcite barrier to prevent seawater intrusion into groundwater. 
First, a comprehensive literature review is conducted for data curation, 
in which the various input variables are identified and documented. The 
output variable is the hydraulic conductivity, while the input variables 
are environmental, biochemical or variables related to the properties of 
the porous media. This is followed by exploratory analysis where 
possible patterns are identified. Then, statistical analysis and machine 
learning (ML) regressors are used to develop models that describe the 
input data. The models used are the Support Vector Regressors (SVR), k- 
Nearest Neighbours (kNN), Random Forests (RF), Gradient Boosting 
(XgBoost), linear regression model with and without interaction terms 
and ensemble models to combine the previous cases (ensemble learning 
with weighted averages and with stacking). 

Next, inference of the models is conducted with the objectives to (i) 
assess the influence of the various input parameters and their in-
teractions, (ii) identify the optimum MICP parameters for designing the 
barrier based on various porous media properties which could exist in 
the field, (iii) derive standard permeability reduction profiles with 
respect to cementation levels, and (iv) compare the predictions against 
empirical models (i.e., Panda-Lake models) and experimental data 
across a range of cementation levels. These comparisons also show the 
range of the output variable for which the models are more accurate, 
while also highlighting the importance of using ML models when the 
investigated problem becomes more complex. 

2. Methodology 

The main parameter that defines the ability of a porous material or 
soil to transmit water through it under a hydraulic gradient is hydraulic 
conductivity which has units of velocity (m/s). It represents the rate at 
which water can flow through a soil or other porous media under a given 
hydraulic gradient or pressure difference. Throughout this study, the 
hydraulic conductivity is reported using the standard unit of m/s. The 
overall methodology is presented in the flow chart in Fig. 2. First, the 
database was developed followed by exploratory analysis. Then, the 
statistical and ML models were developed. A causality analysis was 
conducted to infer the parameters that affect the most the output vari-
able and assess their interactions. Then the optimum bio-chemical 
conditions for various porous media were identified, and the pre-
dictions of permeability for a range of cementation levels were 
compared with the experimental values and with empirical models for 
permeability. 

2.1. Database development 

MICP studies were identified that provided measurements of hy-
draulic conductivity and the various parameters/ variables were stored 
in a database. In total, the resulting database contains around 1400 
entries, 25 input variables were identified, which include environmental 
factors, grain properties, and MICP parameters. The data was extracted 
from 62 studies (2 of these studies provide data relating to other 
studies); these studies are shown in Table 1. 

2.2. Data Curation, homogenisation and gap filling 

Various variables were extracted from the datasets that provided 
Fig. 1. The critical groups of factors to consider when designing an effective 
MICP-based formulation. 
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measurements for hydraulic conductivity (output variable). Hydraulic 
conductivity was reported in m/s in this study. The entries that represent 
the un-treated sands (0% cementation) were removed from the dataset 
resulting to 1348 entries. The variables were normalised before being 
used in the models. 

As mentioned in the introduction, four groups of parameters are of 
great importance: the MICP bio-chemical parameters, the environ-
mental factors, the injection methods, and the properties of the porous 
media. A summary of the input variables used in the models is given in 
Table 2. The variables are divided into three categories: binary, nu-
merical, and categorical variables. 

The biochemical parameters include the delivery method of solutions 
to the medium, the chemical concentrations, the bacterial strain pop-
ulations, etc. Many studies use bacterial fixation which refers to the 
immobilization of the bacterial cells onto the soil particles or aggregates 
because it allows the bacteria to remain near the calcium source and 
provides a stable environment for bacterial growth and calcium car-
bonate precipitation. In most of the studies the stabilization solution 
consists of 50 mM CaCl2. In other studies, a solution containing bacterial 
cells and a solution containing calcium ions (the cementation solution) 
are mixed to initiate the precipitation of calcium carbonate at the same 
time while injecting the solutions into the porous medium. Because 
there is no standard formulation in the available literature due to 
various proportions of bacterial suspensions and cementation solutions 
at various concentrations being used, this variable is binary. 

Any bacterial strain could be used in MICP procedures if the strains 
are capable of hydrolysing urea. In the studies that measure hydraulic 
conductivity, S. pasteurii, B. megaterium, B. sphaericus, artificially 
extracted plant enzymes, B. licheniformis, biocatalysts, hybrid bacteria, 
P. nitroreducens, seed culture, V. arenosi and other ureolytic microor-
ganisms were used. These were categorised in four groups and repre-
sented as binary variables in the ML models. The optical density of 
bacterial suspensions is a common measurement of the bacterial popu-
lation which is usually given as a range. A numerical variable repre-
senting the average value was used. In cases where the bacterial 
densities were reported in colony forming units (cfu/mL), these were 
converted into OD600 values based on the general form of the standard 
curve that describes the relationship between these two units. In very 
few cases the OD was not reported and was taken from relevant research 
authors which performed the experiments under the same conditions. In 

the absence of such information an estimation was made based on the 
densities of the specific bacterial strains and the average value. The 
urease activity is the rate at which urea breaks down into ammonia and 
carbon dioxide and in this case, it indicates the rate of calcium carbonate 
production (urea breakdown rate). Several units have been used in the 
relevant publications and these were converted into millimoles (mM) of 
urea hydrolysed per minute (mM/min) so that they could be directly 
compared. In studies where the urease activity was not reported it was 
derived using a standard growth curve based on the average values from 
the literature (8.5 mM/min for OD600 values from 1.5 and above and 
linear interpolation below this value) (Onal Okyay and Frigi Rodrigues, 
2013; Whiffin, 2004). The calcium source is also one of the biochemical 
parameters and an important constituent of the MICP formulation. It is 
reported as mol/L (M). Various forms of calcium source have been used 
(calcium chloride, anhydrous calcium chloride, calcium chloride dihy-
drate and calcium acetate) which are known to have different effects on 
the calcium carbonate precipitation patterns and the crystal character-
istics. This information was not captured by the introduced variable. The 
ratio of urea to calcium chloride concentration in the cementation so-
lution (CS) was also used as a variable to train the model and was either 
reported as a ratio, or by stating the individual concentrations. 

The time between two subsequent injections (retention time) in the 
cases of staged injections is another parameter that is of interest since it 
is important to allow sufficient time for reactions to take place especially 
when urease activity is low. The variable is reported in hours. For 
continuous injections, the total treatment duration is reported in days. 
Studies have also been using various degrees of saturation for the MICP 
procedure to control the resulting strength and hydraulic conductivity 
and these are represented by a numerical variable which is a percentage. 
The method of delivery of bacterial suspensions and chemicals is also of 
great importance when designing MICP programs. Flow rate-controlled 
injections, injections via gravity, pressure-controlled injections and 
immersion of porous media into the solutions have been used in the 
studies relevant to hydraulic conductivity. The gravity and flow-rate 
controlled methods which are the main methods for delivering bacte-
rial suspensions and chemical solutions to the granular network were 
expressed as a binary variable (1 for gravity-based flow). Any modifi-
cations of gravity or flow-rated controlled injections or other injection 
methods (e.g., spraying, mix soil with reactants, wet curing, immerging) 
were considered using a separate binary variable (OthFlow). 

Fig. 2. The methodology of this study.  
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The injection rate in the case of controlled flow rate is expressed as 
mL/min. This variable is generally reported in these units; however, in 
few cases it was reported as mM of CaCl2/min or given as a velocity (m/ 
s). The variable was converted to mL/min based on either the concen-
tration of the chemicals and the pore volume (PV) or based on the ge-
ometry of the specimen being bio-treated. 

The environmental factor relevant to the case of cut-off barriers for 
seawater intrusion control beyond the classic ones identified in the 
literature is salinity. Some studies have compared seawater with fresh-
water and since this is an environment which would be potentially 
relevant to the case of seawater intrusion, the variable was included in 
the model. Due to its great heterogeneity (various seawater formula-
tions), this variable is binary and takes the value of 0 when there is no 
saline environment or 1 when the MICP process is conducted in saline 
environments. 

In terms of the properties of the porous media, the grain diameter, 
grain shape and the width of the particle size distribution are the main 
microstructure properties that on the one hand define the initial hy-
draulic conductivity and on the other hand significantly affect the MICP 
procedure and the microstructure (Konstantinou and Wang, 2023; Wu 

Table 1 
The studies used to develop the database classified according to the critical 
groups of factors to consider when designing an effective MICP-based 
formulation.  

References Description  

1. Environmental factors 
(Cheng et al., 2016; Cheng et al., 2014;  

Cheng et al., 2013; Dekuyer et al., 
2012; Jawad and Zheng, 2016; Lin 
et al., 2023; Liu et al., 2023b; Yu et al., 
2022) 

MICP under various saturation levels, 
pH and other environmental conditions 
and/or in marine/saline environments 

(Gomez et al., 2014; Rajasekar et al., 
2021a; Sharma et al., 2021; Stabnikov 
et al., 2013) 

Use of in-situ bacterial strains/ hybrid 
bacteria for MICP  

2. Base material properties 
(Chen et al., 2023; Duo et al., 2018; Guo 

et al., 2024a; Li and Chen, 2022; Liu 
et al., 2023b) 

MICP for aeolian sand, calcareous sand, 
river, and sea sand 

(Chen et al., 2023; Li and Chen, 2022;  
Baek et al., 2024; Konstantinou, 2021;  
Konstantinou et al., 2023c; Li and 
Chen, 2022; Song et al., 2021; Song 
et al., 2020; Zamani et al., 2019;  
Zamani et al., 2017) 

Use of various porous media – various 
grain characteristics 

(Montoya et al., 2019; Phang et al., 
2022; Safavizadeh et al., 2018; Sidik 
et al., 2014; Song et al., 2022; Wang 
et al., 2023) 

Use of various porous media – peat, fly 
ash, organic soil, granite, rocks etc.  

3. MICP protocols (injection methods & other content inclusion) 
(Gong et al., 2019; Martinez et al., 2013;  

Montoya et al., 2018; Niu et al., 2018;  
Tian et al., 2020, Tian et al., 2018;  
Wang and Nackenhorst, 2020b;  
Whiffin et al., 2007; Yang et al., 2022;  
Yang et al., 2019; Yu et al., 2022; Yu 
and Yang, 2023) 

Use of various MICP procedures 
(protocols) 

(Choi et al., 2020; Choi et al., 2019; Choi 
et al., 2017; Choi et al., 2016a; Fang 
et al., 2020; Liu et al., 2023a; Ma et al., 
2021; Zhao et al., 2021; Zhao et al., 
2020) 

Use of fibres, biopolymers, bentonite 
and other sustainable methods in MICP  

4. Bio-chemical factors 
(Akoğuz et al., 2019; Choi et al., 2016b;  

Kadhim and Zheng, 2017) 
Effects of different calcium sources in 
soil improvement 

(Al Qabany and Soga, 2013; Dawoud 
et al., 2014; Soon et al., 2014;  
Yasuhara et al., 2012, Yasuhara et al., 
2011) 

Effects of chemical treatment on MICP 
engineering properties 

(Eryürük, 2022; Rowshanbakht et al., 
2016; Sharma et al., 2021; Soon et al., 
2014; Stabnikov et al., 2013; Yang 
et al., 2019; Yasuhara et al., 2012) 

Bacterial population, strain or 
enzymatic effects and other related 
characteristics on MICP  

Table 2 
The input variables utilised in the models.   

Name Variables Description Units  

Binary variables 
1 Sal Salinity Whether the 

environment is in 
seawater or freshwater 

N/A 

2 Fix Fixation Whether calcium 
chloride solution is 
flushed before bacterial 
solution to enhance 
bacterial attachment 

N/A 

3 BsA Bacterial Strain A Whether the strain is 
S. pasteurii 

N/A 

4 BsB Bacterial Strain B Whether the strain is 
B. megaterium 

N/A 

5 BsC Bacterial Strain C Whether the strain is 
B. sphaericus 

N/A 

6 BgD Bacterial Group D Any other bacterial 
strain or ureolytic 
method 

N/A 

7 Grav Infiltration/ 
Flowrate 

Whether the injection 
method is based on 
gravity 

N/A 

8 OthFlow Other flow rate Whether the injection 
method is other than 
infiltration and flow 
rate or a modified 
version. 

N/A 

9 OthCon Other Content Whether the granular 
medium contains 
additives other than 
fiber or bentonite (silt, 
etc.) 

N/A 

10 Mix Mixing of 
bacterial solution 
with cementation 
solution 

Whether mixing of the 
two solutions during 
injection is observed 

N/A  

Numerical Variables 
11 OD Optical density 

(OD600) 
Bacterial optical 
density at a wavelength 
of 600 nm 

N/A 

12 UreAct Urease Activity Bacterial urease 
activity 

mM/min 

13 CalChlor Calcium Chloride Calcium chloride 
concentration in the 
cementation solution 

M (mol/L) 

14 Ratio Urea to Calcium 
Chloride Ratio 

The ratio of urea over 
calcium chloride 
concentration in the 
cementation solution 

N/A 

15 ReTime Retention time The time between two 
subsequent injections 

hrs 

16 TreatDur Total Treatment 
Duration 

The total treatment 
duration for continuous 
injection 

days 

17 FlowRat Injection rate The injection rate in the 
case of controlled flow 
rate 

mL/min 

18 Por Initial Porosity The initial porosity of 
the porous medium 
(0–1) 

N/A 

19 Sat Saturation The level of saturation 
of the porous medium 
during the MICP 
treatment (0–1) 

N/A 

20 FibCon Fiber content The fiber content in the 
porous medium 

Percentage 
by weight 

21 BenCon Bentonite content The bentonite content 
in the porous medium 

Percentage 
by weight 

22 GrainDia Grain size The average grain size 
of the porous medium 

μm 

23 Cu Cu The uniformity 
coefficient of the 
porous medium (=D60/ 
D10) 

N/A 

(continued on next page) 
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et al., 2023). These are parameters that cannot be controlled in the field 
and should therefore be considered when designing procedures. These 
characteristics were directly reported or obtained from the particle size 
distribution curves (either readily available or derived from the pro-
portions of clay, silt, sand, gravel) or from literature data given that most 
of these sands are ‘standard’ (e.g., ISO, british standards, ASTM, Ottawa 
or Toyoura sand). Similarly, initial porosity should also be known, 
which includes factors such as the density, and degree of compaction of 
the material. In cases where this was not reported, it was calculated 
indirectly either utilising the Kozeny-Carman equation based on the 
grain characteristics, or via the grain density, grain characteristics and 
relative density. 

Some of the studies included fibres, bentonite, silt, or other additives 
for various reasons other than for reducing hydraulic conductivity, e.g. 
to increase the tensile strength of the resulting specimens. These were 
also included in the analysis to assess the effects on permeability. Fiber 
and bentonite content were expressed as numerical variables whilst any 
other type of inclusion were represented by a binary variable. The var-
iables did not include effects such as diameter or fiber length, or prop-
erties of bentonite which were examined individually in the investigated 
studies. 

Finally, the cementation level (expressed as a percentage) was linked 
to the permeability based on the provided figures or tables in each study. 
In some cases, permeability was not directly linked to the cementation 
level. For example, where hydraulic conductivity was plotted against 
strength parameters (i.e., shear wave velocity, UCS, etc.), permeability 
was mapped to the strength parameter which in turn was plotted against 
the cementation level. 

2.3. Exploratory analysis 

Prior to constructing the statistical and ML models, an exploratory 
analysis was conducted to detect any potential patterns emerging from 
the input data. Histograms were developed for each input variable and a 
correlation test was conducted to identify highly correlated variables. In 
cases where the predictor variables were found to be highly correlated, 
one variable from each pair was removed to address the issue of mul-
ticollinearity and ensure the integrity of the models. 

2.4. Statistical and machine learning algorithm development 

A causality analysis was conducted to identify the parameters that 
contribute the most to the control of permeability. Various machine 
learning (ML) algorithms and multiple regression models were 
employed, based on recommendations outlined in Konstantinou and 
Stoianov (2020):  

1. Random Forests (RF): the algorithm utilizes an ensemble learning 
method to create multiple decision trees. For regression tasks, each 
decision tree predicts a continuous value, and the final prediction is 
determined by averaging the predictions from all the trees (Breiman, 
2001; Hastie et al., 2009).  

2. eXtreme Gradient Boosting (XgBoost): similar to RF, the algorithm 
utilizes decision tree ensembles within a gradient boosting frame-
work, optimizing predictive accuracy through the iterative combi-
nation of weak learners (Friedman, 2001). 

3. Support Vector Regression (SVR): the algorithm minimizes the dis-
tance between predicted and actual values while remaining within a 
specified margin. The margin is determined by a regularization 
parameter, and the distance is measured by utilising a kernel func-
tion (Kecman, 2005).  

4. k-Nearest Neighbours (kNN): this algorithm makes predictions based 
on the majority class or average of k nearest data points in the feature 
space, where proximity is measured using Euclidean distance. 

5. Linear regression with and without interaction terms: A linear mul-
tiple regression model was also developed since statistical analysis 
offers more insights for causal inference. In this model, interaction 
terms have been introduced (the product of two variables). 

The output variable in all cases was the logarithm, with a base of 10, 
of hydraulic conductivity (m/s). The logarithm was used since there is 
up to five-six orders of magnitude difference between the maximum and 
minimum value of hydraulic conductivity in the developed database. 
Also, this is a way of avoiding the prediction of negative values which is 
not realistic for this application. The hyperparameters of each ML al-
gorithm were tuned on a training set that consisted of 70% of the whole 
dataset. The linear regression model was also developed with the use of 
this dataset utilising a stepwise backward elimination approach: the 
model was initially constructed using all input variables and then the 
insignificant variables were removed one-by-one based on the p-values 
(a variable with a p-value above 0.05 is considered to be insignificant). A 
hold-out sample or a test set which accounted for the other 30% of the 
whole dataset was tested against the trained models. The data were split 
into training and testing sets after being shuffled to eliminate any 
inherent ordering or biases that may be present and which may have 
disrupted any patterns or sequences in the data. 

Ensemble learning algorithms were used to develop models by 
merging the predictions of the five different models (RF, XgBoost, SVR, 
kNN, linear model with interaction terms) utilising two methods:  

1. Weighted average model (EnL-WA): The five models were assigned 
various weights defining the contribution of each model. The opti-
mum weights were selected based on the lower error value on the 
training set.  

2. Stacking technique (EnL-Stack): This method uses the predictions of 
the five models to build a new model. In this study, the new model 
was selected to be another Random Forest (RF). 

The performance of the models was assessed via the root mean 
square error (RMSE), the mean absolute error (MAE) and the coefficient 
of determination (R-squared). 

RMSE shows how far predictions fall from measured true values 
using Euclidean distance. RMSE is defined as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1

(ŷi − yι)
2

n

√

(1) 

MAE also measures the distance between predicted and actual values 
as shown in Eq. (2). 

MAE =
∑n

i=1

|ŷi − yι |

n
(2) 

R-squared measures how well the model’s predictions explain the 
variation in the actual values and is defined as: 

R2 = 1 −
RSS
TSS

(3)  

Table 2 (continued )  

Name Variables Description Units 

24 CemLevel Cementation level The final cementation 
level of the bio-treated 
porous medium 
(weight of cementation 
over the total weight) 

Percentage 
by weight  

Categorical variables 
25 GrainShape Grain Shape Spherical particles − 1 

Subrounded particles 
− 2 
Angular particles - 3 

N/A  
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where ŷi are the predicted values, yι, the actual values of the output 
variable, n is the number of observations, RSS is the sum of squares of 
residuals and TSS is the total sum of squares. 

2.5. Inference of models and causality analysis 

The parameter importance was used to identify which variables 
affect the outcome while the interactions between covariates have been 
also used to examine the synergistic/combined effects of pairs of vari-
ables on the output variable which is the logarithm of hydraulic con-
ductivity. The effects of the input parameters (environmental and bio- 
chemical factor effects) on the output variable have been assessed via 
partial dependence plots (PDPs). PDPs provide the marginal effect of an 
input variable on the predicted outcome while keeping the other input 
parameters constant. As discussed in Fig. 2, the optimum bio-chemical 
parameters were used to derive permeability reduction versus cemen-
tation level profiles for various grain properties (i.e., grain diameters, 
widths of particle size distributions, grain shapes). Finally, the Panda- 
Lake model for permeability reduction was compared to the ML 
models against experimental data. 

3. Results 

3.1. Exploratory analysis 

Fig. 3 displays histograms of the input variables. Most experiments 
were conducted using salt-free water, with approximately one-third 
utilising bacterial fixation, and a smaller number involving bacterial 

suspensions mixed with cementation solution. S. pasteurii was the most 
frequently used bacterial strain, with a population OD600 between 1 and 
2. Urease activity ranged from 0.03 to 50 mM/min, with values between 
0.03 and 10 mM/min being the most common. Calcium chloride con-
centration was mostly 0.25- 2 M, and the ratio of urea to calcium 
chloride concentration was usually 1.0. Retention time between in-
jections varied considerably, with treatment durations lasting a few days 
for continuous injections. Over half of the studies used gravity in-
jections, while controlled flow rate injections typically had an injection 
rate of 10 mL/min. Other injection methods were used in around 
200–300 entries, such as immersing the granular media in solutions or 
pressure-controlled injections. Most studies also utilised full saturation. 
The initial porosity ranged from 0.2 to 0.5, and few studies included 
fibres, bentonite, silt, or other inclusions to increase specimen strength, 
but this would also affect hydraulic conductivity. Grain diameter, grain 
shape, and coefficient of uniformity (Cu) covered a wide range of soil 
properties typically found in shallow ground where groundwater is 
present. Finally, the cementation level indirectly signifies the number of 
injections, or the total volume of chemicals required to achieve lower 
hydraulic conductivity. 

A correlation test was conducted to detect and eliminate any issues 
related to multicollinearity. Some pairs of variables exhibit moderate to 
high correlations (r-values around 0.7 and above or − 0.7 and under), 
including BsA and BgD, BsA and BsC, Sat and BsC. As most experiments 
utilised the bacterial strain S. pasteurii represented by variable BsA, 
other variables representing different strains were eliminated due to 
their high correlations. Therefore, the only variable which characterised 
the bacterial strain and was incorporated in the models was BsA. 

Fig. 3. The histograms of the input variables. The y-axis represents the counts of the entries.  
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3.2. The performance of the statistical and ML models 

The performance of the models was assessed via the Root Mean 
Square Error (RMSE) and Mean Absolute Error (MAE) metrics. The 
RMSE and MAE values provide a good indication of the performance of a 
regression model and the smaller they are, the better the fit is. The RF 
and XgBoost algorithms perform well on the testing sets as shown in 
Fig. 4 with RMSE values of 0.305 and 0.324, respectively. The SVR and 
kNN algorithms follow with reasonable fits as the RMSE values are 0.341 
(MAE = 0.218) and 0.426 (MAE = 0.274), respectively. The former 
underpredicts some hydraulic conductivity values, while the latter 
overpredicts some values. Finally, the linear multiple regression model 

underperforms giving an RMSE of 0.671. Generally, the different algo-
rithms perform well and seem to capture the complexities of the prob-
lem. The problem is highly non-linear as the multiple regression 
algorithm underperforms mainly by overestimating the permeability 
values at the lowest range. This suggests that the addition of interaction 
terms in the linear model could enhance its performance, which is dis-
cussed in Section 3.2. 

The five models (RF, XgBoost, SVR, kNN, linear model with inter-
action terms) were used to develop the two ensemble learning algo-
rithms (see Fig. 4 (g-h)). The weighted average model (EnL-WA) 
provides a similar performance to the original RF model with an RMSE 
value of 0.296 and a MAE of 0.196. The optimum weights are found to 

Fig. 4. Predicted Vs. Actual permeability values (testing set) for (a) the RF, (b) the XgBoost, (c) the SVR, (d) the kNN models, (e) the linear model, (f) the linear 
model with interaction terms, (g) the EnL-WA and (h) the EnL-Stack ensemble models. 
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be 0.69 for the RF model and 0.31 for the SVR without any contribution 
from the rest of the models. The ensemble algorithm with the stacking 
technique (EnL-Stack) provides a better performance compared to the 
individual RF model with an RMSE of 0.275 and a MAE of 0.179. 
However, the individual RF and XgBoost models are adequate in terms 
of their performance as the differences are marginal when compared to 
EnL-Stack. 

3.3. Parameter importance and variable interactions 

The importance of input variables is used to identify the contribution 
of each variable to the alteration of hydraulic conductivity. Fig. 5 shows 
the parameter importance for each of the four ML models. The most 
influential parameters for the RF and XgBoost algorithms (which 
perform better) are the uniformity coefficient, grain mean diameter, 
initial porosity, cementation level, flow rate, bacterial optical density, 
calcium chloride concentration, and urease activity. The other two al-
gorithms provide similar results, although in a different order. The SVR 
algorithm shows that bentonite and fiber contents contribute to some 
extent on the value of the output variable while kNN ranks grain shape 
as an important factor. Furthermore, it appears that in addition to the 
biochemical parameters, which are clearly significant in all models, one 
variable that depends on time also impacts permeability (in some 
models FlowRat while in others this is the OthFlow). Despite the fact 
that the linear model provides poorer fits compared to the ML algo-
rithms, it also gives similar results with respect to variable significance. 
The most significant variables (with a p-value of <0.0001) are Cu, 
GrainDia, CemLevel, GrainShape, Por, FlowRat, OD, CalChlor, Ratio, 
Mix. 

The difference in the relative importance of the input variables 
observed between the various models can be explained by the fact the 
algorithms have different underlying principles. RF and XgBoost algo-
rithms are complex models capable of fitting intricate patterns in the 
data resulting in a broader distribution of importance across features. By 
contrast, SVR and kNN aim to find a simpler, high-dimensional hyper-
plane or cluster, which may prioritize a subset of features more heavily. 
The choice of various ML models, results in building confidence about 
the interpretation of the problem under examination. 

The variables’ interaction was further examined for the two best 
performing algorithms (RF and XgBoost algorithms). For the RF model, 
the Mean Minimal Depth is used to identify the role of the variable 
within the structure and predictive capacity of a random forest. It cor-
responds to the depth of the node that splits on that variable and is 
closest to the root of the tree. A low Mean Minimal Depth indicates that a 
substantial number of observations are being divided into groups based 
on a particular variable. The strength of interactions between covariates 

are also reflected through the mean minimal depth, which represents the 
mean conditional minimal depth: a variable is taken as a root node or 
root variable, and the Mean Minimal Depth is calculated for the other 
variable. For the XgBoost algorithm, interactions between variables 
exist on pairs of variables where the lower (child) variable exhibits a 
higher gain than the upper (parent) variable. This assessment is 
grounded in the ‘sumGain’ metric, which represents the cumulative gain 
value across all nodes where a particular variable occurs. 

As seen in Fig. 6, for both ML algorithms the properties of the porous 
media and the final cementation level demonstrate high levels of in-
teractions since the hydraulic conductivity is first defined by the pore 
size distribution within the porous network. Then, interactions appear 
between the bio-chemical parameters and the porous media properties. 
For the RF model these are Cu:OD, Cu:CalChlor, Cu:UreAct, Cu:ReTime, 
Cu:FlowRat, GrainDia:OD, GrainDia:UreAct. For the XgBoost algorithm 
the interactions appear mainly with respect to the cementation level. 
The cementation level shows the amount of carbonate crystals within 
the porous network, however, the size, type and distribution of these 
carbonate crystals are defined by the bio-chemical parameters such as 
bacterial optical density and urease activity, chemicals concentration 
and time between subsequent injections (Wang et al., 2023b). These are 
CemLevel:UreAct, CemLevel:FlowRat, FlowRat:GrainDia, BsA:CemLe-
vel, OD:CemLevel, CalChlor:FlowRat, CemLevel:Ratio, Por:CemLevel, 
CemLevel:GrainDia. 

Interaction terms were also added to the linear multiple regression 
model which are defined as the product between two variables. The 
modified model provides good fits on the testing dataset as shown in 
Fig. 4 (f), with an RMSE value of 0.45 which is much lower compared to 
the initial linear model with an RMSE value of 0.67, demonstrating the 
highly non-linear nature of the investigated application. It also shows 
the importance of the interactions across the different variables espe-
cially those relating to the bio-chemical parameters and the porous 
media properties. Some of the most significant interactions occurring in 
the linear model that includes interaction terms are: CalChlor:Ratio, 
CalChlor:FlowRat, CalChlor:Por, FlowRat:GrainShape, Por:GrainDia, 
Por:Cu, GrainDia:CemLevel, GrainDia:GrainShape, OD:Por, Mix:Por. 

4. Discussion 

The developed models provide reasonable fits to the data and 
therefore a causality analysis is conducted to examine how the input 
variables affect permeability. The effects of the environmental and bio- 
chemical parameters on the effectiveness of MICP on reducing perme-
ability are quantified with the use of the best performing algorithm (RF). 
An optimised injection schedule is identified based on the soil’s prop-
erties while also the permeability reduction profiles with respect to 

Fig. 5. The parameter importance plots for the different ML algorithms.  
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Fig. 6. (a) Parameter interactions for the RF: the interactions are organized on the plot based on frequency, with the most frequent ones depicted on the left in lighter 
blue and the least frequent ones on the right in darker blue. The horizontal red line indicates the minimum mean_min_depth, while the uncond_mean_min_depth is 
represented by the black lollipop. (b) Parameter interactions for the XgBoost algorithm: the plot displays positions arranged in descending order. The variable 
exhibiting the greatest sumGain value is situated to the right of 12 o’clock. Subsequently, the ‘sumGain’ values decrease in a clockwise fashion. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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cementation level for various potential porous media properties are 
produced. Finally, the ML models are compared to the empirical model 
Panda-Lake which is a modification of the Kozeny-Carman equation for 
permeability prediction. 

4.1. Effects of bio-chemical and environmental parameters 

Partial dependence plots (PDPs) are utilised to investigate the rela-
tionship between the various parameters and the output variable for the 
RF model. The PDPs shown in Fig. 7 contain the corresponding input on 
the x-axis, whilst the y-axis displays power of 10 value of the perme-
ability (for a number ‘x’ the corresponding value of permeability is 10×

m/s). As the cementation level, the bacterial density, the calcium 
chloride, the ratio of CaCl2 and urea and retention time increase a 
reduction in hydraulic conductivity is observed. As the flow rate in-
creases the resulting permeability of the bio-cemented soil increases. 
Marginal effects on permeability take place for a cementation level 
above 15%, a urease activity of 10 mM/min, a CaCl2 concentration 
above 1.5 M, a ratio above 4, flow rate above 10 mL/min and a retention 
time above 24 h. Mixing of bacterial with cementation solution and 
injection via gravity contribute to the reduction of hydraulic 
conductivity. 

The addition of any content within the granular network contributes 
to the reduction of permeability. The MICP method can be applied in 
saline or sterile conditions, saturated or unsaturated conditions since the 
effects of the effectiveness of the method are marginal. 

4.2. Optimization of bio-chemical parameters 

To explore the potential of MICP in reducing hydraulic conductivity 
under various pore space distributions and identify the optimal combi-
nation of parameters, various scenarios involving grain characteristics 
were analysed. The impacts of the mean grain diameter, the width of 
particle size distribution (uniformity coefficient) and the particle shape 
were examined separately by taking into consideration various realistic 
porous media of different properties. The RF model was used to identify 

the combinations of bio-chemical parameters (OD600, TreatDur, 
ReTime, FlowRat, OthFlow, Grav, CalChlor, Ratio, Mix, BsA) that pro-
vide the highest reduction of hydraulic conductivity. The rest of the 
values are fixed (Sal is 0, Fix is 0, Sat is 1, FibCon is 0, BenCon is 0, 
CemLevel is 20%). 

The findings indicate that for subrounded grains of medium to high 
grain sizes, a high optical density (above 2) and urease activity of 10 
mM/min are required while the injection mode is via gravity (infiltra-
tion) which is the highest possible flow rate without dislocating (mov-
ing) the particles or generating conductive channels. Such high flow 
rates result to uniform reactions (those that occur on all surfaces of the 
pore structure) resulting in a more uniform reduction of porosity and 
permeability spatially (Hao and Xu, 2023; Menke et al., 2016). The 
bacterial mixture should be injected together with cementation solution 
to increase the probability of carbonate crystals attaching to the pores. 
Additionally, a high concentration of calcium chloride (about 3 M) with 
a ratio of urea to calcium chloride of about 2–3 is suggested based on the 
RF model predictions with a retention time (time between subsequent 
injections) of 24 h. Longer retention times have been shown to result in 
greater decrease of hydraulic conductivity in other non-bacterial 
induced precipitation studies (Guo et al., 2024b). In the case of very 
small grain sizes (≈20 μm) the RF model suggests a calcium chloride 
concentration is 0.5 M with an equimolar ratio of calcium chloride and 
urea, and retention times between 1 and 3 h. Such small pore sizes are 
susceptible to clogging and this formulation would inhibit these pro-
cesses around the injection point (Jaho et al., 2016). The mode of in-
jection changes to pressurised injection (OthFlow), which might be due 
to the smaller pore network. Lower concentrations of calcium chloride 
result in the precipitation of smaller carbonate crystals which are needed 
for such small pore spaces (Wang et al., 2022). More frequent injections 
are allowed for such small concentrations because less time is needed for 
reactions to take place (Konstantinou et al., 2021b). For both spherical 
and angular grains, the recipe remains the same suggesting no effects. 

As the width of the particle size distribution increases (uniformity 
coefficient), the retention time between injections decreases substan-
tially, which may help to avoid pore clogging that could be caused by the 

Fig. 7. The partial dependence plots.  

C. Konstantinou and Y. Wang                                                                                                                                                                                                               



Journal of Contaminant Hydrology 263 (2024) 104337

11

injection in a smaller pore network especially close to the injection 
point. An equimolar recipe of calcium chloride and urea is also sug-
gested and the mode of injection changes to pressurised injection 
(OthFlow), which might be due to the smaller pore network, similar to 
the case where grain sizes are smaller and hence the porous network is 
smaller. 

4.3. Permeability curve with respect to cementation level 

A general profile of hydraulic conductivity reduction with respect to 
cementation level is proposed by Song et al. (2020), identifying three 
phases. Phase I corresponds to low cementations where permeability 
decreases at a slower rate. This is followed by the rapid decline in 
permeability at moderate cementation levels (phase II). Finally, in phase 
III, which corresponds to high cementations, it remains almost constant. 
The findings of this study are compared to this general profile: the op-
timum bio-chemical parameters identified in the previous section are 
applied for the various porous media to derive the permeability curve 
with respect to cementation level as shown in Fig. 8. 

The three phases are identified for the case of soils with a lower 
degree of sorting (narrower width of PSD) across all grain sizes (Fig. 8 
(a)). For very small grain sizes, phase II shows a smaller decline in 
permeability. For very large grain sizes, permeability profile remains the 
same across different grain diameters, while for intermediate grain sizes 
the profile shifts either downwards or upwards. As the uniformity co-
efficient (Cu) increases for a fixed grain diameter, the profile of hy-
draulic conductivity changes significantly. At intermediate uniformity 
coefficients (see Fig. 8 (b) – Cu of 6), permeability still exhibits a large 
reduction even in phase III. At higher uniformity coefficients (Cu of 15) 
the profile shifts downwards. This is attributed to the higher pore scale 
heterogeneity observed in sands of wider PSDs, which exhibit larger 
reductions in permeability (Masoudi et al., 2024; Noiriel et al., 2016). 
The observed response is linked to the microscale and is further dis-
cussed in Section 4.4. Finally, the grain shape does not have significant 
effects on the permeability curve as shown in Fig. 8 (c) indicating that an 
MICP strategy for controlling SWI is not affected by the grain shape. 

4.4. Comparison of predictions with theoretical models for calculating 
permeability 

The predictions provided by the RF model are compared against 
empirical models to predict permeability and examine the performance 
of the ML algorithms based on a range of cementation levels. The aim is 
to provide an alternative way to estimate the reduction of hydraulic 
conductivity using a different set of input data through the ML approach. 
Porous media with more complicated properties (i.e., coarse grains, 
various grain shapes and widths of particle size distributions - PSDs) 
were selected from the work of the same authors of this study and the 
data points are presented in Fig. 9 (Konstantinou et al., 2023c) The 

presented SEM images are used explicitly in this study and are not 
presented in previous works. 

There are many permeability-porosity relationships in the literature 
accounting for dissolution and precipitation mechanisms. The most 
commonly used are the Kozeny-Carman equations and their modifica-
tions (such as the Civan, Marshall, Taylor, Panda-Lake models) and the 
power law relationships with their modifications (Beckingham, 2017; 
Guo et al., 2024b; Hommel et al., 2018; Nogues et al., 2013; Sabo and 
Beckingham, 2021). The relationship between porosity and perme-
ability is influenced not only by variations in pore system characteristics 
but also by the underlying mechanisms governing porosity alterations 
(Verma and Pruess, 1988). In MICP, where carbonate precipitates, either 
the pore throat geometry or the pore body geometry may be heavily 
affected by the process. Whether the former or the latter occurs, depends 
on the initial pore structure, as well as the size, shape and frequency of 
the precipitating crystals which, in turn, depend on the MICP bio- 
chemical parameters and injection methods. Specifically, in MICP, the 
pore throat geometry is affected when carbonate crystals land at the 
contacts between particles, while the pore body geometry is altered 
when cement lands in the pore network. There is also a case in-between 
which involves surface coating (cementation appears around a grain). 
Among the different models, the Panda-Lake model, a modification of 
the Kozeny-Carman equation, is appropriate for estimating the perme-
ability of cemented soils by considering three different cementation 
distributions (pore filling, bridging and lining) which aligns with the 
carbonate crystals resulting from MICP. The Panda-Lake model (Panda 
and Lake, 1995; Panda and Lake, 1994) is expressed as: 
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where k is permeability, φo is the initial porosity, SF is the shape factor 
(taken as 3), τ is tortuosity, aν is the specific surface area, φ is the 
porosity after cementation is applied, Pc is the proportion of CaCO3 
volume to the total volume of solids, avc is the specific surface area of the 
CaCO3 crystals and S the cement saturation of the pore space. Tortuosity 
and specific surface area are given by Eqs. (6 and 7), respectively. 
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where Dp, σ and γ are the statistical mean of the particle diameter, the 

Fig. 8. Permeability profiles with respect to cementation levels for (a) various grain diameters, (b) various uniformity coefficients and (c) the three grain sizes.  
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Fig. 9. The experimental data and predictions of the Panda-Lake model and the RF algorithm along with SEM images for (a) glass beads (D50 = 240 μm), (b) 
subangular sands (D50 = 372 μm) (c-e) various widths of particle size distribution (D50 = 371 μm and Cu = 2.22, D50 = 1180 μm and Cu = 5.6, D50 = 2454 μm and Cu 
= 4.62). 
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standard deviation of the particle size distribution (PSD) and the sta-
tistical skewness, respectively. The unit weight of water was taken as 9.8 
kN/m3 and the viscosity as 0.0013 Pa*sec. 

The Panda-Lake model is a good fit for the experimental data points 
in all selected porous media, except in the case of glass beads in which 
the permeability is smaller compared to the predictions of the model 
(Fig. 9 (a)). This difference is attributed to the different cementation 
characteristics resulting by the MICP protocol in combination with the 
initial pore network characteristics. The shape of the grains affects the 
properties of the crystals that form. In glass beads, the crystals are fewer 
in number but larger in size, whereas for angular grains, the crystals tend 
to be smaller. The Panda-Lake model requires information on the dis-
tribution of cementation within the porous medium, including crystal 
size and precipitation. These characteristics are reflected in the specific 
surface area of the carbonate crystals in Eq. (4) (avc). Since in glass beads 
the carbonate crystal size tends to be larger, this term becomes smaller, 
resulting in a higher permeability value. Consequently, glass beads are 
not well represented by the Panda Lake model. The Panda-Lake model 
also failed to capture the high permeability value at low cementations of 
the porous media with the largest grain sizes and the largest width of 
PSD (Fig. 9 (f)). Generally, correlations such as the Kozeny-Carman and 
power laws along with their modifications (e.g., Panda-Lake, Fair- 
Hatch, Verma-Pruess) are inadequate in capturing the changes in 
permeability observed in pore size-controlled reactions. This de-
pendency varies depending on the pore and pore-throat size distribution 

of the sample. Samples characterised by an abundance of small pores 
may undergo more pronounced changes in both porosity and perme-
ability as shown in the pore-scale study by Beckingham (2017). 
Conversely, when reactions are confined to large pores and pore throats, 
substantial shifts in porosity may occur with little impact on perme-
ability. Neither of these phenomena is adequately captured by the 
examined porosity-permeability relationships, necessitating the devel-
opment of new correlations that account for the distinct porosity- 
permeability regions. 

On the other hand, the RF algorithm is good at capturing the data 
points in the range of the moderately cemented specimens even in the 
areas where the Panda-Lake model failed to adequately predict the 
permeability values. However, it poorly predicts the permeability at low 
cementation levels in the cases where the soils had wider PSDs. As seen 
in the SEM images (Fig. 9 (c-e)), the porous network is composed of a 
high number of pore throats due to the higher particle interlocking, and 
thus even a small addition of cementation in these locations results in a 
greatest reduction in permeability. A similar result was observed in the 
study by Noiriel et al. (2016), in which the pores exhibit the develop-
ment of pore-scale heterogeneity as a result of precipitation which in 
turn leads to a higher reduction in permeability compared to those that 
experienced uniform precipitation. This region is characterised as the 
region where permeability decreases at a slower rate, and it indicates 
that the data in the lower range needs to be populated and more infor-
mation needs to be obtained to improve the performance of the model. 

Fig. 9. (continued). 
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In uniform particles (Fig. 9 (a-b)), the carbonate crystals have equal 
probabilities to land on either the surface of the particles and on pore- 
throats resulting to a more steady reduction of permeability. The 
Panda-Lake model also revealed a great reduction in permeability even 
at very low cementation levels which is in contrast to the typical asso-
ciation between permeability reduction and cementation level. 

As mentioned earlier, the Panda-Lake model relies on data regarding 
the distribution of cementation within the porous medium, including 
factors such as crystal size and precipitating patterns (surface coating or 
precipitation on particle grains). Obtaining this specific information can 
be challenging. On the other hand, machine learning (ML) models do 
require additional data, but it is generally easier to acquire, especially if 
geochemical parameters and properties of the porous media can be 
obtained through standard laboratory measurements. Thus, the ML 
models offer an alternative approach for delivering information relating 
to permeability using data of a different nature. 

4.5. Limitations and significance of the developed models 

When developing statistical and machine learning models, there are 
uncertainties associated with various steps. The highest source of un-
certainty is the data collection, gap filling and homogenisation. In this 
study, the variable that was under-reported was mainly the urease ac-
tivity. Even though the average behaviour of urease activity is well- 
documented in the literature, the accuracy of the models would in-
crease dramatically if the findings from the different studies were re-
ported. The optical density is another variable that introduces 
uncertainties. In cases where it was reported using the units of cfu/mL, 
standard curves from the literature were used, or estimations were made 
based on the specific size of the bacterial strain. However, the growth 
liquid used was not always the same across the studies, thus potentially 
making the value less accurate. Other challenges associated with the 
homogenisation of data could be the loss of information. For example, 
the chemical composition of seawater and the type of calcium source 
(calcium chloride, dihydrate, anhydrous), which are expected to affect 
the properties of the precipitated crystals, are not accounted for in this 
investigation. 

Another issue is the fact that only a few studies investigated the 
addition of fibres, bentonite, kaoline, fines or other materials in their 
MICP formulation when reporting hydraulic conductivity measure-
ments. Although some of those effects are reflected to some extent in the 
initial porosity variable, the additives significantly affect the pore 
network distribution and hence the resulting mechanical and hydraulic 
properties (Ma et al., 2022). Further work needs to be conducted to 
properly assess the effects of such additions, as the trained models have 
not been extensively exposed to such conditions. These advancements in 
the field need to go hand in hand with experimental investigation. 

The bacteria used for the MICP technique should be carefully 
selected based on their ability to precipitate calcium carbonate and their 
compatibility with the site conditions. As demonstrated previously, the 
type of bacteria plays a minor role in the performance of MICP, as long as 
they produce urease. The bacteria should be able to grow in the presence 
of seawater and high salinity conditions, which is proven by few studies. 
However, local urease-producing strains from the site could be isolated 
and used for this application. Instead of injecting the calcium source 
externally, the site could have enough calcium ions to support the pre-
cipitation of calcium carbonate and the right environmental conditions 
to support the growth of the bacteria used for the technique. All these 
factors (i.e., salinity, bacterial strains, calcium source) need to be further 
studied since the developed ML models have not ‘seen’ such data based 
on the current studies. Therefore, such interpretations cannot be done 
until investigated experimentally. 

One solution could be the use of synthetic data (e.g. synthetic mi-
nority oversampling technique for regression - SMOTER) which could be 
generated in such cases where the available dataset is unrepresentative 
of certain scenarios. However, in this study there are no regions of the 

target variable space where data is sparse and therefore, it would not 
benefit to a great extend the developed models. As discussed, the un-
derlying issue is not class imbalance, rather it is the lack of information 
in other areas outside the investigated ones (e.g., larger bentonite or 
fiber content). This limitation arises from the inability of machine 
learning models to extrapolate and forecast outcomes beyond the range 
of the data they were trained on. 

Despite these limitations, the ML and statistical models predict the 
permeability profiles across various cementation levels performing 
better than the available empirical models in the literature (i.e., Panda- 
Lake models) in many cases, which is achieved using less information 
without the need for specific variables which are not always known. 
Therefore, the models described in this study could be used as an initial 
screening tool, which could help to narrow down the available options 
and these could then be further investigated experimentally. At the same 
time, the models could be further used to identify patterns and link the 
hydraulic conductivity response to the microscale characteristics. This is 
a complex problem which is highly non-linear, with the analysis per-
formed revealing correlations between the properties of the porous 
media and MICP parameters. This information could be further used to 
interpret various findings not only with respect to permeability but also 
with respect to strength enhancement. 

4.6. Technological issues associated with the application of MICP for 
seawater intrusion 

The advantage of the MICP technique for preventing seawater 
intrusion compared to other chemical techniques is that it is more 
environmentally friendly. However, there are technical issues which 
might affect the MICP the process when applied in the field which are 
discussed below. 

This study shows that it is important to consider the injection method 
used to introduce the bacteria and the calcium solution into the aquifer. 
The injection method should ensure that the bacteria and calcium so-
lution are distributed uniformly throughout the aquifer to form a 
continuous barrier. Monitoring the progress of the barrier formation is 
critical to ensure that the barrier is being formed as intended. Parame-
ters such as pH, calcium concentration, and bacterial growth should be 
monitored regularly. These parameters also act as indicators for any 
change or deviation from the designed conditions. An example is the fact 
that the metabolic activity of bacterial strains might be affected by 
variations in environmental conditions such as salinity, temperature, 
and nutrient availability, which can affect the overall performance of 
MICP. 

Maintenance of the barrier may require periodic injections of cal-
cium and bacterial solutions to sustain its integrity. Designing subsea 
barriers that effectively prevent saltwater intrusion while allowing 
controlled replenishment of freshwater can be very complex in reality. 
Factors such as tidal fluctuations, wave action, and sediment transport 
dynamics need to be considered. The environmental impact of the MICP 
technique should also be carefully evaluated to ensure that it does not 
negatively affect the environment or groundwater quality (one problem 
could be the alteration of the natural flow patterns of seawater and 
freshwater which could potentially disrupt the balance of ecosystems). 
By restricting the exchange of water between the aquifer and the sea, the 
natural replenishment and flushing processes may be disrupted. This can 
lead to changes in water quality, including the accumulation of pollut-
ants or reduced availability of freshwater resources. 

All of the above need to be monitored in the long-run to ensure that 
the effectiveness of subsea barriers continue to function as intended. 
Regular monitoring programs should be in place to assess the perfor-
mance of the barriers and make any necessary adjustments or 
maintenance. 
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5. Conclusion 

The growing demand for freshwater and hence groundwater over- 
exploitation, coupled with climate change and rising sea-levels, cause 
saltwater from coastal aquifers to invade groundwater aquifers. 
Seawater intrusion can lead to significant damage to the aquifer system, 
including degradation of water quality and loss of natural habitats. 
Therefore, it is crucial to develop effective techniques to control 
seawater intrusion. 

The application of MICP for generating a barrier to prevent the in-
vasion of seawater into groundwater has great potential since it reduces 
the hydraulic conductivity. In this study, machine learning and statis-
tical analyses were implemented to build models to identify patterns 
between the biochemical factors affecting MICP and the properties of the 
porous medium (together with environmental factors) based on the 
literature. The ML models (k-Nearest Neighbour, Support Vector 
Regression, Random Forests, Gradient Boosting) and the modified linear 
regression model (accounting for interactions) provide reasonable fits. 
The RF algorithm is the best performing algorithm with an RMSE of 
0.305 followed by XgBoost and SVR. The ensemble learning model EnL- 
Stack which merges the five previous models provides better fits 
compared to the individual RF algorithm. These models can be used as 
tools to predict the reduction in hydraulic conductivity under specific 
conditions. 

According to the parameter importance plots, the MICP formulation 
depends on the characteristics of the porous medium and the most sig-
nificant biochemical parameters seem to be the bacterial optical density, 
the urease activity, the calcium chloride concentration, and the flow rate 
while there are several interaction terms between the porous medium 
properties and the biochemical parameters that need to be considered. 

Since the ML algorithms provide good fits for the data, they can be 
used in MICP procedures designed for these applications as a guidance 
for further analysis at the lab scale to fine-tune the formulation. In this 
study, an optimised injection schedule was identified based on various 
soil properties while also the permeability reduction profiles with 
respect to cementation level for various potential porous media prop-
erties were produced. The findings suggest specific conditions for 
effective injection of cementation solutions into porous media. For 
medium to high grain sizes with subrounded grains, a high bacterial 
optical density (>2), urease activity of 10 mM/min and a high cemen-
tation solution concentration are necessary, along with gravity-based 
injection of bacterial and cementation solution mixture and a reten-
tion time of 24 h between injections. For smaller grain sizes (~20 μm), a 
lower calcium chloride concentration with equimolar ratios is sug-
gested, along with shorter retention times (1− 3h) and pressurised in-
jection. As the particle size distribution widens, shorter retention times 
are advised to prevent pore clogging, with similar adjustments in cal-
cium chloride concentration and injection mode. The recommendations 
remain consistent for both spherical and angular grains. 

The ML models were also compared to the empirical model Panda- 
Lake which is a modification of the Kozeny-Carman equation for 
permeability prediction showing similar performance and, in some 
cases, better performance. Since the Panda-Lake model requires specific 
information on the carbonate crystal characteristics which is often 
difficult to obtain, the ML models could be used as a screening tool to 
assess MICP applicability for seawater intrusion. 
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