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Angle-Based Distributed Node Localizability and Localization
Liangming Chen , Zhiyun Lin , Fellow, IEEE, and Lihua Xie , Fellow, IEEE

Abstract—To determine the positions of free nodes in a wireless
sensor network, angle-based localization approaches have been
recently proposed. However, the existing angle-only localizability
conditions are for the whole network, for which the existence of
only one unlocalizable node implies that the whole network is
unlocalizable. To efficiently obtain specific information on the free
nodes’ localizability, this article proposes to check each node’s
localizability in a distributed manner. First, we propose an alge-
braic condition for node localizability, based on which a distributed
node localizability checking algorithm is proposed. Then, a strat-
egy on adding triangular angle measurements to those unlocaliz-
able nodes is proposed, under which an unlocalizable network can
become localizable. Finally, by using the local information of each
node’s triangle degree in the network, a fully distributed localiza-
tion algorithm is designed, which does not require any globally
graphic information or additional internode communication. Sim-
ulation examples are provided to validate the results.

Index Terms—Angle measurements, distributed localization,
node localizability, triangular network, wireless sensor network.

I. INTRODUCTION

Distributed sensor network localization has been extensively studied
due to its wide applications in the Internet of Things, such as networked
mobile robots [1] and large-scale sensor networks [2]. Different network
localization approaches have been proposed when different sensor
measurements are available, such as relative positions [3], distances [4],
bearings [5], [6], and interior angles [7], [8], [9]. Two aspects have
been mainly studied for every network localization problem, namely,
network localizability and network localization, which aim to know
under what kind of algebraic or topological conditions a given network
is localizable, and propose localization algorithms for estimating the
positions of free nodes, respectively [2].

The existing network localizability conditions can be mainly divided
into algebraic conditions and topological conditions. To determine
the localizability of sensor networks with relative position, distance,
bearing, or angle measurements, algebraic conditions and topological
conditions have been proposed in [3], [4], [5], [6], [7], [8], and [9].
However, even if an entire network is unlocalizable, some of its nodes
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can be localizable. Therefore, instead of checking an entire network’s
localizability, Yang and Liu [10] have introduced the novel concept of
node localizability, which aims to know the localizability of each single
node in the network. Henceforth, node localizability conditions have
been proposed in [10], [11], [12], and [13]. Although some localizability
conditions and node localizability conditions have been proposed, many
of them [3], [4], [5], [6], [7], [8], [10], [13], [14] are centralized, and
only a few of them [11], [12] are capable of checking localizability in
a distributed manner.

On the other hand, the existing network localization algorithms
can be mainly divided into continuous localization algorithms [5],
[7], [14] and discrete localization algorithms [4], [6], [7], [12]. For
example, continuous localization algorithms have been designed in [5]
based on bearing rigidity theory. Most of the continuous localization
algorithms [5], [7], [14] are distributed, in which, however, the re-
quirement of internode continuous communication may make their
implementation difficult. Compared with continuous communication,
discrete localization algorithms under periodic communication are
more realistic. Therefore, some discrete localization algorithms have
been proposed in [4], [6], [7], and [12], which require each node to
know some graphic information or need additional communication to
estimate this information. Using the number of each node’s associated
edges in the network, a few discrete localization algorithms are fully
distributed, such as the algorithms in [15].

Motivated by the aforementioned two aspects, this article focuses
on checking angle-based node localizability and achieving angle-only
discrete localization in a distributed manner. First, we propose an
algebraic condition for the node localizability of triangular angle-
constrained sensor networks. Based on this algebraic condition, a
distributed node localizability checking algorithm is proposed. Then,
for those unlocalizable nodes, we propose to add some triangular angle
measurements such that they can also become localizable. Moreover,
by using each node’s triangle degree in the network, a discrete and fully
distributed angle-only localization algorithm is proposed, which does
not require any globally graphic information or additional internode
communication.

The rest of this article is organized as follows. Section II presents
the preliminaries on angle measurements and angle-based localization.
Section III discusses distributed node localizability. Section IV intro-
duces distributed localization. Simulation examples are provided in
Section V. Finally, Section VI concludes this article.

II. PRELIMINARIES

In this section, we introduce the preliminaries on angle measure-
ments and angle-based localization.

A. Notations

Consider a planar and static network consisting of na ≥ 2 anchor
nodes andnf > 0 free nodes. LetVf = {1, 2, . . ., nf} be the set of free
nodes, whose positions, denoted by pf = [p�1 , p

�
2 , . . ., p

�
nf

]� ∈ R2nf ,
are unknown and to be determined. Let Va = {nf + 1, nf + 2, . . ., n}
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withna + nf = n be the set of anchor nodes, whose positions, denoted
by pa = [p�nf+1, p

�
nf+2, . . ., p

�
n]

� ∈ R2na , are known by themselves.

We assume that no overlapping nodes exist in p = [p�f , p
�
a ]

� ∈ R2n.
Let I2, 1n, ⊗, λmax(), λmin(), and Ker() be the 2-by-2 identity matrix,
n× 1 column vector of all ones, the Kronecker product, the maximum
eigenvalue, the minimum eigenvalue of a symmetric matrix, and the

kernel of a matrix, respectively. Denote by R(θ) =
[
cos θ − sin θ
sin θ cos θ

]
the

2-D rotation matrix with rotation angle θ. For a matrix Q ∈ Rm×n, let
[Q]i∗ ∈ R1×n and [Q]∗i ∈ Rm×1 be the ith row and the ith column of
Q, respectively.

B. Angle Measurements and Angle-Induced Linear Equations

Define node i’s interior angle measurement αmij ∈ [0, 2π) with
respect to nodes m, j ∈ Va ∪ Vf under the counterclockwise direction
as [7]

αmij :=

{
arccos(b�ijbim), if b�ijR(π

2
)bim ≥ 0

2π − arccos(b�ijbim), otherwise
(1)

where bij :=
pj−pi

‖pj−pi‖ is the bearing unit vector starting from pi and
pointing toward pj . According to [7], an angle-induced linear equation
in 	ijm is written by

f	ijm
i (α, p) = A	ijm

i (α)pi +A	ijm
j (α)pj

+A	ijm
m (α)pk = 0 (2)

where the coefficient matricesA	ijm
i (α)=−A	ijm

j (α)−A	ijm
m (α),

A	ijm
j (α)=sinαijmR�(αmij)∈R2×2, and A	ijm

m (α)=−sinαjmiI2
∈ R2×2 are only related to the measured interior angles
αjmi, αijm, and αmij[7]. Since the collinearity of pi, pj , and pm
will degrade the linear equation (2), we require each three neighboring
nodes to be noncollinear.

Now, we use triangular angularities [7] to describe triangular net-
works with triangular angle constraints, which are the networks we are
interested in in this article. For the vertex setV = {1, 2, . . ., n} = Vf ∪
Va, define a three-vertex triplet (i, j,m) to describe the angle constraint
αijm. Then, we define A ⊆ V × V × V = {(i, j,m), i, j,m ∈ V, i �=
j �= m} as an angle set. Assume that the notation of the triplet (i, j, k)
is equivalent to (k, j, i). Then, the combination of the vertex set V , the
angle set A, and the embedding p ∈ R2n is called an angularity, which
we denote byA(V,A, p). We sayA is a triangular angle set if for every
(i1, j1,m1) ∈ A, there also exists {(j1,m1, i1), (m1, i1, j1)} ⊂ A.
The number of triangles in A is denoted by n	

A ∈ N+. We say that
A(V,A, p) is a triangular angularity if A is a triangular angle set.
If (i, j,m) ∈ A, then {j,m} ∈ Ni, {i,m} ∈ Nj , {i, j} ∈ Nm, where
Ni represents node i’s neighbor set. For each i ∈ Vf , there exists at
least one triplet in A that is associated with i. Let di ∈ N+ be node i’s
triangle degree, which is the number of node i’s associated triangles in
triangular angularity A.

Writing all the angle-induced linear equations (2) from a
triangular angularity A(V,A, p) into a compact form yields

MA(α)p = 0, where MA(α) ∈ R2n
	
A×2n, α = [. . ., αijm, . . .]� ∈

R3n
	
A , ∀(i, j,m) ∈ A, and the row (respectively, column) blocks of

MA(α) are indexed by the triangles in A (respectively, the vertices in
V) [7]. Here,α representsα(p), i.e., the angles inα are calculated under
the nodes’ embedding p.

C. Angle-Only Localizability and Localization

Partitioning MA(α) = [Mf
A , M

a
A] into the free nodes’ part Mf

A ∈
R2n

	
A×2nf and the anchor nodes’ part Ma

A ∈ R2n
	
A×2na , we define a

matrix D(α) ∈ R2n×2n as

D(α) = M�
A (α)MA(α) =

[
Dff Dfa

Daf Daa

]
(3)

where Daa = (Ma
A)

�Ma
A ∈ R2na×2na , Dfa = (Mf

A)
�Ma

A ∈
R2nf×2nl , and Dff = (Mf

A)
�Mf

A ∈ R2nf×2nf . The aim of network
localizability is to investigate whether free nodes’ positions pf can
all be uniquely determined by anchor nodes’ positions pa and angle
measurements α. Now, we present our previous result on angle-only
localizability.

Lemma 1 (see [7]): For a triangular angularity A(V,A, p): 1) A is
localizable if and only if Dff is nonsingular; 2) if the network is local-
izable, then pf can be uniquely calculated by pf = −D−1

ffDfapa; and
3) if na = 2, then Dff is nonsingular if and only if Rank(MA(α)) =
2n− 4.

The aim of discrete localization is to design p̂f [k + 1] =
f(p̂f [k], α, pa) such that p̂f [k] → pf as k → ∞. According to [6]
and [7], a gradient-descent localization law for the free nodes can be
designed as

p̂f [k + 1] = p̂f [k]− hDff p̂f [k]− hDfapa (4)

whose component form for each free node i ∈ Vf is

p̂i[k + 1] = p̂i[k]− h(F	ij1m1
i + F	j2im2

i + F	j3m3i
i ) (5)

where F	ij1m1
i =

∑
(i,j1,m1)∈Ā(A

	ij1m1
i )�f	ij1m1

i (α, p̂[k]), Ā ⊂
A, |Ā| = n	

A such that if (i, j,m) ∈ Ā, then (j,m, i) /∈ Ā, (m, i, j) /∈
Ā, and p̂j(t) = pj for ∀j ∈ Va, h > 0 is the sampling pe-
riod, f	j2im2

i (α, p̂[k]) = A	j2im2
j2

(α)p̂j2 [k] +A	j2im2
i (α)p̂i[k] +

A	j2im2
m2

(α)p̂m2
[k], and f	j3m3i

i (α, p̂[k]) = A	j3m3i
j3

(α)p̂j3 [k] +

A	j3m3i
m3

(α)p̂m3
[k] +A	j3m3i

i (α)p̂i[k]. Note that (5) can be imple-
mented by using node i’s angle measurement to obtain αjim and
communication with neighbor j to obtain αmji and communication
with neighbors j,m to obtain p̂j [k], p̂m[k], where j ∈ {j1, j2, j3},m ∈
{m1,m2,m3}. Clearly, the measurement topology among the free
nodes is described by A. To guarantee the convergence of p̃f [k] =
p̂f [k]− pf under (5) for localizable triangular angularities, the sam-
pling period h should satisfy [7]

h < 2mini=1,...,2nf
λ−1
i (Dff ) = 2λ−1

max(Dff ). (6)

Remark 1: The localizability condition given in Lemma 1 is cen-
tralized since Dff (α) is related to all the nodes’ angle measurements.
Also, the localization law (5) is not fully distributed since the condition
(6) is related to the globally graphic information λmax(Dff ). These
two aspects are the motivation of this work, and the aim is to make
them distributed.

III. DISTRIBUTED NODE LOCALIZABILITY

In this section, we first introduce a checking condition on node
localizability, then develop a distributed algorithm to check each node’s
localizability, and finally discuss the improvement of unlocalizable
networks’ localizability.

A. Node Localizability Condition

Denote by ei ∈ R2nf the natural basis of R2nf , with the ith entry
of ei being 1 and the other (2nf − 1) entries being 0. Based on [10],
we introduce the definition of node localizability for sensor networks
with angle measurements.

Definition 1: A free node i ∈ Vf is said to be localizable in angular-
ityA(V,A, p) if pi is uniquely determined by the given angle constrains
in A and the anchors’ positions pa.
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For a triangular A, one has the following conclusion.
Lemma 2: For a triangular angularity A(V,A, p), if node i ∈ Vf is

localizable and

Dff [(p1 + x1)
�, . . ., (pi + xi)

�, . . ., (pnf
+ xnf

)�]�

+Dfapa = 0 (7)

where xj ∈ R2, j = 1, . . ., nf , then xi must be zero.
Proof: Suppose on the contrary that xi �= 0. On the one hand,

Dfapa +Dffpf = 0 always holds according to (2) and (3). There-
fore, the configuration [p�1 , . . ., p

�
i , . . ., p

�
nf

, p�a ]
� ∈ R2n satisfies all

the given angle constraints in A and the anchors’ positions pa. On the
other hand, (7) implies that the configuration [(p1 + x1)

�, . . ., (pi +
xi)

�, . . ., (pnf
+ xnf

)�, p�a ]
� ∈ R2n also satisfies the given angle

constraints in A and the anchors’ positions pa. Since pi + xi �=
pi, there are two different solutions for the free node i’s position,
which contradicts to the assumption that node i is localizable. Hence,
xi = 0. �

Theorem 1: A free node i ∈ Vf is localizable in triangular angularity
A(V,A, p) if and only if e2i ⊥ Ker(Dff ) and e2i−1 ⊥ Ker(Dff ).

Proof. Sufficiency: Suppose on the contrary that node i is un-
localizable. Then, there must exist at least one another posi-
tion p′i ∈ R2, p′i �= pi for node i, which satisfies the given an-
gle constraints in A and anchors’ positions pa. That is to
say, (7) holds for xi = p′i − pi �= 0 and xj = pj − pj = 0, for j ∈
V\i. Then, at least one of e�2i[x1, . . ., x

�
i , . . ., x

�
nf

]� �= 0 and

e�2i−1[x1, . . ., x
�
i , . . ., x

�
nf

]� �= 0 holds. The above conclusion, to-

gether with the fact [x�
1 , ..., x

�
i , ..., x

�
nf

]� ∈ Ker(Dff), implies a
contradiction to the assumption that e2i ⊥ Ker(Dff ) and e2i−1 ⊥
Ker(Dff ). Therefore, node i is localizable.

Necessity: According to (2) and (3), Dfapa +Dffpf = 0 holds
no matter whether the network is localizable. Define the kernel of
matrix Dff as Ker(Dff ) := [x�

1 , . . ., x
�
i , . . ., x

�
nf

]� ∈ R2nf . It fol-

lows that Dfapa +Dffpf +Dff [x
�
1 , . . ., x

�
i , . . ., x

�
nf

]� = 0, which
is the same as (7). Then, according to Lemma 2, when i is localiz-
able, xi = 0 holds. It follows that e�2i[x

�
1 , . . ., xi, . . ., x

�
nf

]� = 0 and

e�2i−1[x
�
1 , . . ., xi, . . ., x

�
nf

]� = 0, i.e., e2i ⊥ Ker(Dff ) and e2i−1 ⊥
Ker(Dff ). �

To execute the condition in Theorem 1, an order needs to be assigned
to the nodes, which can be done by preassigning each sensor with an
identity or using a distributed algorithm [16] to identify the nodes.

B. Structural Properties of Matrix Dff

We first give an example on Dff to show the structural properties
of Dff .

Example 1: Take a triangular angularity A(Vf ∪ Va,A, p)
with Vf = {1, 2, 3} and Va = {4, 5, 6} as an example. If Ā =
{(1, 4, 5), (1, 2, 4), (1, 2, 3)}, then Dff ∈ R6×6 is

Dff = (Mf
A)

�Mf
A

=

⎡
⎣(A145

1 )2 + (A124
1 )2 + (A123

1 )2 (A124
1 )�A124

2 + (A123
1 )�A123

2

(A124
2 )�A124

1 + (A123
2 )�A123

1 (A124
2 )2 + (A123

2 )2

(A123
3 )�A123

1 (A123
3 )�A123

2

(A123
1 )�A123

3

(A123
2 )�A123

3

(A123
3 )2

⎤
⎦ (8)

where Aijk
s = A	ijk

s and (Aijk
s )2 = (A	ijk

s )�A	ijk
s for (i, j, k) ∈ Ā

and s ∈ {i, j, k}. �

To introduce the related properties of the matrix Dff , we define
Dff [i, j] as the 2-by-2 block of the matrix Dff ’s (2i− 1)th to (2i)th
rows and (2j − 1)th to (2j)th columns, where i, j ∈ Vf .

Lemma 3: The matrix Dff ∈ R2nf×2nf satisfies the following
statements.

i) The diagonal blocks of Dff can be described by

Dff [i, i] =
∑

(i,j2,m2)∈A
(A	isjsms

i )�A	isjsms
i (9)

where {i, j2,m2} = {is, js,ms}1, (is, js,ms) ∈ Ā, and
{j2,m2} ⊂ Vf ∪ Va. The off-diagonal blocks of Dff can be
described by

Dff [i, j] =
∑

(i,j,m1)∈A
(A	isjsms

i )�A	isjsms
j (10)

where i �= j �= m1, m1 ∈ Vf ∪ Va, and {i, j,m1} =
{is, js,ms}, (is, js,ms) ∈ Ā.

ii) Each component (A	isjsms
i )�A	isjsms

i ∈ R2×2 in (9) can be
written as

(A	isjsms
i )�A	isjsms

i = β	isjsms
1 I2 (11)

where β	isjsms
1 ∈ (0, 1) for ∀i ∈ {is, js,ms}.

iii) Each component (A	isjsms
i )�A	isjsms

j ∈ R2×2 in (10) can be
written as

(A	isjsms
i )�A	isjsms

j =

[
β	isjsms
2 β	isjsms

3

−β	isjsms
3 β	isjsms

2

]
(12)

where |β	isjsms
2 | < 1, |β	isjsms

3 | < 1, and |β	isjsms
2 |+

|β	isjsms
3 | < √

2. �
Proof: Statement (i) can be obtained by following the definition of

Rf
A. To prove statement (ii), considering the first case i = is, according

to the definition of coefficient matrices in (2), one has

(Aisjsms
is

)�Aisjsms
is

= (sin2 αjsmsis + sin2 αisjsms − ε1)I2

where ε1 := 2 sinαjsmsis sinαisjsms cosαmsisjs and we used the
fact that R(θ) is a skew-symmetric matrix. Using product-to-sum
trigonometric formulas, one has

ε1 = sinαjsmsis [sinαjsmsis + sin(αisjsms − αmsisjs)]

= sin2 αjsmsis + sin(αisjsms + αmsisjs) sin(αisjsms − αmsisjs)

= sin2 αjsmsis + [(cos 2αmsisjs)− cos 2αisjsms ]/2

= sin2 αjsmsis + sin2 αisjsms − sin2 αmsisjs .

It follows that (Aisjsms
is

)�Aisjsms
is

= sin2 αmsisjsI2. For the
remaining cases i = js and i = ms, using (2), one directly
has (A	isjsms

js
)�A	isjsms

js
= sin2 αisjsmsI2 and (A	isjsms

ms
)�

A	isjsms
ms

= sin2 αjsmsisI2.
To prove statement (iii), considering the first case i = is and j = js,

according to (2), one has

(A	isjsms
is

)�A	isjsms
js

=(sinαjsmsisI2−sinαisjsmsR(αmsisjs))

× sinαisjsmsR
�(αmsisjs)

=

[
− cosαjsmsis sinαmsisjs − sinαjsmsis sinαmsisjs

sinαjsmsis sinαmsisjs − cosαjsmsis sinαmsisjs

]

× sinαisjsms

1The reason of using is, js, and ms here is that the triangle formed by
is, js, and ms is one of 	ij2m2,	j2im2, and 	im2j2, which come with
different coefficient matrices when they are used to form the linear equation (2).
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which implies the conclusion. Considering the second case i = is, j =
ms, one has

(A	isjsms
is

)�A	isjsms
ms

= sinαjsmsis sinαisjsmsR(αmsisjs)− sin2 αjsmsisI2

=− sinαjsmsis

×
[

cosαisjsms sinαmsisjs sinαisjsms sinαmsisjs

− sinαisjsms sinαmsisjs cosαisjsms sinαmsisjs

]

which implies the conclusion. For the remaining case i = js, j = ms,
one has the conclusion straightforwardly. �

Now, we present a lemma on Dff ’s eigenvalues and eigenvectors,
which are important for developing distributed checking algorithms
for node localizability. Define vli(Dff ) and vri (Dff ) as Dff ’s left
and right eigenvectors corresponding to λi(Dff ), respectively, where
i = 1, . . ., 2nf .

Lemma 4: For any γ ∈ R+, D̄ff := Dff + γI2nf
is a nonsingular

matrix. Moreover

λi(Dff ) = λ−1
i (D̄−1

ff )− γ, i = 1, . . ., 2nf

vli(Dff ) = vli(D̄
−1
ff ), v

r
i (Dff ) = vri (D̄

−1
ff ). (13)

Proof: Since Dff is a positive-semidefinite matrix, one has that
D̄ff is a nonsingular matrix. The proof of (13) follows the same line
as [17, Lemma 1]. �

C. Distributed Checking Algorithm for Node Localizability

To check triangular angularities’ node localizability in a distributed
manner, according to Theorem 1, we need to check the conditions
e2i ⊥ Ker(Dff ) and e2i−1 ⊥ Ker(Dff ) in a distributed manner. Ac-
cording to [12, Sec. III.C], these two conditions can be verified by using
the information of the matrix Dff ’s eigenvalues, and the (2i− 1)th to
(2i)th components of Dff ’s eigenvectors. Note that many distributed
algorithms have been proposed to estimate the eigenvalues and eigen-
vectors of matrices associated with graphs [17], [18], [19]. Inspired
by [17], [20], and Lemma 4, we aim to develop a distributed algorithm
for each free node i such that it can obtain the information of Dff ’s
eigenvalues and eigenvectors. Before the development of the algorithm,
we need to introduce the communication topology for the free nodes.

1) Communication Topology for the Free Nodes: We de-
fine two communication graphs Ḡf and Gf , which will be used for
checking node localizability and distributed localization, respectively.
According to Sections II-B and II-C, the communication topology
among the free nodes for distributed localization can be described by
an undirected graph Gf (Vf , Ef ), where the edge set Ef is

Ef := {(i, j)|i ∈ Vf , j ∈ Vf , (i, j,m) ∈ A,m ∈ Va ∪ Vf}.
However, graph Gf is inadequate to describe the communication

topology for checking node localizability becauseDff ’s block describ-
ing the communication relation between every two neighboring nodes
consists of a 2-by-2 matrix instead of a scalar. To make preparations for
checking node localizability, we assume that each free node i has two
virtual nodes i−1 and i−2. The communication topology among these
virtual nodes is defined as an undirected graph Ḡf (V̄f , Ēf ), where

V̄f = {1−1, 1−2, . . .. . ., (nf )−1, (nf )−2}
Ēf = {(i−m, j−s)| {i, j} ⊆ Vf ,m ∈ {1, 2}, s ∈ {1, 2}, i−m �= j−s,

i = j or (i, j) ∈ Ef}.
Intuitively, if there is an edge (i, j) in Ef , then all six possible edges
among i−1, i−2, j−1, and j−2 will be included in Ēf . An example of

Fig. 1. Relationship between Gf and Ḡf .

Ḡf (V̄f , Ēf )with four free nodes is provided in Fig. 1. Obviously, |V̄f | =
2|Vf | and |Ēf | = 4|Ef |+ |Vf |.

Note that A being localizable does not imply that Gf is connected
(see, e.g., [7, Fig. 2]). However, Gf being connected indeed implies that
Ḡf is also connected. Therefore, we present the following assumption.

Assumption 1: The graph Gf is connected.
Assumption 1 does not hold if the free nodes are separated by the

anchor nodes into several clusters or the topology of the entire network
is not connected. For the former case, the node localizability checking
algorithm can still be executed in each cluster under the assumption
that those free nodes in each cluster are connected.

2) Distributed Estimating Dff ’s Eigenvalues and Eigen-
vectors: In [20], a distributed algorithm is proposed to estimate x
from a linear algebraic equation Ax = b, where A, b can be a pair of
matrices. Based on [20], a distributed algorithm is proposed in [17]
to compute both the eigenvalues and eigenvectors of an irreducible
matrix associated with strongly connected digraphs. Inspired by [17],
since D̄ff is a nonsingular matrix for any triangular angularities, we
first write

D̄ff D̄
−1
ff = I2nf (14)

Note that D̄ff ’s or Dff ’s (2i− 1)th to (2i)th rows are known by free
node i’s angle measurements and communication with its neighbors.
Also, the communication topology among the virtual nodes is described
by Ḡf . Therefore, we can develop a distributed algorithm based on
solving linear equations in [20] such that each virtual node can get
the knowledge of D̄−1

ff . Here, we consider that each free node has the
knowledge of nf and γ, where the former can be achieved by using a
distributed average consensus law [21, Sec. IV] and the latter can be
preset.

Following [17, Sec. IV.B], we estimate D̄−1
ff in each virtual node

under the communication graph Ḡf . First, we assign each virtual node
i−j , i ∈ Vf , j ∈ {1, 2} a state variable Zi−j

∈ R2nf×2nf , under which
each free node i has two state variables Zi−1

and Zi−2
. Then, each

virtual node estimates D̄−1
ff by executing the following updating rule:

Zi−j
[k+1]=Zi−j

[k]− 1

|N̄i−j
|Pi−j

⎛
⎜⎝|N̄i−j

|Zi−j
[k]−

∑
j∈N̄i−j

Zj [k]

⎞
⎟⎠
(15)

where N̄i−j
represents the virtual node (i−j)’s neighbor set in graph

Ḡf , and Pi−j
= P�

i−j
∈ R2nf×2nf is the orthogonal projection of the

kernel of [D̄ff ](2i−2+j)∗, i.e.,

Pi−j
:= I2nf

− ([D̄ff ](2i−2+j)∗)�([D̄ff ](2i−2+j)∗)
([D̄ff ](2i−2+j)∗)([D̄ff ](2i−2+j)∗)�

(16)

Since [D̄ff ]2i∗ = [Dff ]2i∗ + γe�2i and γ is known, node i has the
knowledge of [D̄ff ]2i∗ and [D̄ff ](2i−1)∗. Thus, (15) is distributed since
all the required information to execute (15) is either locally measured
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or obtained by communication with neighbors. Now, we present the
following result.

Proposition 1: Let the initial condition Zi−j
[0] of (15) satisfy

([D̄ff ](2i−2+j)∗)Zi−j
[0] = [I2nf

](2i−2+j)∗ for ∀i ∈ Vf , j ∈ {1, 2}.
Then, under the distributed law (15) and Assumption 1, the stateZi−j

[k]

exponentially converges to D̄−1
ff . Correspondingly, one has

λs(Dff ) = λ−1
s (Ze

i−j
)− γ, ∀s = 1, . . ., 2nf

vls(Dff ) = vls(Z
e
i−j

), vrs(Dff ) = vrs(Z
e
i−j

) (17)

where Ze
i−j

represents the steady-state of Zi−j
[k]. Moreover, the con-

vergence of (15) is guaranteed if the graph in Assumption 1 is replaced
by a repeatedly jointly strongly connected graph.

Under Assumption 1, the graph Ḡf is connected. Since [20, Corollary
1] (respectively, [20, Th. 1]) holds for any strongly connected graphs
(respectively, repeatedly jointly strongly connected graphs), the proof
of Proposition 1 follows the same line as [20, Corollary 1, Th. 1]. Ac-
cording to [20, Corollary 1], there exists an estimate for the convergence
speed of (15). Also, according to [20, Th. 4], the updating law (15) can
be executed asynchronously. If nf is a variable, then the dimension of
the eigenvectors scales up with O(nf ). Note that node localizability is
a property of the whole network, rather than a local property, and that is
why the algorithm for checking node localizability requires to compute
an eigenvector with its dimension scaling up with the number of free
nodes.

Remark 2: The execution of updating law (15) is different from that
of the estimation law in [17] since the communication topology Ḡf for
(15) is derived from Gf instead of Dff ’s nonzero elements. In addition
to (15), some other existing distributed algorithms can also be used to
solve linear equation (14) [22]. Although many distributed algorithms
have been proposed to solve linear equation Ax = b [22], the usage of
them for checking node localizability has not been adequately studied,
which is the contribution of this section.

Remark 3: Different from distance-based node localizability con-
ditions [10], [11], [13], this work proposes an angle-based node lo-
calizability condition, which is necessary and sufficient. Compared
with [10] and [13], this work proposes a distributed and angle-based
node localizability checking algorithm. Compared with [11], which
requires a sequential cluster-based execution, (15) is applicable for
nonsequential and noncluster networks. Compared with [12], (15)
has less communication cost. The developed checking condition in
Theorem 1 is based on [12], while the difference between their checking
algorithms is the usage of (17) in this article, which transforms the
estimation of eigenvector vli(Dff ) as the estimation of vli(D̄

−1
ff ).

D. Improving Unlocalizable Networks’ Localizability

Based on the distributed algorithm developed in the above section,
each node knows whether it itself is localizable in the network by only
communicating with its neighbors. In this section, we study how to add
additional angle measurements for those unlocalizable nodes to make
them also localizable. First, we present a lemma.

Lemma 5: For a triangular angularity A(V,A, p), it is impossible
that the angularity has only one unlocalizable node.

Proof: Suppose on the contrary that the network has only one unlo-
calizable node, which is denoted by i. There exists at least one triangle
in A that is associated with i, which we denote by 	ijm, {j,m} ⊂ V .
Then, the angle-induced linear equation f	ijm

i (α, [p�i , p
�
j , p

�
m]�) = 0

guarantees thatpi is uniquely determined, which implies a contradiction
to the assumption that i is unlocalizable. �

Theorem 2: If a triangular angularity A(V,A, p) has only two unlo-
calizable nodes i and j, then these two nodes must be simultaneously

associated within only one triangle. Moreover, the triangular angularity
A′(V,A ∪A1, p)withA1 = {(i, j,m), (i,m, j), (j, i,m)},A1 � A,
and m ∈ V must be localizable.

Proof: Suppose on the contrary that the nodes i and j are associated
within A’s two different triangles 	im1j1 and 	jm2i2, respectively.
According to Lemma 5, i and j must be localizable by applying the
angle-induced linear equations in	im1j1 and	jm2i2, which implies
a contradiction.

Since A1 � A, there exist j1 ∈ V , m1 ∈ V with j1 �= m, m1 �=
m such that (i, j1,m1) ∈ A. Since i and j are the only un-
localizable nodes, by using the angle-induced linear equations
f	ijm
i (α, [p�i , p

�
j , p

�
m]�) = 0 and f	ij1m1

i (α, [p�i , p
�
j1
, p�m1

]�) = 0, i
and j are uniquely determined. Therefore, under the angle constraints
in A1 ∪ A, A′ is localizable. �

Indeed, three additional angle measurements associated within one
triangle are needed to ensure the unlocalizable angularity with two un-
localizable nodes becoming localizable. However, when the network’s
topology is not properly designed, it might have many unlocalizable
nodes. Therefore, we now discuss how to add angle measurements such
that those networks with many unlocalizable nodes become localizable.

Suppose that the sensor network executes the node localizability
checking algorithm in real time, under which each node knows whether
it itself is localizable under the current network A(V,A[k], p), where
A[k] represents the network’s triangular angle set at the iteration step
k ∈ N. Divide the vertex set V = Vl ∪ Vu into a set Vl with localizable
vertices and a set Vu with unlocalizable vertices, in which Va ⊂ Vl.
It holds that Vl[k] ∩ Vu[k] = ∅, |Vl[k]| ≥ 2, ∀k ≥ 0, and |Vu[0]| ≥ 2.
The aim is to achieve ∀k > k̄,Vu[k] = ∅ by iteratively adding some
triangular angle measurements into A[0], where k̄ is a positive integer.
We propose the following localizability improvement algorithm, which
consists of two main steps.

Step 1 (Neighbor searching): If a node i ∈ Vu satisfies that j ∈ Ni

and j ∈ Vl, then i (or the other node forming a triangle with i and
j) should search for a shortest path Pi = {s1, s2, . . ., sq} to another
localizable nodem �= j; otherwise, i does not need to do anything. Such
kind of i always exists in the networkA(V,A[k], p)withVu[k] �= ∅ and
|Vl[k]| ≥ 2. Also, those nodes in Pi satisfy that s1 ∈ Ni, s2 ∈ Ns1 ,...,
and m ∈ Nsq . Nodes s1, s2, . . ., and sq can be seen as node i’s 1-hop,
2-hop,..., and q-hop neighbors, respectively. We assume that if node i’s
q-hop neighbors are unlocalizable, then node i can get the information
of its q-hop neighbor sq’s neighbors. Note that it is possible that j ∈
Pi. The operational complexity for such kind of neighbor searching is
O(n).

Step 2 (Angle addition): Node i needs to add some tri-
angular angle measurements such that the induced subnetwork
whose vertex set is Vj−m = {j, i,m} ∪ Pi becomes localizable. Let
Aj−m(Vj−m,Aj−m, p′) be the induced triangular angularity, where
Aj−m is the triangular angle set associated with the vertices in Vj−m,
and p′ ∈ R2|Vj−m | is the position vector of the vertices in Vj−m.
Consider that node i knows the information of Aj−m at Step 1.
Obviously, j and m are the only localizable nodes in Aj−m (otherwise,
there exists a path for node i to reach node m, which is shorter
than Pi). Denote by A2 the triangular angle set to be added such
that A2(Vj−m,Aj−m ∪ A2, p

′) is localizable. According to [7, Ths.
6 and 7], A2 is localizable if and only if A2 is triangularly angle
rigid, which holds if and only if (Vj−m,Aj−m ∪ A2) contains an
L-trigraph (Vj−m,A3) with A3 ⊆ Aj−m ∪ A2. Two conditions are
needed to ensure that (Vj−m,Aj−m ∪ A2) contains an L-trigraph.
The first condition is to ensure n	

Aj−m∪A2
≥ |Vj−m| − 2, and the

second condition is to ensure that for every subtrigraph (V4,A4) of
(Vj−m,A3), n

	
A4

≤ |V4| − 2. Note that the set Vj−m only consists
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Fig. 2. Improving unlocalizable networks’ localizability. (a) Network
with three anchors (black), one localizable nodes (red), and six
unlocalizable nodes (white), Ā = {(1, 9, 10), (1, 2, 3), (2, 5, 6), (4, 7, 3),
(6, 8, 4)}. (b) At Step 1, node 6 finds a path 4→ 3 →1, and adds
two triangles {(3, 4, 8), (1, 3, 4)} ∈ A2. After the addition, all nodes are
localizable.

of those nodes in the path. To make the addition of triangular angle
measurements more efficient, in node i’s neighbor-searching stage
(Step 1), if ∃A5(V5,A5, p

′′) with V5 ∩ Vj−m �= ∅,A5 ∩ Aj−m = ∅
and (V5,A5) itself being an L-trigraph, then the above induced
triangular angularity Aj−m(Vj−m,Aj−m, p′) should be replaced by
A′

j−m(Vj−m ∪ V5,Aj−m ∪ A5, [p
′�, p′′�]�).

An example is given in Fig. 2 to explain the above two steps. By
iteratively executing the two steps, there exists a k̄ ∈ N+ such that
∀k > k̄,Vu[k] = ∅. If each neighbor-searching operation in Step 1 is
counted as one iteration, an upper bound of k̄ is Vu[0]. This is because
if the shortest path Pi is found with k iterations, then after the addition
of triangular angle measurements, at least k unlocalizable nodes in
Aj−m become localizable. Another factor that needs to be considered
is to avoid some repetitive neighbor-searching operations, e.g., in
Fig. 2, although nodes 2–4 and 6 can all execute neighbor-searching
operations, a neighbor-searching operation from only one of them is
sufficient.

Remark 4: It is worth emphasizing that the networks we aim to study
in this article are triangular networks [7] instead of triangulated Laman
networks which are constructed in a sequential manner and started from
a single edge with two nodes. Hence, triangulated Laman networks are
always localizable by selecting the first two connected nodes as anchor
nodes, which is not the case for triangular networks; see Fig. 2(a) as an
example. Indeed, many types of sensor networks cannot be triangulated
and the anchor nodes may not be connected. This motivated the study
of the localizability of triangular networks.

IV. DISTRIBUTED LOCALIZATION

As mentioned in Remark 1, the eigenvalue information λmax(Dff )
required for the selection of the sampling period h in (6) is global and
graphic information. Instead of employing communication resources
(e.g., by executing maximum consensus algorithms in [6, Algorithm
2]) to obtain an upper bound of λmax(Dff ), we aim to propose a fully
distributed localization law by using the information of each sensor
node’s triangle degree in the network, which is locally known by each
node. Specifically, by replacing h with 1/2di, we modify (5) into

p̂i[k + 1] = p̂i[k]− 1

2di

(
F	ij1m1
i + F	j2im2

i + F	j3m3i
i

)
(18)

where di ∈ N+ is the triangle degree of node i in the triangular
angularity A, and F	ij1m1

i , F	j2im2
i , and F	j3m3i

i follow the same
definitions as those in (5).

Now, we present the main result on the convergence of (18).
Theorem 3: If the triangular angularity A(V,A, p) is localizable,

then p̂f [k] globally and exponentially converges to pf under the fully
distributed localization algorithm (18).

Proof: Writing (18) into a compact form yields

p̃f [k + 1] =
(
I2nf

− (0.5diag{d−1
i } ⊗ I2)Dff

)
p̃f [k] (19)

where p̃f [k] = p̂f [k]− pf and diag{d−1
i } = diag{[d−1

1 , . . ., d−1
nf

]} ∈
Rnf×nf . The stability of (19) depends on the distribution of the
eigenvalues of (0.5diag{d−1

i } ⊗ I2)Dff , which should lie in (0,2) if
they are real. Since 0.5diag{d−1

i } and Dff are both positive definite,
according to [23, Th. 10.31], one has that all the eigenvalues of
(0.5diag{d−1

i } ⊗ I2)Dff are real and positive. Therefore, it follows
that

λmin

(
0.5diag{d−1

i } ⊗ I2Dff

)
> 0. (20)

Then, we discuss the magnitude of the maximum eigenvalue of
(0.5diag{d−1

i } ⊗ I2)Dff . According to the Gershgorin circle theo-
rem [24, Th. 6.1.1] and the structural properties in Lemma 3, all the
eigenvalues λ of (0.5diag{d−1

i } ⊗ I2)Dff must lie within the union of
the following 2nf disks:∣∣∣∣∣λ −

∑
j1,m1

β	isjsms
1

2di

∣∣∣∣∣ ≤
∑

j1,m1
(|β	isjsms

2 |+ |β	isjsms
3 |)

2di

(21)

where i ∈ Vf , {i, j1,m1} = {is, js,ms}, (is, js,ms) ∈ Ā,∑
j1,m1

β
	isjsms
1

2di
∈ R corresponds to the ith diagonal element,

and

∑
j1,m1

(|β	isjsms
2

|+|β	isjsms
3

|)
2di

∈ R corresponds to the sum of
those off-diagonal elements at the (2i− 1)th or (2i)th row of the
matrix (0.5diag{d−1

i } ⊗ I2)Dff . Using the structural properties in
Lemma 3, one has

0 <

∑
j1,m1

β	isjsms
1

2di
<

di
2di

= 0.5

0 <

∑
j1,m1

(|β	isjsms
2 |+ |β	isjsms

3 |)
2di

<
2
√
2di

2di
=

√
2 (22)

where the usage of 2
√
2di is because if j1 ∈ Vf and m1 ∈ Vf , then

Dff ’s off-diagonal blocks of the (2i− 1)th to (2i)th rows include
both (A	ij1m1

i )�A	ij1m1
j1

and (A	ij1m1
i )�A	ij1m1

m1
, which can be

seen from (8). Substituting (22) into (21) yields

λmax

(
0.5diag{d−1

i } ⊗ I2Dff

)
< 0.5 +

√
2 < 2. (23)

Combining (20) and (23), one has that all the eigenvalues of I2nf
−

(0.5diag{d−1
i } ⊗ I2)Dff lie within the unit disk, which implies the

global and exponential convergence of (19). �
Remark 5: Compared with continuous localization [8], [14], discrete

localization algorithms have less communication burden. Compared
with bearing-based localization [5], [15], [25], the angle-based local-
ization algorithm (18) does not need to estimate/know the orientations
of the sensor nodes’ coordinate frames. Compared with our discrete
localization law in [7], (18) is fully distributed since it does not require
the global information (6) related to h that needs to satisfy.

V. SIMULATIONS

In this section, we conduct simulations on a network with 20 sensor
nodes to demonstrate the node localizability checking algorithm, the
localizability improvement algorithm, and the fully distributed local-
ization algorithm.
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Fig. 3. Network A with 17 free nodes and three anchor nodes.

Fig. 4. Evolution of error ‖Zi−1 [k]− D̄−1
ff

‖, i = 1, . . ., 17.

A. Node Localizability Checking Algorithm

As shown in Fig. 3, we randomly produce a sensor
network A with 17 free nodes labeled from 1 to 17, three
anchor nodes labeled from 18 to 20, and 12 triangles Ā =
(20, 18, 11), (11, 15, 13), (1, 5, 11), (1, 13, 16), (5, 12, 7), (2, 7, 8),
(6, 7, 8), (3, 4, 6), (3, 6, 17), (8, 10, 14), (8, 10, 19), (8, 19, 9). It is
obvious that only node 11 is localizable.

First, we employ Theorem 1 to check the node localizabil-
ity. By using the information of those angles defined in Ā, one
has λi(Dff ) = 0 ∀i = 1, . . ., 10, and λj(Dff ) > 0 ∀j = 11, . . ., 34.
Also, by numerical computations, the kernel of Dff consists of
ten eigenvectors. The 21st row and 22nd row of these ten eigen-
vectors are 10−16 ∗ [8, 2, 6,−6,−1,−1, 6, 2,−9,−6] and 10−16 ∗
[2, 6, 1,−4,−2, 9, 2,−9, 8,−1], respectively. Since there are no other
zero rows in these ten eigenvectors, this kernel information validates
that node 11 is localizable, and the other free nodes are unlocalizable.

Then, we execute the algorithm (15) to check the node localiz-
ability in a distributed manner. Fig. 4 shows the evolution of er-
ror ‖Zi−1

[k]− D̄−1
ff‖, i = 1, . . ., 17. From Fig. 4, the convergence is

reached after around 300 iteration steps. After this convergence, each
node has the knowledge of D̄−1

ff , from which each free node has the
knowledge of all the eigenvalues and eigenvectors of Dff by (17) and,
thus, can determine its node localizability in the network A.

B. Localizability Improvement Algorithm

We add triangular angle measurements into network A such that
all the free nodes become localizable. By using the localizability

Fig. 5. Position estimation error under (18).

improvement algorithm in Section III-D, the following iteration steps
can be executed.
Step 1: Node 5 finds a path5 → 11 → 18, and adds triangle (5,11,18),

after which nodes 1 and 5 become localizable.
Step 2: Node 13 finds a path 13 → 11 → 1, and adds triangle

(1,11,13), after which nodes 13, 15, and 16 become local-
izable.

Step 3: Node 8 finds a path 8 → 7 → 5. To efficiently conduct
the angle-addition operation, we consider a larger network
A′

19−5 with vertices {19, 9, 10, 14, 8, 7, 6, 2, 5, 12} and tri-
angles (5,12,7), (2,7,8), (6,7,8), (8,10,14), (8,19,9), (8,10,19).
Obviously, there are only one localizable node and one anchor
node in A19−5. Thus, A′

19−5 is localizable if and only if it is
triangularly angle rigid, which holds if and only ifA′

19−5 spans
an L-trigraph. Based on this, one can add triangles (5,6,7),
(2,8,14) into A′

19−5, after which all the vertices in A′
19−5

become localizable.
Step 4: Node 4 finds a path 4 → 6 → 8, and adds triangle (4,6,8),

after which nodes 3, 4, and 17 become localizable.
To sum up, by adding five triangles into A in the above four steps,

all the free nodes and the entire network become localizable, which is
verified by using Lemma 1.

C. Distributed Localization Algorithm

After all the nodes are localizable, we execute the localization
algorithm (18) for the obtained new network in Section V-B. The
localization error is shown in Fig. 5, which converges to zero after
around 4500 iteration steps.

VI. CONCLUSION

This article proposed angle-based distributed algorithms to check
node localizability and achieve localization. First, an algebraic con-
dition was proposed to check node localizability, based on which a
distributed node localizability checking algorithm was proposed. Then,
to make those unlocalizable nodes localizable, we proposed a strategy
to add triangular angle measurements for those unlocalizable nodes.
Finally, a fully distributed localization algorithm was proposed, which
does not rely on any globally graphic information. As future work, it
is interesting to study distributed node localizability for other types
of sensor networks, such as bearing-based and distance-based sensor
networks.
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