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Angle-Constrained Formation Maneuvering
of Unmanned Aerial Vehicles
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Abstract— In a global positioning system (GPS)-denied envi-

ronment, unmanned aerial vehicles (UAVs) rely on local
sensing-based formation maneuvering approaches for collec-
tive motion. To improve mission efficiency by reducing the
total sensing requirements on all UAVs, this article proposes
a leader–follower formation maneuvering framework with two
leaders, where the followers will track the two leaders and
maintain a desired angle-constrained formation with respect to
the leaders using direction-only measurements, i.e., removing
the need for inter-UAV distance measurements for the followers.
To enable the UAV formation to maneuver in translation, rota-
tion, and scaling simultaneously, the desired formation shape is
specified by a set of interior angle constraints. By assigning each
UAV’s yaw angle and position as the four controllable variables,
an estimation-based attitude control algorithm is designed. For
the UAVs’ position control, the designed formation maneuvering
algorithm consists of a velocity tracking part and a formation
shape control part that enables the first leader UAV to control the
translational maneuvering, the second leader UAV to control the
rotational and scaling maneuvering, and all the follower UAVs
to maintain the formation shape. Simulations and experiments
on UAVs’ formation maneuvering are conducted to illustrate the
effectiveness of the proposed approach.

Index Terms— Angle constraints, direction measurements,
formation maneuvering of unmanned aerial vehicles (UAVs),
leader–follower framework.

I. INTRODUCTION

Instead of using a single unmanned aerial vehicle (UAV),
a formation of multiple UAVs is preferred in the execution of
various aerial missions [1], such as search and rescue [2] and
surveillance and reconnaissance [3]. In most of these missions,
UAVs are required to not only form a desired geometric shape
but also simultaneously maneuver collectively as a group [4].
According to the sensing information available in UAVs, the
measurements used for formation maneuvering can be mainly
classified into three categories, namely, absolute positions,
relative positions, and directions/bearings [3], [5], [6], [7], [8].

By providing a module of global positioning system (GPS)
for each UAV, the formation maneuvering approach relying
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on absolute position measurements can be implemented as
in [9]. To enable the formation to work in a GPS-denied
environment such as an indoor room, a cave, or forest, the local
sensing-based formation maneuvering approaches have been
extensively studied recently in [10], [11], and [12]. Among
these approaches, the formation maneuvering approach using
relative position measurements has been extensively studied
since an inter-UAV relative position has a linear property
with respect to UAVs’ positions [11], [12], [13], [14]. Mean-
while, the relative position measurements can be directly
acquired by installing each UAV with a bulky stereo camera
or a light monocular camera with direction measurement and
distance approximation [11], [12], [14]. However, such an
approximation, which uses the neighboring UAVs’ physical
dimensions to estimate the inter-UAV distances, is less precise
compared to the measured direction information [13], [15],
[16], [17]. Although the relative position information can also
be indirectly estimated from the measurements of inter-UAV
distances and each UAV’s self-displacements [18], the com-
munication requirements will be significantly increased in
such a case. To increase the system’s resilience and improve
mission efficiency by reducing the total sensing requirements
on all UAVs, the UAV formation maneuvering approach based
on pure inter-UAV direction measurements [13], [19], [20]
has been proposed. When only the direction measurements
are available, UAVs’ formation shape can be specified by
inter-UAV directions or triple-UAV angles between neighbor-
ing direction vectors. However, a direction or angle constraint
is inherently nonlinear with respect to the UAV’s position
[8], [20], [21]. Therefore, the construction of a uniquely
determined direction- or angle-constrained formation needs to
be governed by the theory of bearing rigidity [19], [20], [22]
or angle rigidity [8], [16], [21], which has been developed
recently. Second, an inter-UAV direction will vary under the
UAVs’ rotational maneuvering [7], [19], due to which the rota-
tional maneuvering of direction-constrained formations may
not be straightforward. Although the angle among three UAVs
is invariant under the translational, rotational, and scaling
maneuvering, the angle-constrained formation maneuvering
algorithms have been studied only for the 2-D case [6], [23].
As the extension to the 3-D scenario is not straightforward, the
angle-constrained formation maneuvering using direction-only
measurements in 3-D space is worthy of detailed investigation.

Motivated by the aforementioned challenges, this article
aims to achieve 3-D angle-constrained formation maneu-
vering for quadrotor UAVs using direction measurements.
The desired formation among the UAVs is constrained by
a set of interior angles under a leader–follower frame-
work. First, the formation maneuvering is achieved for
quadrotor UAVs in 3-D whose dynamic model is more
challenging than the linear integrator models in 2-D [6],
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Fig. 1. Inertial frame and UAV i’s body frame.

[21], [23]. Compared to the existing formation maneuver-
ing approaches using absolute position or relative posi-
tion measurements [7], [10], [13], [24], [25], our proposed
approach has less requirements on sensor measurements
since all follower UAVs only need direction measurements.
Second, rigorous stability analysis for the angle-constrained
formation maneuvering has been provided to supplement
the simulation and experiment demonstration. Finally, com-
pared to the other formation maneuvering approaches where
the formation shape is specified by distances or directions
[5], [7], full formation maneuvering involving translation,
rotation, and scaling is achieved using our proposed angle-
constrained formation maneuvering approach.

The rest of this article is organized as follows. Section II
introduces the preliminaries and problem formulation.
Section III discusses the partial attitude synchronization for
quadrotor UAVs. The formation maneuvering algorithm and
its stability analysis are given in Section IV. Some further
discussions have been given in Section V. Simulation and
experiment results are provided in Sections VI and VII,
respectively.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Attitude and Position Dynamics of Quadrotor UAVs

We consider a 3-D formation consisting of N > 3 quadrotor
UAVs that are labeled from 1 to N . Since each UAV flies in a
3-D space and its attitude dynamics and position dynamics are
coupled, we first establish the attitude and position dynamics
by taking the i th quadrotor UAV as an example. As shown
in Fig. 1, we define OI − X I YI Z I as the Earth-fixed inertial
coordinate frame, O i

B as the mass center of the i th quadrotor
UAV, and O i

B − X i
BY i

B Z i
B as the body-fixed coordinate frame

of the i th quadrotor UAV, where X i
B and Y i

B axes point toward
two adjacent rotors of the UAV and Z i

B follows the right-hand
rule. Then, we define pi ∈ R3 as the position of O i

B in the
inertial frame and 2i = [φi , θi , ψi ]

T as the i th UAV’s attitude
described by Euler angles with respect to OI−X I YI Z I , where
φi ∈ [0, 2π), θi ∈ [0, 2π), and ψi ∈ [0, 2π) are the roll
angle, pitch angle, and yaw angle, respectively. Suppose that
the rotation matrix Ri (2i ) describes the rotation from OI −

X I YI Z I to O i
B−X i

BY i
B Z i

B . The position and attitude dynamics
of the i th, 1 ≤ i ≤ N , quadrotor UAV can be described as [26]

mi p̈i + mi gzG = ui (1)
Ji (2i ) 2̈i + Ci

(
2i , 2̇i

)
2̇i = τi (2)

where mi ∈ R+ is the UAV i’s mass, g ∈ R is the gravitational
acceleration constant, zG = [0, 0, 1]T, ui ∈ R3×1 is the
applied translational control force, τi ∈ R3×1 is the applied
rotational control torque, and Ji (2i ) ∈ R3×3 is the rotational
inertia matrix of the i th UAV. The gyroscope and centrifugal
terms Ci (2i , 2̇i ) ∈ R3×3 can be described as

Ci
(
2i , 2̇i

)
= J̇ i (2i )−

1
2

∂
(
2̇

T
i Ji (2i )

)
∂2i

(3)

where the detailed description of Ci (2i , 2̇i ) can be found
in [27] and [26]. According to [26], the attitude dynamics (2)
satisfy the following three properties.

Property 1: The inertia matrix Ji (2i ) is symmetric and
positive definite, i.e.,

Ji (2i ) = J⊤i (2i ) > 0. (4)

Property 2: The skew-symmetric property

εT ( J̇i (2i )− 2Ci
(
2i , 2̇i

))
ε = 0 ∀ε ∈ R3. (5)

Property 3: The parameter linearization property

Ji (2i ) x+Ci
(
2i , 2̇i

)
y=Yi

(
2i , 2̇i , x, y

)
ϑi ∀x, y ∈ R3

(6)

where Yi (2i , 2̇i , x, y) ∈ R3×3 is a regression matrix, ϑi =

[I11, I22, I33]
⊤
∈ R3, and I11, I22, and I33 are the inertia of

the i th UAV along its X i
B-, Y i

B-, and Z i
B-axes, respectively.

Although the dynamics (1)–(2) have six degrees of freedom
(DoFs), namely, attitude with three DoFs and position with
three DoFs, a quadrotor UAV is an underactuated system since
it only has four independent and controllable rotors. Therefore,
only four states are fully controllable, which in this quadrotor’s
case are the yaw angle and the position with three DoFs. As
employed in [26] and [13], an underactuated quadrotor UAV
can be controlled in a cascading control architecture, in which
the four rotors’ speed is uniquely determined by τi and ∥ui∥.
More details about the cascading control for quadrotor UAVs
can be found in [26] and [13].

B. Sensor Measurements and Construction of UAVs’ Desired
Angle-Constrained Formation

For the attitude control, we consider that each UAV is
equipped with an inertial measurement unit (IMU) to measure
its own attitude angles and angular velocities with respect
to the inertial coordinate frame, and wireless channels to
communicate the attitude angles and angular velocities with
its neighbors. For the position control, we assume that the
first leader UAV is autonomous or controlled manually by
an intelligent programmer such that it can navigate through
the environment and guide the whole formation. As shown in
Fig. 2, the second leader UAV has relative position measure-
ment p2 − p1 with respect to the first leader UAV such that
the scale of the formation can be controlled. Each follower
UAV j, j = 3, . . . , N , is only able to measure the direction
b jk = (pk − p j/∥pk − p j∥), k ∈ N j , which is a unit
vector, where N j represents the neighbor set of UAV j . All
UAVs have velocity measurements from their onboard IMUs,
which is necessary for the control of a second-order dynamical
system (1) [28].
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Fig. 2. Formation maneuvering structure and senor measurement topology.
The red and blue arrows represent the relative position and direction mea-
surements, respectively.

Since the UAVs’ rotational maneuvering will change the
inter-UAV directions, we choose interior angle constraints to
describe the desired formation such that the full maneuvering
of translation, rotation, and scaling can be achieved. When
direction measurements bi j , bik are available, the angle α j ik ∈

[0, π] that is intersected by bi j and bik can be calculated by

α j ik = arccos
(

b⊤i j bik

)
= arccos

((
p j − pi

)⊤
(pk − pi )

∥p j − pi∥∥pk − pi∥

)
.

(7)

To ensure the desired angle-constrained formation shape to be
uniquely determined, inspired by the construction of 2-D angle
rigid formations [23], we construct the 3-D formation by a set
of sequential angle constraints A∗, which is defined as

A∗ =

α∗123, α
∗

231︸ ︷︷ ︸
first triangle

, α∗423, α
∗

421, α
∗

142︸ ︷︷ ︸
adding UAV 4

, , . . . ,

× α∗i j2 j3 , α
∗

i j2 j1 , α
∗

j1i j2︸ ︷︷ ︸
adding UAV i

, . . . , α∗Nk2k3
, α∗Nk2k1

, α∗k1 Nk2︸ ︷︷ ︸
adding UAV N


where α∗j ik ∈ (0, π) and { j, k} ∈ Ni , ∀α

∗

j ik ∈ A∗. The
following steps will explain how the angle constraints in A∗
guarantee a uniquely determined formation shape [23], [29].

Step 1: Construct the first triangular shape by {α∗123, α
∗

231}

for the first three UAVs.
Step 2: Add the fourth UAV by {α∗423, α

∗

421, α
∗

142}. Since
the first three UAVs’ formation is uniquely determined after
Step 1, we only need to check whether UAV 4’s position
can be fixed under the angle constrains {α∗423, α

∗

421, α
∗

142}.
According to [23] and [29], each of the angle constraints
{α∗423, α

∗

421} allows UAV 4 to lie in a cone (see Fig. 3),
while α∗142 enforces UAV 4 to lie in an arc ball, which is
constructed by rotating the arc 1̂42 along the line segment
12 with 360 degrees (see Fig. 4). By combining Figs. 3 and
Fig. 4, one has Fig. 5, which shows that UAV 4 only has two
possible locations, 4 and 4′′′ (reflected with respect to plane
123) satisfying these three angle constraints {α∗423, α

∗

421, α
∗

142}.
Since these two reflected points 4 and 4′′′ are nonadjacent,

Fig. 3. Two rays intersected by two cones.

Fig. 4. Arc ball obtained by rotating the arc 1̂42 along 12.

Fig. 5. Intersection of the two rays and the arc ball.

Fig. 6. Overall construction steps.

the tetrahedron formation under {α∗123, α
∗

231, α
∗

423, α
∗

421, α
∗

142}

is locally uniquely determined.1

Step i − 2: Adding the i th UAV by
{α∗i j2 j3 , α

∗

i j2 j1 , α
∗

j1i j2}, j1, j2, j3 ∈ Ni , j1, j2, j3 < i .
Step N − 2: Adding the N th UAV by
{α∗Nk2k3

, α∗Nk2k1
, α∗k1 Nk2

}, k1, k2, k3 ∈ NN , 1 ≤ k1, k2, k3 < N .
Since the first triangular shape is unique and each of the
remaining steps from 2 to N − 2 will add one new UAV with
uniquely determined position, the overall formation shape as
shown in Fig. 6 is locally uniquely determined.

After the above N − 2 steps, the desired formation is
uniquely determined by the given angle constraints in A∗.
For more details about this construction, we refer the readers
to [29].

C. Problem Formulation
By assuming that UAVs 1 and 2 are the two leader UAVs

and the other UAVs are follower UAVs, the goal of this article
is to design the control force ui , i = 2, . . . , N for position
dynamics (1) and control torque τi for attitude dynamics (2)
such that the UAVs simultaneously achieve the two subtasks:

1Locally unique determination here refers to that there are two nonneigh-
boring locations for UAV 4 under the given three angle constraints.
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1) partial attitude synchronization and 2) formation maneuver-
ing, which consists of maintaining a desired formation shape
described by the interior angle constrains in A∗, achieving a
desired relative position from UAV 2 to UAV 1, and tracking
the leader UAV 1’s velocity. We describe these two control
objectives more specifically as follows.

1) Partial Attitude Synchronization: Since each UAV is
underactuated and only the yaw angle is controllable in the
attitude dynamics, the aim is to design τi such that all
the follower UAVs’ yaw angles and UAV 2’s yaw angle
synchronize with UAV 1’s yaw angle, i.e.,

lim
t→∞

(ψi (t)− ψ1 (t)) = 0 ∀i = 2, . . . , N . (8)

2) Formation Maneuvering: The formation maneuvering
task consists of two subtasks as follows.

a) Formation Shape Control: Suppose that δ12 ∈ R3×1

is the desired relative position of UAV 2 with respect to UAV
1, which describes the desired orientation and scale of the
formation. Since the desired formation is described by δ12 and
A∗, the formation shape control part requires that

lim
t→∞

(p2 (t)− p1 (t)− δ12) = 0 (9)

lim
t→∞

(
α j ik (t)− α∗j ik

)
= 0 ∀α∗j ik ∈ A

∗ (10)

where α j ik(t) = arccos(b⊤i j bik) and α∗j ik is the desired angle
formed among UAVs j, i, and k.

b) Velocity Tracking: The velocity tracking part requires
the follower UAVs and UAV 2 to track the UAV 1’s velocity,
i.e.,

lim
t→∞

( ṗi (t)− ṗ1 (t)) = 0 ∀i = 2, . . . , N . (11)

Note that the formation rotational and scaling maneuvering
can be achieved by adjusting the value of δ12 piecewise
constantly [23], under which (8), (10), and (11) keep the same.

In the following, we design τi , ui , i = 2, . . . , N , to achieve
(8)-(11) simultaneously. The following two assumptions are
needed for the follow-up control design and analysis.

Assumption 1: The first leader UAV’s yaw angular velocity,
acceleration and jerk, and translational velocity and accelera-
tion are bounded.

Assumption 2: The communication topology characterizing
the attitude information interaction among the followers is
connected and at least one follower UAV is a neighbor of the
first leader. According to the neighboring rule and the defined
angle set A∗, the sensing topology describing the direction
measurements is directed because if α∗j ik ∈ A

∗, then we only
require UAV i to be able to measure the directions bi j , bik
such that α j ik can be controlled, and there is no requirement
on the sensing of other inter-UAV directions.

III. PARTIAL ATTITUDE SYNCHRONIZATION

In this section, we aim at achieving (8) under the condition
that UAVs can communicate with each other via a distributed
network. Based on the well-known consensus algorithm,
we first discuss the design of estimators for yaw angle, yaw
angular velocity, and yaw angular acceleration, and subse-
quently use them to achieve partial attitude synchronization.
Indeed, the consensus algorithms are well-known and are not
the main focus of this article , but we briefly introduce them

here for the completeness of the control framework of the
UAVs.

A. Estimator Design for UAVs’ Yaw Angles
Suppose that the first leader UAV’s yaw angle ψ1(t) is

time-varying and only a part of follower UAVs has the
knowledge of it. Therefore, to achieve (8) for all UAVs, each
UAV i, i = 2, . . . , N , needs to estimate ψ1(t), ψ̇1(t), and
ψ̈1(t), which can be realized by employing the well-known
distributed estimator [30, eq. (25)]

˙̂
ψi =

1∑N
j=2 ai j + ai1

 N∑
j=2

ai j ψ̇ j + ai1ψ̇1


−

1∑N
j=2 ai j + ai1

×

sigγ1

 N∑
j=2

ai j

(
ψ̂i − ψ̂ j

)
+ ai1

(
ψ̂i − ψ1

) (12)

where ψ̂i ∈ R represents UAV i’s estimate of ψ1,
sig(x)γ1 = [sgn(x1)|x1|

γ1 , . . . , sgn(xn)|xn|
γ1 ]
⊤ for any vector

x = [x1, . . . , xn]
⊤, 0 < γ1 < 1, sgn() represents the

signum function, and ai j = 1 if j is a neighbor of i in the
communication topology; otherwise, ai j = 0. Then, according
to [30, Th. 14], if the UAVs’ communication topology is a
tree graph with UAV 1 as the root node (this assumption
is used to avoid the numerical differentiation mentioned in
[30, Remark 15]), then ∃T1 > 0 such that ∀t ≥ T1,
ψ̂i (t) = ψ1(t). Similarly, one can also design ˙̂ψvi (t) and
˙̂
ψai (t) such that ∃T2 > 0 and ∃T3 > 0, ψ̂vi (t) = ψ̇1(t),∀t >
T2 and ψ̂ai (t) = ψ̈1(t),∀t > T3. Therefore, ψi (t) − ψ̂i (t),
ψ̇i (t) − ψ̂vi (t), and ψ̈i (t) − ψ̂ai (t) converge to zero within
max{T1, T2, T3}. Since sig(x)γ1 is a continuous function [31],
the estimation law (12) is continuous. However, according to
(12), the estimators ˙̂ψvi and ˙̂ψai will need the information
ψ̈1(t) and

...
ψ1(t), respectively, which can be obtained from

gyroscope embedded in IMUs with some auxiliary sensors
and filtering techniques [32]. In case the measurements ψ̈1,

...
ψ1

are unavailable, one alternative solution is to employ sliding-
mode estimators, which may induce the chattering effect due
to the usage of sgn() function. The other alternative solution is
by replacing the estimators’ required information ψ1, ψ̇1, ψ̈1,

and
...
ψ1 with ψd

1 , ψ̇
d
1 , ψ̈

d
1 , and

...
ψd

1 , respectively, where ψd
1

represents the desired yaw angle of the first UAV. This is
because in most practical cases, the guiding UAV will be
assigned to track a low-order polynomial-specified trajectory
and yaw angle that are provided by a high-level motion
planning algorithm, under which ψd

1 , ψ̇
d
1 , ψ̈

d
1 , and

...
ψd

1 are
explicitly available. Moreover, in many practical tasks, the
UAVs are required to maintain a constant yaw angle, under
which ψ̇d

1 , ψ̈
d
1 , and

...
ψd

1 are all zero.
Remark 1: Achieving partial synchronization (8) under a

distributed communication network is a typical consensus
problem, in which many interesting issues can be con-
sidered. For example, to reduce the communication fre-
quency, an event-triggered communication mechanism can
be employed for the communication among the UAVs [33].
To improve the resilience of the estimators against external
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wireless attacks, a resilient updating law can be employed for
the estimation [34]. It is worth mentioning that due to the
typical form of the estimation law (12), these interesting issues
specialized to the distributed consensus can be considered for
(12) by following a similar design and analysis procedure.

B. Partial Attitude Synchronization Algorithm Design

Different from ψi (t), the desired roll angle φd
i (t) and the

pitch angle θd
i (t) are determined by the control force ui and

ψd
i (t), where ui will be designed later and the desired yaw

angle ψd
i (t) = ψ̂i (t) in this case. According to [26] and [35],

the other two attitude angles’ desired values can be calculated
by

φd
i (t)= arcsin

(
Uia1 (t) sin

(
ψd

i (t)
)
−Uia2 (t) cos

(
ψd

i (t)
)

∥Uia (t) ∥

)

θd
i (t)= arctan

(
Uia1 (t) cos

(
ψd

i (t)
)
+Uia2 (t) sin

(
ψd

i (t)
)

Uia3 (t)

)
(13)

where Uia(t) = [Uia1(t),Uia2(t),Uia3(t)]⊤ = ui (t)/mi is
calculated from the control input ui (t). Then, the overall
desired attitude of UAV i can be determined by 2d

i (t) =
[φd

i (t), θ
d
i (t), ψ

d
i (t)]

⊤. To achieve 2i (t) → 2d
i (t), based

on [36] and [37], we design the partial attitude synchronization
algorithm as

τi (t)
=−kd

(
2̇i (t)−q̇ri (t)

)
+Yi

(
2i (t) , 2̇i (t) , q̈ri (t) , q̇ri (t)

)
ϑi ,

q̇ri (t)= 2̇d
i (t)−

(
2i (t)−2d

i (t)
)
, i = 2, . . . , N (14)

where 2d
i (t) = [φ

d
i (t), θ

d
i (t), ψ

d
i (t)]

⊤ is the UAV i’s desired
attitude and kd is a positive scalar. Following the stability
analysis for Euler–Lagrange systems [36], [37] with the three
properties introduced in (4)–(6) and the input-to-state stability
(ISS) theorem [38, Lemma 4.6], the partial attitude synchro-
nization objective (8) is achieved, i.e., ψi (t) − ψ1(t),∀i =
2, . . . , N , converge to zero asymptotically under the attitude
control law (14). More details about quadrotor UAVs’ attitude
control can be found in, e.g., [26] and [35]. According to (13)
and (14), UAVs’ attitude control is related to their position
control, and the reverse does not hold, which is the main idea
of cascading control.

IV. FORMATION MANEUVERING

In this section, we aim to achieve formation maneuvering
task (9)–(11) simultaneously. Note that in (11), the first
leader UAV’s translational velocity ṗ1(t) is time-varying and
unknown for the follower UAVs. Therefore, to achieve (11),
it is necessary to first design the distributed velocity and
acceleration estimators for the second UAV and the follower
UAVs such that they know the desired translational velocity
and acceleration. Based on (12), one can use similar estimators
for UAV i, i = 2, . . . , N , to obtain the desired translational
velocity and acceleration. The acceleration ...p1 can be obtained
from accelerometers combined with some auxiliary filtering.
Also, by replacing p̈1 and ...p1 with p̈d

1 and ...pd
1 , respectively,

in these two estimators, the measurements of p̈1 and ...p1 are
avoided.

With the knowledge of the desired translational velocity
ṗ1(t) and acceleration p̈1(t), we then investigate how to
achieve the formation maneuvering. According to the angle
set A∗ and (9), UAVs 2 and 3 would have a different control
objective than the remaining UAVs. Therefore, we investigate
the formation maneuvering control design for UAVs 2 and 3
and for the remaining UAVs separately.

A. Formation Maneuvering of the First Three UAVs
Under Assumption 1, we design the formation maneuvering

algorithms for UAV 2 and UAV 3 as follows:

u2 (t) = m2
[
â2 (t)− kv

(
ṗ2 (t)− v̂2 (t)

)
− kp (p2 (t)− p1 (t)− δ12)− gzG

]
(15)

u3 (t) = m3
[
â3 (t)− kv

(
ṗ3 (t)− v̂3 (t)

)
+
(
α123 (t)− α∗123

)
× b31 (t)−

(
α231 (t)− α∗231

)
b32 (t)− gzG

]
(16)

where kv and kp are positive scalars and v̂i (t), âi (t), i =
2, 3, . . . , N , are the estimation of ṗ1(t) and p̈1(t), respectively.
Then, ∃T4 > 0, T5 > 0 such that v̂i (t) = ṗ1(t),∀t > T4, and
âi (t) = p̈1(t),∀t > T5. Note that the control law (16) requires
the communication of α123(t) from UAV 2 to UAV 3. Now,
we have the results about the formation maneuvering of the
first three UAVs.

Theorem 1: Under the formation maneuvering control algo-
rithms (15) and (16) for UAVs 2 and 3, the formation maneu-
vering objectives (9)–(11) for the first three UAVs are locally
achieved.2

Proof: According to Section IV-A, one has that v̂i (t) =
ṗ1(t) and âi (t) = p̈1(t),∀t > max{T4, T5}. Following
[39, Th. 3.3] and [31, Th. 2], one can similarly obtain that the
system states pi and ṗi , i = 1, 2, 3, are bounded within t ≤
max{T4, T5}. Therefore, we only need to analyze the system
stability for t > max{T4, T5}, under which v̂i (t) and âi (t)
can be replaced by ṗ1(t) and p̈1(t), respectively. By defining
the error variables ṽi (t) = ṗi (t) − ṗ1(t), i = 2, 3, p̃12(t) =
p2(t) − p1(t) − δ12, e123(t) = α123(t) − α∗123, and e132(t) =
α132(t) − α∗132, the aim of (9)–(11) is to prove that these
error variables converge to zero asymptotically. Toward this
end, we first proceed to obtain their dynamics, which can be
calculated by

˙̃v2 = p̈2 (t)− p̈1 (t) = −kv ṽ2 − kp p̃12 (17)
˙̃v3 = p̈3 (t)− p̈1 (t) = −kv ṽ3 − e231b32 + e123b31. (18)
˙̃p12 = ṗ2 − ṗ1 = ṽ2. (19)

To obtain the dynamics of angle errors, we first use the fact

d
(
cosα j ik

)
dt

= −
(
sinα j ik

)
α̇ j ik =

d
(

bT
i j bik

)
dt

= ḃT
i j bik

+bT
i j ḃik =

[
Pbi j

li j

(
ṗ j − ṗi

)]T

bik + bT
i j

[
Pbik

lik
( ṗk − ṗi )

]
(20)

2Corresponding to the local stability of the closed-loop dynamics, i.e., the
initial formation is close to the desired formation. Note that local stability has
nothing related to the local determination introduced in Section II-B.
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where li j = ∥p j − pi∥ and Pbi j = (I3 − bi j bT
i j ) ∈ R3×3 is

the orthogonal projection matrix of direction vector bi j , and
we first assume li j (t) ̸= 0, lik(t) ̸= 0, which will be analyzed
later. Then, it follows:

ė123 = −

[
Pb23 ( ṗ3 − ṗ2)

]T
l23 sinα123

b21 − bT
23

Pb21

l21 sinα123
( ṗ1 − ṗ2)

= N123ṽ3 − (N123 + N321) ṽ2 (21)

where N j ik = −(bT
i j Pbik/ lik sinα j ik) ∈ R1×3 and we have

used the fact that ṗi − ṗ j = ṽi − ṽ j . Similarly, one also has

ė231 = −

[
Pb32 ( ṗ2 − ṗ3)

]T
l32 sinα231

b31 − bT
32

Pb31

l31 sinα231
( ṗ1 − ṗ3)

= N132ṽ2 − (N132 + N231) ṽ3. (22)

Summarizing (17)–(22), the compact form of the closed-loop
error dynamics is

ė f =

[
−kv I6 B1

(
e f
)

C1
(
e f
)

0

]
e f = A1

(
e f
)

e f (23)

where e f = [ṽ
⊤

2 , ṽ
⊤

3 , p̃⊤12, e123, e231]
⊤
∈ R11, B1(e f ) =

[
−kp I3 0 0

0 b31 −b32
], and C1(e f ) =

[
I3 0

−(N123+N321) N123
N132 −(N132+N231)

]
.

Since A1(e f ) ∈ R11×11 is state-dependent and (23) is a highly
nonlinear system, we use the linearization technique to analyze
its local stability around the desired equilibrium e f = 0.
Linearizing (23) around e f = 0, one has

ė f =

(
∂
(

A1
(
e f
)

e f
)

∂e f
|e f=0

)
e f =

(
A1
(
e f
)
|e f=0

)
e f

=

[
−kd I6 B∗1

C∗1 0

]
e f = A∗1e f (24)

where B∗1 = B1(e f )|e f=0,C∗1 = C1(e f )|e f=0, and A∗1 =
A1(e f )|e f=0 are constant matrices, and we have used the fact
((∂x/∂e f (i))e f (i))|e f=0 = 0, x is an arbitrary element of
A1(e f ), and i = 1, . . . , 11. Therefore, the stability of (24)
depends on the distribution of the eigenvalues of the matrix A∗1.
According to the Schur complement theorem, the characteristic
polynomial of A∗1 can be written by

|λI14 − A∗1| = (λ+ kv)6 det
[
λI5 −

C∗1 B∗1
λ+ kv

]
= (λ+ kv) det

[
λ (λ+ kv) I5 − C∗1 B∗1

]
(25)

which implies that A∗1 always has one stable eigenvalue
−kv , and the remaining ten eigenvalues are the solutions of
det[λ(λ+ kv)I5 − C∗1 B∗1 ] = 0. Therefore, we calculate

C∗1 B∗1 =

 −kp I3 0 0
kp
(
N∗123 + N∗321

)
N∗123b∗31 0

−kp N∗132 −N∗132b∗31 N∗231b∗32

 (26)

where b∗i j = bi j |e f=0 denotes the desired direction in
the desired formation and N∗i jk = Ni jk |e f=0 and we
have used the fact that Ni jkb jk = 0,∀i ̸= j ̸= k.
According to the low triangular structure in (26), the
five eigenvalues of C∗1 B∗1 are −kp,−kp,−kp, N∗123b∗31 =

−(cosα∗213+cosα∗123 cosα∗132/ l∗23 sinα∗123) = −(sinα∗132/ l∗23),

and N∗231b∗32 = −(sinα∗132/ l∗31), which are all negative There-
fore, it follows that:

det
[
λ (λ+ kv) I5 − C∗1 B∗1

]
=

∣∣∣∣∣∣∣∣
(
λ2
+kvλ+kp

)
I3 0 0

kp(N∗123+N∗321) λ2
+kvλ+

sinα∗132
l∗23

0

−kp N∗132 −N∗132b∗31 λ2
+kvλ+

sinα∗132
l∗31

∣∣∣∣∣∣∣∣
=

[
λ2
+ kvλ+ kp

]3
[
λ2
+ kvλ+

sinα∗132
l∗23

]
×

[
λ2
+ kvλ+

sinα∗132
l∗31

]
. (27)

Since kv > 0 and kp > 0, (27) implies that the ten eigenvalues
lying in det[λ(λ+ kv)I5 − C∗1 B∗1 ] = 0 have negative real
parts. According to (25), A∗1 is Hurwitz and has 11 stable
eigenvalues, which implies that (24) is exponentially stable
and (23) is locally exponentially stable. Note that the analysis
(21)–(27) relies on the assumption that there is no collision
among neighboring UAVs. Since no collision occurs in the
initial formation, there always exists a scalar T6 > 0 such
that no collision occurs within [0, T6), in which the analysis
(21)–(27) is valid. Following [6, Proposition 1], one can extend
T6 to infinity such that the analysis (21)–(27) is valid for
t ∈ [0,∞). Therefore, the objectives (9)–(11) are locally
achieved.
Note that the closed-loop dynamics (23) is well-defined
when no collision and collinearity occur among the first
three UAVs over the whole maneuvering process. Since the
UAVs initially have different locations, there always exists
a time interval in which the stability analysis from (24) to
(27) is valid. Now, we discuss the extension of this time
interval to infinity. Since A∗1 is Hurwitz, for any positive
definite Q1 ∈ R11×11, there always exists a positive definite
P1 ∈ R11×11 such that P1 A∗1 + A∗⊤1 P1 = −Q1. Then, we
design the Lyapunov function candidate V1(t) = e⊤f (t)P1e f (t)
whose time derivative is V̇1(t) = −e⊤f (t)Q1e f (t) ≤
−(λmin(Q1)/λmax(P1))V1(t), which implies that ∥e f (t)∥2 ≤
(V1(0)/λmin(P1))e−(λmin(Q1)/λmax(P1))t is exponentially stable.
Following the analysis in [23], if ∥p3(0) − p1(0)∥ >

2(λmax(P1)/λmin(Q1))((V1(0)/λmin(P1)))
1/2, then no colli-

sion will occur among UAVs 1 and 3. Also, if (V1(0))1/2 <
(λmin(P1))

1/2
∗min{π − α∗123, α

∗

123}, then no collinearity will
occur among UAVs 1, 2, and 3. Therefore, one can choose suf-
ficiently large initial inter-UAV distances and sufficiently small
initial errors e f (0) such that no collision and collinearity will
occur. Indeed, if these are not properly chosen, the inter-UAV
collision is possible in angle-constrained formations due to
the absence of distance measurements in UAVs. Compared
with angle-constrained formation maneuvering in 2-D [23],
the dimension of state variable e f in (24) is larger than the
corresponding one in 2-D, for which their eigenvalue analysis
is different.

Remark 2: In (16), the two components (α123(t) −
α∗123)b31(t) and −(α231(t) − α∗231)b32(t) have different signs
in front of e123 and e231. This is because the moving direction
−→
31 of UAV 3 will decrease the angle α123, while the moving
direction

−→
32 of UAV 3 will increase the angle α231. Note that if

b31 or b32 in (16) is replaced by b31+b32 as investigated in 2-D
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[23, eq. (54)], then the closed-loop dynamics’ stability in the
first triangular formation will depend on additional inequalities
related to the desired formation.

Remark 3: Under the control law (15), the whole forma-
tion’s scale and orientation will be determined by ∥δ12∥ and
δ12/∥δ12∥, respectively. When the UAV formation needs to
maneuver through an environment containing obstacles, it is
necessary to adjust δ12 such that the collision between the
formation and obstacles can be avoided, see, e.g., [40, Sec. V].
To achieve obstacle avoidance, the two leader UAVs need to
use their environmental perception to determine δ12 such that
the desired rotational and scaling formation maneuvering can
be correspondingly conducted. Since the adjustment usually
is piecewise constant and the number of adjustments is finite,
the system convergence under the piecewise constant δ12(t)
can be guaranteed [23].

B. Formation Maneuvering of the Remaining UAVs
After the first three UAVs achieve the desired triangular for-

mation and maneuver with the same velocity, we now design
formation maneuvering algorithms for the remaining UAVs.
Instead of using bisector moving rule in 2-D [23], we design
the maneuvering algorithm for UAV i, i = 4, . . . , N , based on
a pursuing moving rule (i.e., the moving direction to reduce
an angle error is along the corresponding interagent direction)

ui = mi

[
âi − kv

(
ṗi − v̂i

)
− gzG −

(
α j1i j2 − α

∗

j1i j2

)
bi j2

+

(
αi j2 j1 − α

∗

i j2 j1

)
bi j1 +

(
αi j2 j3 − α

∗

i j2 j3

)
bi j3

]
(28)

where j1 < i, j2 < i, j3 < i, ji , j2, j3 ∈ Ni , âi is the
acceleration feedforward term, −kv( ṗi − v̂i ) is the velocity
tracking term, −(α j1i j2 − α

∗

j1i j2)bi j2 + (αi j2 j1 − α
∗

i j2 j1)bi j1 +

(αi j2 j3 − α
∗

i j2 j3)bi j3 is the formation shape control part such
that UAV i keeps a desired shape (described by α∗j1i j2 , α

∗

i j2 j1 ,

and α∗i j2 j3 ) with respect to UAVs j1, j2, and j3. As introduced
in Section II-B, the formation construction from UAV 4 to N
is a sequential form. Therefore, we first illustrate how UAV
4 can be added to the existing triangular formation and then
extend the case to UAVs 5 to N . The control law for UAV
4 can be written as

u4 = m4
[
â4 − kv

(
ṗ4 − v̂4

)
− gzG −

(
α142 − α

∗

142
)

b42

+
(
α421 − α

∗

421
)

b41 +
(
α423 − α

∗

423
)

b43
]

(29)

where the directions b41, b42, and b43 can be measured by
UAV 4’s monocular camera, and the angle information α421
and α423 can be obtained by the communication with UAV
2 because the two angles α421 = arccos(bT

24b21) and α423 =

arccos(bT
24b23) can be measured by UAV 2.

Theorem 2: For UAVs 2–4 whose position dynamics
are governed by (1), under the controllers (15), (16),
and (29), if the velocity feedback gain satisfies kv2 >

2 sinα∗142 sinα∗243/(l
∗

24(sinα∗142 + sinα∗243)), then the maneu-
vering control objectives (10) and (11) are locally achieved
for UAVs 2–4.

Proof: By defining the error variables ṽ4(t) =

ṗ4(t) − ṗ1(t), e41(t) = α142(t) − α∗142, e42(t) = α421(t) −

α∗421, e43(t) = α423(t) − α∗423, the aim is to prove that these
error variables converge to zero. Toward this end, we first need
to obtain their dynamics. Substituting (29) into (1) yields
˙̃v4 = p̈4 (t)− p̈1 (t) = −kv ṽ4 − e41b42 + e42b41 + e43b43. (30)

Using the fact (20), one also has the angle error dynamics

ė41 = α̇142 = N142ṽ2 − (N142 + N241) ṽ4 (31)
ė42 = α̇124 = N124ṽ4 − (N124 + N421) ṽ2 (32)
ė43 = α̇324 = N324ṽ4 − (N324 + N423) ṽ2 + N423ṽ3 (33)

where N j ik = −(bT
i j Pbik/ lik sinα j ik) ∈ R1×3. Writting (30)

and (31) into a compact form, one has UAV 4’s closed-loop
error dynamics

ė4 =
[
ė41 ė42 ė43 ˙̃v⊤4

]⊤
=

 0 0 0 −N142 − N241
0 0 0 N124
0 0 0 N324
−b42 b41 b43 −kv I3

 e4

+

 0 N142
−N124 − N421 0
−N324 − N423) N423

0 0

[ṽ2
ṽ3

]

=

[
0 C2

(
e f , e4

)
D2
(
e f , e4

)
−kv I3

]
e4 + Ḡ4

(
e f , e4

) [ṽ2
ṽ3

]
= B4

(
e f , e4

)
e4 + G4

(
e f , e4

)
e f (34)

where e4 ∈ R6×6, B4(e f , e4) ∈ R6×6, Ḡ4(e f , e4) ∈

R6×6,G4(e f , e4) =
[
Ḡ4(e f , e4), 06×5

]
∈ R6×11. Since

B4(e f , e4),G4(e f , e4) are state-dependent matrices, (34) is a
highly nonlinear system. In the following, we use the lineariza-
tion technique to analyze its local stability. Linearizing (34)
around the desired equilibrium {e f = 0, e4 = 0} yields

ė4 =

(
∂
(
B4
(
e f , e4

)
e4 + G4

(
e f , e4

)
e f
)

∂e4

∣∣∣
e f=0,e4=0

)
∗ e4

+

(
∂
(
B4
(
e f , e4

)
e4 + G4

(
e f , e4

)
e f
)

∂e f

∣∣∣
e f=0,e4=0

)
∗ e f

= B∗4 e4 + G∗4e f (35)

where B∗4 = B4(e f , e4)|e f=0,e4=0, and G∗4 =

G4(e f , e4)|e f=0,e4=0 are constant matrices. Since we already
have limt→∞ e f (t) = 0, in order to show limt→∞ e4(t) = 0,
we need to check the distribution of the 6 eigenvalues of B∗4 .
Toward this end, the characteristic polynomial of B∗4 can be
written as

|λI6 − B∗4 |

=

∣∣∣∣ λI3 −C∗2
−D∗2 (λ+ kv) I3

∣∣∣∣ = det
[
λ (λ+ kv) I3 − C∗2 D∗2

]

=

∣∣∣∣∣∣∣∣∣∣
λ (λ+ kv)+

sinα∗142
l∗14

−
sinα∗142

l∗42
d1

0 λ (λ+ kv)+ a1
b∗⊤21 Pb∗24

b∗43

l∗24 sinα∗421

0
b∗⊤23 Pb∗24

b∗41

l∗24 sinα∗423
λ (λ+ kv)+

sinα∗243
l∗24

∣∣∣∣∣∣∣∣∣∣
=

[
λ (λ+ kv)+

sinα∗142
l∗14

]
× [(λ (λ+ kv)+ a1) (λ (λ+ kv)+ b1)− c1] (36)
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where C∗2 = C2(e f , e4)|e f=0,e4=0, D∗2 =

D2(e f , e4)|e f=0,e4=0, a1 = (sinα∗142/ l∗24) >

0, b1 = (sinα∗243/ l∗24) > 0, c1 =

(b∗⊤21 Pb∗24
b∗43/ l∗24 sinα∗421)(b

∗⊤

23 Pb∗24
b∗41/ l∗24 sinα∗423), d1 =

−(b∗⊤42 Pb∗41
b∗43/ l∗14 sinα∗142) − (b∗⊤41 Pb∗42

b∗43/ l∗42 sinα∗142), and
we have used the facts that N j ik = −(b⊤i j Pbik/ lik sinα j ik),
N j ikbik = 0, b j i Pb jk bki = cosα j ik + cosαi jk cosαik j =

sinαi jk sinαik j because αik j + αi jk + αik j = π . Letting
|λI6−B∗4 | = 0, one has that λ(λ+kv)+(sinα∗142/ l∗14) = 0 will
give two solutions with negative real parts, which are stable.
Now, we check the remaining four eigenvalues lying in the
solutions of

(λ (λ+ kv)+ a1) (λ (λ+ kv)+ b1)− c1 = 0.

First, we prove that a1b1 > |c1|. Since b43 = ((p3 − p2) +

(p2 − p4)/ l43), Pb24(p2 − p4) = 0, and b23 = ((p3 − p4) +

(p4 − p2)/ l23), the numerator of c1 in (36) can be written as(
b∗T21 Pb∗24

b∗43

) (
b∗T23 Pb∗24

b∗41

)
=

l∗23

(
b∗T21 Pb∗24

b∗23

)
l∗43

l∗43

(
b∗T43 Pb∗24

b∗41

)
l∗23

=
[
cosα∗123−cosα∗423 cosα∗421

][
cosα∗143−cosα∗142 cosα∗243

]
.

To obtain a1b1 > |c1|, we can prove [29]

sinα∗421 sinα∗423 sinα∗142 sinα∗243 >

| cosα∗123−cosα∗423 cosα∗421|×| cosα∗143−cosα∗142 cosα∗243|

where we have used sinα∗j ik > 0. Now, we first aim to prove

sinα∗421 sinα∗423 > | cosα∗123 − cosα∗423 cosα∗421|. (37)

For each tetrahedron i jkm, one has the facts that α∗j ik ∈ (0, π),
0 < α∗123 + α

∗

423 + α
∗

421 < 2π , and

2π > α∗i jk + α
∗

i jm > α∗k jm > 0, i, j, k,m ∈ {1, 2, 3, 4} .

Then, following the discussion for the two cases of cosα∗123−

cosα∗423 cosα∗421 > 0 and cosα∗123 < cosα∗423 cosα∗421 in
[29, Ch. 6.2.2], one can similarly have that sinα∗421 sinα∗423 >

| cosα∗123 − cosα∗423 cosα∗421| always holds for a general
tetrahedron formed by UAVs 1 to 4. The same analysis
can be conducted to obtain sinα∗421 sinα∗423 > | cosα∗123 −

cosα∗423 cosα∗421|, which implies that a1b1 > |c1| holds.
Using Routh-Hurwitz criterion, all the four solutions of

(λ(λ + kv) + a1)(λ(λ + kv) + b1) − c1 = 0 have negative
real parts if the following condition holds

2k2
v

(
a1 + b1 + k2

v

)
(a1 + b1)− 4k2

v (a1b1 − c1)

− (a1kv + b1kv)2

= k2
v

[
(a1 − b1)

2
+ 2k2

v (a1 + b1)+ 4c1

]
> 0. (38)

Since 4|c1| < 4a1b1, if k2
v > 2a1b1/(a1 + b1), then (38) holds,

i.e., the remaining four eigenvalues are stable. Therefore, all
the six eigenvalues of B∗4 have negative real parts if k2

v >

2 sinα∗142 sinα∗243/(l
∗

24(sinα∗142 + sinα∗243)). After having that
B∗4 is Hurwitz and limt→∞ e4(t) = 0, according to the ISS
theorem [38, Lemma 4.7], the dynamical system (35) is locally
and asymptotically stable, i.e., the control objectives (10)–(11)
achieve for UAV 4.

Remark 4: Although work [23] also achieves angle-
constrained formation maneuvering for double integrators and
the position dynamics (1) are feedback linearized as dou-
ble integrators in (15), (16) and (28), the main difference
between [23] and this work lies in that [23] deals with
formations in 2-D, while this work deals with formations
in 3-D. Specifically, for each agent i ≥ 4, (28) employs
a pursuing moving rule and inter-UAV communication to
achieve three desired angles, while [23, eq. (54)] employs a
bisector moving rule to achieve two desired angles without
using communication. Since the designed control laws in
[23, eq. (54)] and (28) are different, the employed equali-
ties/inequalities (geometric inequalities in 2-D and 3-D) for
stability analysis and the obtained stability conditions (see
Theorem 2 and [23, Th. 4]) are also different.

After illustrating how UAV 4 has been added to the first
triangular formation, we now extend it to N -UAV formation
case by following the same step as UAV 4 for UAVs 5 to N .

Proposition 1: For UAVs 2 to N whose position
dynamics are governed by (1), under the controllers
(15)–(16) and (28), if the velocity feedback gain k2

v >

2 sinα∗j1i j2 sinα∗j2i j3/(l
∗

j2i (sinα∗j1i j2 + sinα∗j2i j3)), 4 ≤ i ≤ N
and j1, j2, j3 are UAV i’s three neighbors, then the
maneuvering control objectives (10)–(11) are locally achieved
for UAVs 2 to N .
Since the control law (28) of UAVs 5 to N has the same
structure as UAV 4, one will obtain a similar error dynamics
for UAV i

ėi =
[
ėi1 ėi2 ėi3 ˙̃v

⊤

i

]T
= Bi

(
e f , e4, . . . , ei

)
ei + Gi

(
e f , e4, . . . , ei

)
×

[
e⊤f , e⊤4 , . . . , e⊤i−1

]T
(39)

where N ≥ i > 4, Bi (e f , e4, . . . , ei ) ∈ R6×6, and
Gi (e f , e4, . . . , ei ) ∈ R6×(6i−4). Using the linearization
for (39) and the facts that e f → 0, e j → 0,∀ j =
4, 5, . . . , i − 1, one has that (39) is locally stable if k2

v >

2 sinα∗j1i j2 sinα∗j2i j3/(l
∗

j2i (sinα∗j1i j2 + sinα∗j2i j3)). This implies
that the formation maneuvering is locally achieved for UAVs
2 to N .

Remark 5: By choosing sufficiently large kv , the gain
condition k2

v > 2 sinα∗142 sinα∗243/(l
∗

24(sinα∗142 + sinα∗243))

required in Theorem 2 can be satisfied. Note that (29) requires
UAV 4 to communicate with UAV 2 to obtain the angle
information α421 and α423. In addition, for agent 4 in the 2-D
case, one has α143 = α142+α243 when

←→
13 intersects with

←→
24 ,

which has been used many times in deriving the angle error
dynamics in [23]. However, in the 3-D, α143 < α142 + α243,
which makes the 2-D angle error dynamics and their stability
analysis invalid in this 3-D case.

Remark 6: The proposed angle-constrained formation con-
trol has the advantages of simultaneous maneuvering of
translation, rotation, and scaling, and requiring no distance
measurements for the follower UAVs. These advantages can
be utilized in several practical situations, e.g., UAV swarm
in cluttered environment requiring the capability of various
maneuvering forms and micro-UAV swarm for search and
rescue missions where UAVs have too small volume and power
capacity to equip distance sensors. In addition, since only
direction measurements are required for the follower UAVs,
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the presented approach can also be used to increase forma-
tion’s resilience by taking the proposed method as a backup
for those algorithms requiring relative position measurements.

Remark 7: For the closed-loop dynamics (23) and (34),
we have obtained its local stability in Theorems 1 and 2.
However, the global stability of (23) and (34) is very chal-
lenging due to two aspects. First, different from the ground
robot case [21], [41], the dimension of the states in (23)
is 11, due to which the analytical tool for nonlinear system’s
stability, such as the Poincaré–Bendixon theorem, becomes
invalid. Second, the asymmetric direction measurements and
information interaction topology as shown in Fig. 2 give
great difficulties in constructing a candidate Lyapunov function
for (23). Nevertheless, we will use numerical tools to estimate
the attraction region of the local stability of (23) and (34).

V. DISCUSSION

In this section, we further discuss three aspects regarding
the proposed maneuvering algorithm’s communication require-
ment, sensor measurements, and robustness.

A. Reduction of Neighboring UAVs’ Communication

For the designed control law (16), UAV 2 needs to send
the measured angle α123(t) to UAV 3. This is necessary
under the objectives (9) and (10) because α∗123 and α∗231 are
chosen in A∗, and UAV 2 must measure the interior angle
α123(t), no matter who controls it. One may suggest that to
avoid the communication from UAV 2 to UAV 3, α123(t)
can be controlled by UAV 2 instead of UAV 3. However,
this is impossible because UAV 1’s desired position p∗1 is
determined by the translational trajectory, and then, p∗2 is
already determined by the desired relative position constraint
δ12 = p∗2− p∗1 ; thus, one cannot further let UAV 2 to maintain
α∗123. An alternative solution to avoid the communication is by
modifying the objective (9) into limt→∞(p2(t)−p3(t)−δ32) =

0. Then, the control laws (15) and (16) can be correspondingly
modified into

u2 = m2
[
â2 − kv

(
ṗ2 − v̂2

)
−
(
α123 − α

∗

123
)

b23

− kp (p2 − p3 − δ32)− gzG
]

(40)
u3 = m3

[
â3 − kv

(
ṗ3 − v̂3

)
−
(
α231 − α

∗

231
)

b32 − gzG
]
.

(41)

However, this modified control objective is less intuitive
than the control objective (9) since the formation’s relative
orientation with respect to the first UAV becomes unclear.

For the designed control law (28) for UAVs 4 to N ,
it also needs the communication of the measured αi j2 j1(t) and
αi j2 j3(t) from UAV j2 to UAV i . To avoid the communication
from neighboring UAVs, one can employ these three angle
constraints α∗j1i j2 , α

∗

j2i j3 , and α∗j3i j1 , j1 < i, j2 < i, and j3 < i
to add the UAV i into the existing formation. Then, we can
modify the maneuvering law (28) into

ui = mi

[
âi − kv

(
ṗi − v̂i

)
− gzG −

(
α j1i j2 − α

∗

j1i j2

)
bi j1

−

(
α j2i j3 − α

∗

j2i j3

)
bi j2 −

(
α j3i j1 − α

∗

j3i j1

)
bi j3

]
.

(42)

However, compared with (28), the new maneuvering law
(42) has two disadvantages. The first is that according to
[29, Sec. 6.2.2], the desired position p∗i is not globally
uniquely determined by α∗j1i j2 , α

∗

j2i j3 , and α∗j3i j1 , i.e., there are
several other ambiguous positions p̄∗i ̸= p∗i also satisfying
the three angle constraints, which easily makes the UAVs
converge to an undesired or ambiguous formation. Second,
by employing the analysis of closed-loop dynamics (30)–(36)
under (42), the formation under (28) is stable when some
additional inequalities related to α∗j1i j2 , α

∗

j2i j3 , and α∗j3i j1 hold.
Therefore, (28) can only stabilize the formations satisfying
those additional inequalities, while the control law (28) can
stabilize all generic formations under large kv .

B. Comparison of Angle- and Bearing-Constrained
Formations

First, we analyze the main difference between angle-
constrained formations and bearing-constrained formations.
Although the shape determination by a set of angle constraints
is more complex than that by bearing constraints [20], angle
constraints do not vary with the UAVs’ coordinate frames,
while bearing constraints do. More specifically, we consider∑

g as the global coordinate frame and
∑

i as UAV i’s
sensor measurement coordinate frame. If UAV j aims to
maintain the bearing constraint b∗j i with respect to UAV i
and

∑
i =

∑
j =

∑
g , then one has b∗i j = −b∗j i . How-

ever, if
∑

i ̸=
∑

g due to the existence of sensing noise,
then bi∗

i j ̸= b j∗
j i and the noise-induced bias from

∑
i to∑

g is unknown, which will cause the formation unstable
[21, Sec. V.B]. Different from bearing vectors whose descrip-
tion always depends on coordinate frames, angle constraints
are scalars, which are independent of UAVs’ coordinate frames
[42, Sec. 8.4]. Therefore, the scalar angle α∗j ik remains the
same even when the three UAVs’ coordinate frames have
different orientations. Therefore, angle-constrained formations
have more robustness against the misalignment of UAVs’
coordinate frames.

Then, we compare the bearing-constrained formation
maneuvering proposed in [7] and this angle-constrained
formation maneuvering. The local convergence of this
angle-constrained formation maneuvering is more restrictive
than the global convergence of the bearing-constrained for-
mation maneuvering in [7]. However, the solution proposed
in this article requires less sensor measurements since our
follower UAVs only need to measure directions, while the fol-
lowers in [7] need relative position measurements. In addition,
by assigning a 3-D rotation matrix R(βi ) ∈ SO(3), βi ∈ R3 in
front of each bearing constraint b∗i j , j ∈ Ni , the rotational
maneuvering can also be additionally achieved in [7] if all
the agents can use a leader–follower communication network
to achieve consensus limt→∞(βi (t) − β j (t)) = 0,∀i, j ∈
{1, . . . , N }.

C. Robustness Against External Disturbances

Due to the existence of model uncertainties, wind dis-
turbance, and structural asymmetry, there always exists an
external disturbance term in the real flight dynamics of UAVs.
To take this external disturbance into consideration, we modify
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the model (1) and (2) into

mi p̈i + mi gzG = ui + udi (43)
Ji (2i ) 2̈i + Ci

(
2i , 2̇i

)
2̇i = τi + τdi (44)

where udi ∈ R3 and τdi ∈ R3 represent the disturbances in
the position dynamics and attitude dynamics, respectively. For
the well-studied attitude controller (14), a variety of control
techniques in [37] and [26] can be used to suppress or mitigate
the external disturbance udi , which, however, may not be
the case for (43) since the previously proposed angle-based
controllers [6], [21], [29] have not considered the existence
of disturbances. Now, we take the first three UAVs’ formation
controllers (15) and (16) as an example, where we assume
∥udi (t)∥ ≤ dmax, i = 2, 3 and dmax ∈ R+ is sufficiently small
(so that the evolution of e f will not be out of the attraction
region). Under (43), the velocity error dynamics (17) and (18)
need to be modified into

˙̃v2 = p̈2 − p̈1 = −kv ṽ2 − kp p̃12 + ud2/m2
˙̃v3 = p̈3 − p̈1 = −kv ṽ3 − e231b32 + e123b31 + ud3/m3.

Since the dynamics of the relative position error (19) and the
dynamics of the angle errors (21)–(22) keep the same, the
overall closed-loop dynamics under (43) becomes

ė f = A1
(
e f
)

e f + d f (45)

where d f = [u⊤d2/m2, u⊤d3/m3, 0, 0, 0]⊤. Since d f (t) is inde-
pendent of the system state e f , the linearized dynamics of
(45) around the desired equilibrium e f = 0 can be written by
ė f = A∗1e f + d f . Using the Lyapunov function V1(t) for the
linearized dynamics, one has

V̇1 (t) = −e⊤f (t) Q1e f (t)+ e⊤f (t) d f (t)

≤ −e⊤f (t) Q1e f (t)+ ∥e f ∥dmax

(
m−1

2 + m−1
3

)
≤ − (λmin (Q1)− ε1) ∥e f (t) ∥2

+ 0.25d2
max

(
m−1

2 + m−1
3

)2
/ε1

where ε1 can be chosen as a sufficiently
small positive constant. Then, by following
[38, Ch. 4.8], one has limt→∞ ∥e f (t)∥2 ≤

0.25d2
max(m

−1
2 + m−1

3 )2/ε1/(λmin(Q1)− ε1), which indicates
that the formation error is bounded when the disturbance τdi
exists in (43).

VI. SIMULATION RESULTS

In this section, we first analyze the attraction region of the
proposed formation law. Then, the simulation results under
large initial formation errors and large number of UAVs will
be provided. In all figures, the units used for angles are radians.

A. Numerical Analysis on Attraction Region
As mentioned in Remark 7, we can estimate the attrac-

tion region by using numerical tools. Since the nonlinear
terms in the model (1) and (2) will affect the estimation,
we use the single-integrator model to estimate the attraction
region of angle-based formation dynamics (23) and (34).
Specifically, for the first three UAVs, since the dynamics of
UAVs 1 and 2 are independent of that of UAV 3, we assume

Fig. 7. Vector field of UAVs 3 and 4 under the control laws.

that UAVs 1 and 2 achieve their control objectives and become
static at p1 and p2, respectively. Then, UAV 3 is controlled
by ṗ3 = (α123−α

∗

123)b31− (α231−α
∗

231)b32, under which the
whole X OY plane only has two equilibria for UAV 3 which
are symmetric with respect to the Y -axis. We use the vector
field ṗ3 to show UAV 3’s velocity when UAV 3 locates at
p3 = [x; y; 0]. According to Fig. 7(a), the whole right-half-
plane only contains one stable equilibrium, which implies a
large attraction region of the dynamics (23). Note that the
attraction region around the other equilibrium is similar to the
attraction region around p∗3 . By considering a similar case for
the remaining UAVs, we assume that UAVs 1–3 are static,
and UAV 4 is controlled by ṗ4 = −(α142 − α∗142)b42 +

(α421 − α
∗

421)b41 + (α423 − α
∗

423)b43, where p4 = [x; y; z].
According to the vector field in Fig. 7(b), the whole up-half-
plane only contains one stable equilibrium, which implies a
large attraction region of the dynamics (34).

B. Simulation on Approximating the Formation’s Stability
Region Under Different Initial Errors

The stability region of the closed-loop dynamics (34)
is mainly determined by the initial angle errors α j ik(0) −
α∗j ik, α

∗

j ik ∈ A∗, initial relative position error p12(0) −
δ12, and initial relative velocity errors ṗi (0) − ṗ1(0), i =
2, . . . , 5. To approximate the stability region under different
initial errors, we use five UAVs with simulation parameters
α∗123 = π/4, α∗231 = π/4, α∗142 = π/3, α∗421 = π/3, α∗423 =

π/3, α∗253 = π/8, α∗532 = π/8, α∗534 = π/8, kv = 5, δ12 =

[1; 2; 3], ψd
1 = 0, and ṗd

1 = [0; 10; 0]. We select different
pi (0) and ṗi (0), i = 1, . . . , 5, to produce different initial angle
errors, initial relative position error, and initial relative velocity
errors. The left of Fig. 8 shows the approximated stability
region under different initial angle errors, which implies that
the stability region is large since the range of each angle error
is (−α∗j ik, π − α

∗

j ik). The left of Fig. 8 also implies that if
the first three UAVs’ initial angle errors are large, then the
remaining UAVs’ initial angle errors should not be very close
to −α∗j ik , which is reasonable since the desired formation is
constructed in a sequential manner. The right of Fig. 8 shows
the approximated stability region under different initial angle
errors and scale error, which is described by ∥p12(0)∥−∥δ12∥

(the direction of p12(0) is close to that of δ12). The convex
stability region in the right of Fig. 8 implies that the formation
is unstable only when both of these two initial errors are large.
We also found from simulation examples that the formation is
stable when the magnitude of the UAVs’ initial velocity errors
varies from 0 to 100 (m/s).
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Fig. 8. Approximated stability region under different initial errors.

Fig. 9. Evolution of angle errors and formation trajectories.

C. Simulation Examples With Misalignment on UAVs’
Coordinate Frames and Disturbances

In this section, we use the same simulation param-
eters as those in Section VI-B. Moreover, to validate
the coordinate frame independence of angle constraints
mentioned in Section V-B, we add a misalignment
R̄ = Rz((5π/180))Ry((4π/180))Rx ((3π/180)) ∈ SO(3)
into the follower UAV i’s direction measurement coordinate
frame, e.g., the term e123b31 in (16) becomes e123 R̄b31, where
Rx ((3π/180)) represents the rotation along the X -axis with
(3π/180). The simulation results are shown in Fig. 9, where
the angle errors converge within 150 s. Also, to validate the
robustness analyzed in Section V-C, we add each UAV i with
disturbance udi = [0.2 sin(i ∗ t), 0.2 cos(i ∗ t), 0.1 sin(i ∗ t)]⊤,
where i = 1, . . . , 5. According to the simulation results in
Fig. 10, each angle error is within 0.05 after the convergence.

D. Simulation Example With a Large Number of UAVs

To further validate that our proposed angle-constrained
formation maneuvering law can work for large-scale net-
worked UAVs, we conduct the simulation with 48 UAVs
aiming to form an “NTU” shape. This desired 3-D shape
is constructed by following the steps given in Section II-B,
where 45 tetrahedra are used to add the UAVs 4–48 from
the first triangular formation △123. The detailed form of
these tetrahedra and the maneuvering process is given in
the Supplementary Video. The convergence of some selected
angle errors and formation trajectories is shown in Fig. 11.
We conclude from these simulation examples in this section
that the proposed angle-constrained formation maneuvering
law can work well under large initial formation errors and
large-scale networked UAVs.

VII. EXPERIMENTAL RESULTS

In this section, we use four formation flying UAVs to
validate the proposed formation maneuvering algorithms.
Note that the UAVs’ direction measurements are obtained

Fig. 10. Evolution of angle errors and formation trajectories.

Fig. 11. Evolution of angle errors and formation trajectories.

from a motion capture system in our current experi-
mental setup. The experimental videos are provided in
https://www.bilibili.com/video/BV1pA411k7Xt/ and the sup-
plementary material of this article.

A. Experimental Platform

Our experimental platform consists of four DJI Tello UAVs
controlled by the received commands, a laptop computer with
Wi-Fi module enabled to send commands to the UAVs using a
python script, a TP-Link Router, and an OptiTrack Recording
system to record the movements of the UAVs. As shown in
Fig. 12, the Tello UAVs are placed in a UAV flight enclosure
with 3 m height, 6 m width, and 8 m long, which lie within
the sight of the OptiTrack motion capture system. As shown
in Fig. 13, each UAV is attached by a holder with four
markers such that it can be detected by the OptiTrack system.
The OptiTrack system maps the position of each UAV into
XY Z coordinates described in the system’s world coordinate
frame. Note that Tello SDK 2.0 [43] has provided us the
movement commands (incremental form) that can be used
for the translational and rotational control of the Tello UAVs.
Also, the allocation and tracking of the UAVs’ desired pitch
and roll angles are embedded in the SDK. Therefore, in this
experiment, we only need to control the position dynamics by
sending the calculated formation control parts of (15), (16),
and (28) to UAVs. Due to the existence of noise, a desired
flying height is assigned for UAV 3, which is set as the middle
of the heights of UAVs 1 and 2.

In the whole formation maneuvering process, a robot operat-
ing system (ROS) was used in the laptop computer to conduct
the communication and calculation of the control commands
for the UAVs. The four UAVs and the laptop computer were
all connected to the TP-link router. First, the OptiTrack system
acquires the positions and velocities of the four Tellos. Then,
the laptop computer calculates the four Tellos’ control inputs
using the direction and velocity information and publishes the
calculated control commands subscribed by Tello ROS nodes
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Fig. 12. Experimental platform.

Fig. 13. Tello UAVs with marker attachments.

through Wi-Fi in 500 Hz. Finally, Tello UAVs will receive the
control commands, and execute them and move accordingly.

B. Experimental Parameters

In the formation experiments, the maneuvering control
inputs of all four UAVs were calculated based on the informa-
tion obtained from the OptiTrack system. Tello 1 is set to be
the first leader UAV and its path was set to move horizontally
for 3 m, under which its desired translational moving velocity
is set to 0.3 m/s and desired acceleration is zero. Under
this experimental setup, the communication of estimation is
reduced by following the way mentioned in Section V-A, i.e.,
the leader UAV will send the desired moving parameters to its
neighbor UAVs directly. All the other Tello UAVs are expected
to follow Tello 1 while maintaining a desired formation shape.
The desired position of Tello 2 with respect to Tello 1 is set
to [1; 1; 0]. The desired formation angles among Tello UAVs
are set as

α∗123 =
π

4
, α∗132 =

π

2
, α∗142 =

π

3
, α∗421 =

π

3
, α∗423 =

π

2
.

The control parameters are selected as kv = 5 and kd = 8.
The updating frequency of the commands is set to be 500 Hz.

C. Experimental Results

Under the control of the designed formation maneuvering
algorithms, the evolution of the angle errors and the trajecto-
ries of the four Tello UAVs in the translational maneuvering
case are shown in Figs. 14–16. In addition, the scaling maneu-
vering and rotational maneuvering experiments are conducted
to show the maneuvering capability of the proposed method,
which are shown in Figs. 17 and 18, respectively.

Fig. 14. Evolution of angle errors with respect to time.

Fig. 15. 3-D view of UAV translational maneuvering trajectories recorded
in OptiTrack system.

D. Analysis of Experimental Results

The experiment results in Fig. 14 show that the magnitude
of the formation errors become increasingly smaller, which
implies that all four UAVs converge to the desired formation.
In Figs. 15 and 16, the formation shape is shown to be
maintained successfully during the translational maneuvering
process, which is also the case for the scaling and rotational
formation maneuvering in Figs. 17 and 18.

Due to the limitation on the size of the flight enclosure,
we considered that once the formation error vector is below
the threshold limit of 0.1, the velocity commands of the UAVs
are set to zero and the UAVs will hover on their desired spots.
In order to optimize OptiTrack’s localization capability of four
UAVs, four different types of marker holders were designed.
This ensures that OptiTrack does not mix up the UAVs
during the motion capture process. The command velocities
are published to the respective UAVs’ ROS nodes through
a while-loop block where a higher refresh rate would thus
allow the UAVs to have more microcorrections per second.
This allowed for better maneuvering stability during the tests
of formation flight.

Finally, the control gain kv needs to be properly selected
in the experiment. According to the condition in Theorem 2,
a large gain can always guarantee the maneuvering stability.
However, a large gain in the experiments will give much
overshoot and even make the system unstable due to the
propellers’ actuation saturation.

It is also interesting to apply the proposed formation strategy
in the outdoor environment. We remark that one challenge of
applying it in outdoor is that each UAV might not be able
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Fig. 16. Physical view of UAV translational formation maneuvering.

Fig. 17. Physical view of the UAV scaling formation maneuvering.

Fig. 18. Physical view of the UAV rotational formation maneuvering.

to simultaneously measure many direction measurements with
respect to neighbors by using onboard sensors, e.g., cameras.

VIII. CONCLUSION

This article has achieved the formation maneuvering
of quadrotor UAVs using direction measurements under a
leader–follower framework. Each UAV’s attitude and posi-
tion are controlled to achieve partial attitude synchronization
and desired formation maneuvering simultaneously. For the
attitude part, an estimation-based attitude control algorithm
has been designed to synchronize UAVs’ yaw angles. For the
position part, the UAVs’ desired formation shape has been
determined by a set of interior angle constraints. The formation
maneuvering algorithm has been proposed, which consists of
a velocity tracking part and a formation shape control part.

Simulations and experiments have demonstrated the effec-
tiveness of the proposed formation maneuvering control
algorithms.
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