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Angle Rigidity for Multiagent Formations in 3-D
Liangming Chen and Ming Cao , Fellow, IEEE

Abstract—This article establishes the notion and prop-
erties of angle rigidity for 3-D multipoint frameworks with
angle constraints, and then designs direction-only control
laws to stabilize angle rigid formations of mobile agents in
3-D. Angles are defined using the interior angles of trian-
gles within the given framework, which are independent of
the choice of coordinate frames and can be conveniently
measured using monocular cameras and direction-finding
arrays. We show that 3-D angle rigidity is a local prop-
erty, which is in contrast to the 3-D bearing rigidity as has
been proved to be a global property in the literature. We
demonstrate that such angle rigid and globally angle rigid
frameworks can be constructed through adding repeatedly
new points to the original small angle rigid framework with
carefully chosen angle constraints. We also investigate how
to merge two 3-D angle rigid frameworks by connecting
three points of one angle rigid framework simultaneously
to the other. When angle constraints are given only in the
surface of a framework, angle rigidity of convex polyhedra
is studied, in which the cases of triangular face and triangu-
lated face are considered, respectively. The proposed 3-D
angle rigidity theory is then utilized to design decentralized
formation control strategies using local direction measure-
ments for teams of mobile agents. Simulation examples are
provided to validate the convergence of the formations.

Index Terms—3-D angle rigidity, angularity, direc-
tion/angle measurements, formation control, multiagent
systems.

I. INTRODUCTION

R IGIDITY of multipoint frameworks has been extensively
studied for centuries as a mathematical topic in graph

theory [1], [2], which has also been used as an insightful notion
in many application scenarios, e.g., multiagent formations [3],
material structures [4], and biological tissues [5]. Rigidity theory
has primarily been used to characterize the stiffness of a frame-
work with distance constraints for the discussion of distance
rigidity [6]. When such constraints are properly chosen, the
multipoint framework can be locally (resp. globally) rigid if all
the interpoint distances are constant under local (resp. global)
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perturbations; otherwise, the framework is said to be nonrigid or
flexible [7]. Therefore, how to select distance constraints to con-
struct distance rigid frameworks and how to check a framework’s
distance rigidity constitute the main subjects of distance rigidity
theory [6]. However, those construction and checking conditions
depend on the dimension d of the space where those vertices are
embedded. For example, for generic frameworks, Hendrickson
has conjectured that if a graph G is (d+ 1)-connected and
redundantly rigid (the definition of redundant rigidity can be
found in [7, Sect. 1.2]), then G is globally rigid, which has later
been proved to be true for d = 1, 2 [8] but false for d ≥ 3 [9].
Recently, bearing rigidity has been studied for frameworks with
bearing constraints [10], [11], [12]. According to [10], when
bearing constraints are given in coordinate frames with the same
orientation, local bearing rigidity implies global bearing rigidity
for an arbitrary dimension d. Without relying on the alignment
of coordinate frames, angle rigidity has been studied recently for
2-D frameworks [13], [14] and d-dimensional frameworks [15],
respectively. However, even when angle constraints are defined
with a specific direction in 2-D [14], it has been shown that the
resulting angle rigidity is a local property since angle rigidity
does not imply global angle rigidity. Although 2-D angle rigidity
[13], [14] and algebraic checking conditions for d-dimensional
angle-constrained frameworks have been developed [15], angle
rigidity in 3-D is more complicated and its main properties, such
as construction methods, have not been adequately studied.

In addition to the theoretical significance, rigidity theory plays
an important role in the application of multiagent formations [3],
[16], [17], [18]. Using distance rigidity, formation control laws
have been proposed for a team of mobile agents with relative
position measurements in their local coordinate frames [19],
[20], [21]. To make full use of low-cost and lightweight onboard
sensors, e.g., monocular cameras and sensor arrays [22], using
bearing rigidity theory, a bearing-only formation law has been
designed [10] for a group of agents with aligned coordinate
frames. Without the requirement on the alignment of agents’
coordinate frames, angle/direction-based formation control al-
gorithms have been proposed using angle rigidity [13], [14]
or infinitesimal shape-similarity [15]. For the direction-only
formation approaches proposed in [14], no communication and
distance measurements among the agents are needed. However,
the direction-only formation algorithms in [14], [15], [23] are
only applicable to ground robots moving in the plane and there
is need to further study the control design for angle-constrained
formations in 3-D using direction-only measurements.

Motivated by the application of 3-D multiagent formations us-
ing direction-only measurements, we develop 3-D angle rigidity
in this article. First, we show the selection of angle constraints to
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construct angle rigid frameworks. Then, we investigate minimal
angle rigidity and angle rigidity of convex polyhedra with angle
constraints only in their surfaces. Using the developed theories,
we propose formation control laws to achieve a desired angle
rigid formation in 3-D using direction-only measurements. The
formation is constructed iteratively through the proposed two
types of vertex-addition operations starting from a triangular for-
mation and adding each new agent into the existing formation by
three new angle constraints, in which interagent communication
is required for each newly added agent under the first type of
vertex-addition operation. The main contributions of this work
are summarized as follows:

1) The approaches of constructing and merging 3-D an-
gle rigid frameworks are proposed. Compared with
the approaches of constructing 2-D angle rigid frame-
works [13], [14], a sequential construction approach is
developed for 3-D angle rigid frameworks. Compared
with algebraic conditions for checking angle rigidity de-
veloped for 2-D and 3-D frameworks in [24] and general
d-dimensional frameworks in [15], our proposed con-
struction method provides a topological checking condi-
tion. Moreover, the merging operation on two angle rigid
frameworks is also developed.

2) Angle rigidity of convex polyhedra is discussed. Rigid-
ity of convex polyhedra is one of the oldest geometric
problems [1], [2], [25]. The existing literature focuses on
distance rigidity of convex polyhedra and the problem of
angle rigidity of convex polyhedra has not been investi-
gated so far. In this work, several topological conditions
are developed to guarantee rigidity of convex polyhedra
with angle constraints.

3) Control laws using direction-only measurements are pro-
posed to stabilize 3-D angle rigid formations. Compared
with [13], [24], where the measurements of interagent rel-
ative positions are needed, our proposed control laws only
require direction measurements. Compared with [13],
[14], [15], [23], where the agents lie in a 2-D plane, our
proposed control laws are designed for agents moving in
a 3-D space and their corresponding stability analysis is
more challenging. Compared with [11], [12], [26], [27],
where the desired bearing rigid formation (resp. designed
bearing-based control law) relies on agents’ coordinate
frames, our desired angle rigid formation (resp. designed
angle-based control law) is independent of agents’ coor-
dinate frames.

The rest of this article is organized as follows. Section II
introduces the preliminaries. Section III presents the 3-D an-
gle rigidity. In Section IV, the application to 3-D multiagent
formations using direction-only measurements is investigated.
Simulation examples are provided in Section V. Finally, Sec-
tion VI concludes this article.

II. PRELIMINARIES

A. Notations

Consider a 3-D multipoint framework and use the vertex
set V = {1, 2, . . . , N} to denote the set of indices of N ≥ 3

vertices. Consider the embedding of the vertex set V in R3

through which each vertex i is associated with a distinct position
pi ∈ R3 and let p = [pT1 , . . . , p

T
N ]T ∈ R3N be the configuration

of all the vertices. Let Im, ×, λmax, and λmin be the m-by-m
identity matrix, the cross product, the maximum eigenvalue, and
the minimum eigenvalue of a symmetric matrix, respectively. A
triangle, surface, polyhedron, and angle-constrained framework
are denoted by �, S, P , and A, respectively.

B. Angularity

Since each angle is associated with three vertices and an edge
of a graph is only associated with two vertices, the description of
angle-constrained frameworks by using graphs associated with
edges of two vertices is less convenient, which motivates us to
use “angularities” as has been done in [14]. Now, we extend the
notion of 2-D angularity defined in [14] to 3-D. First, an angle
set A ⊂ V × V × V is the set {(j, i, k), j, i, k ∈ V, j �= i �= k},
of which each element is a triplet. Each such triplet (j, i, k) will
be used in this article to denote an angle formed by the vertices
j, i, and k, and by confining the magnitude of the angles, one can
effectively enforce an angle constraint. We denote the number of
elements of the angle set A by |A|. Then, the combination of the
vertex setV , the angle setA, and the position vector p is called an
angularity, which we denote by A(V,A, p). An element (j, i, k)
in A, when pi, pj , and pk are distinct, corresponds to the interior

angle formed by the rays
−→
ij and

−→
ik ; more specifically, using the

position vector p, the angle �jik ∈ [0, π] corresponding to the
triplet (j, i, k) in A can be calculated by

�jik = arccos
(
b�ijbik

)
(1)

where �jik = �kij, the unit vector bij := (pj − pi)/lij repre-

sents the direction
−→
ij , and lij := ‖pj − pi‖.

Remark 1: The 2-D angle in [14] is calculated using the
counterclockwise direction. However, the definition of each 3-D
angle’s direction depends on the associated vertices’ coordinate
frames, which are not assumed to be aligned and known in this
3-D angle rigidity. Although the 3-D angle defined in (1) does
not need the notion of being counterclockwise, the 3-D angle
constraints will rely on similar notions to be defined later.

III. 3-D ANGLE RIGIDITY

In this section, we first introduce 3-D angle rigidity, then
introduce the merging operation for two angle rigid angularities,
and in the end discuss angle rigidity of convex polyhedra. All the
discussions are confined to 3-D and the right-hand rule applies
to all rotation operations of vectors.

A. Angle Rigidity

Before defining angle rigidity, we first define the relations of
equivalence and congruence for two angularities.

Definition 1 [14]: We say two angularities A(V,A, p) and
A′(V,A, p′) in 3-D with the same V and A are equivalent if

�jik(pj , pi, pk) = �jik
(
p′j , p

′
i, p

′
k

)
for all (j, i, k) ∈ A.
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Fig. 1. Flex ambiguity in an angle rigid angularity.

Definition 2 [14]: We say that A and A′ are congruent if

�jik(pj , pi, pk) = �jik
(
p′j , p

′
i, p

′
k

)
for all j, i, k ∈ V.

According to Definitions 1 and 2, two equivalent (resp. con-
gruent) angularities’ corresponding angles defined in A (resp.
all the angles defined in V × V × V) have the same value. Now,
we can define global angle rigidity and angle rigidity.

Definition 3 [14]: An angularity A(V,A, p) in 3-D is glob-
ally angle rigid if every angularity that is equivalent to it is also
congruent to it.

Definition 4 [14]: An angularity A(V,A, p) in 3-D is an-
gle rigid if there exists an ε > 0 such that every angularity
A′(V,A, p′) that is equivalent to it and satisfies ‖p′ − p‖ < ε, is
also congruent to it.

According to Definitions 3 and 4, global angle rigidity always
implies angle rigidity, but the inverse is not necessarily true.
This is different from bearing rigidity for which global bearing
rigidity and bearing rigidity are equivalent [10], [11], [28].

Theorem 1: An angle rigid angularity A(V,A, p) in 3-D is
not necessarily globally angle rigid.

Proof: We prove this theorem by constructing an angularity
that is angle rigid but not globally angle rigid. Consider the angu-
larity A(V,A, p) in Fig. 1 with V = {1, 2, 3, 4}, A = {(1, 3, 2),
(3, 2, 1), (1, 4, 2), (1, 4, 3), (2, 4, 3)}, and the embedding p1 =
[0, 0, 0]T, p2 = [0, 3, 0]T, p3 = [4, 5, 0]T, p4 = [2, 4, 2.5]T. The
corresponding angles �132,�321,�142,�341,�243 can be
calculated via (1).

We first check whether A(V,A, p) is angle rigid. In �123,
one can uniquely determine �213 = π − �132− �321, which
implies that the interior angles in �123 are uniquely deter-
mined. If point 4’s position could be uniquely determined by
�142,�143,�243, the other angles formed by 4 and 1,2,3
would also be uniquely determined. To check the uniqueness
of point 4 under �142,�143,�243, we first show the surface
which satisfies the angle constraint of�142 given points 1 and 2.
Since a 2-D angle constraint �142 allows point 4 to be in an arc
ı12 [see Fig. 2(a)], the angle constraint of �142 in 3-D gives
rise to a closed surface [see Fig. 2(b)] formed by rotating the
arc ı12 along the line 12 in Fig. 2(a). Given points 1, 2, and 3
and angles �142,�143,�243, point 4 can be determined by
three such surfaces. By numerically checking the intersections
of these three surfaces in Fig. 3(a), one can see that there are
four separate points of intersection [see Fig. 3(b)] in these three

Fig. 2. Extension of angle constraints from 2-D to 3-D. (a) 2D angle
�142. (B) 3D angle �142. (C) 2D angle �214. (D) 3D angle �214.

Fig. 3. Intersection of three surfaces. (a) Three surfaces. (b) Surfaces’
intersected curves.

Fig. 4. Nongeneric p changes rigidity.

surfaces. Therefore, when p1, p2, p3, p4 are locally perturbed,
there is only one unique position for point 4 in the neighborhood
of its current position because these four intersection points are
separate. More specifically, there always exists a sufficiently
small perturbation (corresponding to ε in Definition 4) such
that every perturbed angularity satisfying the given five angle
constraints is congruent to A, i,e., A is angle rigid.

We now show that A(V,A, p) is not globally angle
rigid. Perturbing p4 in R3, one finds another point p′4 =
[0.0802, 4.0778, 1.4765]T satisfying all the angle constraints
associated with A together with p1, p2, p3, but �412 = 0.675 �=
�4′12 = 0.348. This flex ambiguity shown in Fig. 1 implies that
A is not globally angle rigid.

Note that nongeneric embeddings of p in R3 may change
rigidity properties. Now, we consider three different embed-
dings of a four-vertex angularity. When �213 = 0,�143 = 0
as shown in Fig. 4(a), the angularity is angle rigid but not
globally angle rigid since if 2 and 3 swap their positions,
�213,�143 remain the same but �234 changes by π. On the
other hand, Fig. 4(b) shows that when the same two angles are
assigned to be �213 = π,�143 = π, the angularity becomes
globally angle rigid according to Definition 3. Note that in
the above two cases, all the four points are collinear. When
only three points are collinear as in Fig. 4(c), this angularity
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is in general flexible if fewer than four angle constraints are
given according to 2-D angle rigidity [14, Th. 3] since points
1,2,3,4 are in a plane in this case. By giving three generic angles
(e.g., not 0 or π) for �213,�143,�413 and one nongeneric
angle �234 = π in Fig. 4(c), the angularity becomes glob-
ally angle rigid because �124 = π − �213− �143− �413,
�132 = �413 + �143, and�134 = π − �132 are all uniquely
determined. However, four vertices in general form a tetrahedron
in 3-D. To rule out nongeneric situations for p, the notion of
generic positions can be used. Following [7, Sec. 1.2], we say p
is a generic position vector if its components are algebraically
independent. We say an angularity A(V,A, p) is generically
(globally) angle rigid if p is generic and A is (globally) angle
rigid; please refer to [7], [29] for more properties of generic
rigidity.

Since an angle rigid angularity is not necessarily globally
angle rigid, 3-D angle rigidity is a local property, which is
not related to the number of angle constraints imposed on
a specific angularity. However, if one wants to construct an
angle rigid structure efficiently, the number of angle constraints
and their distributions within an angularity become central,
which motivates us to develop sufficient conditions to guarantee
global angle rigidity. First, for two angularities A(V,A, p) and
A′(V,′ A,′ p′), we say A is a subangularity of A′ if V ⊂ V′,
A ⊂ A′ and p is the corresponding subvector of p′. For the small-
est angularities with only three vertices, there is no difference
between generic angle rigidity and generic global angle rigidity.

Lemma 1 [14]: If a three-vertex angularity in 3-D is generi-
cally angle rigid, it is also generically globally angle rigid.

Proof: This is straightforward by following the proof in 2-D
angle rigidity [14, Lemma 1].

Now, we develop the vertex addition operations for 3-D angle
rigidity to construct an angle rigid angularity from the smallest
three-vertex angularity. Toward this end, we first define some
related notions.

Definition 5: For a given angularity A(V,A, p), we say that
1) a new vertex i positioned at pi is linearly constrained with

respect to A if there is j ∈ V such that pi �= pj and pi is

constrained to be on a ray
−→
ji starting from pj , e.g., p4 is

constrained in ray
−→
14 in Fig. 2(a).

2) i is conically constrained with respect to A if there
are j, k ∈ V such that {pi, pj , pk} is generic and pi is
constrained to be on a cone Cj→k with pj as the cone’s

apex and
−→
jk as the cone’s axis, e.g., p4 is constrained in

cone C1→2 in Fig. 2(d).
3) i is near-spherically constrained with respect to A if there

are j, k ∈ V such that {pi, pj , pk} is generic and pi is
constrained to be on a near-spherical surface Sjk with jk
in the surface’s rotation axis, e.g., p4 is constrained in
near-spherical surface S12 in Fig. 2(b).

For convenience, we also simply say i’s angle constraint
is linear, conic, and near-spherical in the above three cases,
respectively.

In contrast to the linear and quadratic constraints from 2-D an-
gles [see Fig. 2(a) and (c)], each angle constraint in 3-D generally
determines a surface [see Fig. 2(b) and (d)] making computations
and the exploration of its properties in 3-D more challenging.

Fig. 5. Counterclockwise, clockwise, and linear constraints. (a) Coun-
terclockwise constraint. (b) Clockwise constraint. (c) Linear constraint.

To deal with this challenge, inspired by those formation control
approaches where counterclockwise direction information
among agents is employed to exclude formations’ ambigui-
ties [30], [31], we also utilize counterclockwise direction con-
straints for 3-D angle rigidity to exclude angularities’ ambigui-
ties.

Definition 6: For four points i, j, k,m in generic positions
pi, pj , pk, pm, we say m is in a counterclockwise (resp. clock-
wise) direction with respect to i, j, k if the signed volume of
the tetrahedron formed by pm and pi, pj , pk is positive (resp.

negative), i.e., Vm−ijk =
(pi−pm)T[(pj−pm)×(pk−pm)]

6 > 0. Cor-
respondingly, when the sign of the tetrahedron’s volume is fixed
to be positive (resp. negative), we say pm is under a counter-
clockwise (resp. clockwise) direction constraint with respect to
pi, pj , pk, e.g., see Fig. 5(a) and (b).

Remark 2: As shown in Fig. 5(c), two noncoincident conic
constraints Cj→k1

, Cj→k2
sharing the same apex pj will lead to

two cones intersecting at no more than two rays, denoted by
−→
ji1

and
−→
ji2. Since

−→
ji1 and

−→
ji2 are symmetric with respect to the plane

formed by the two cones’ rotation axes
−→
jk1 and

−→
jk2, one has that

Vi1−jk1k2
and Vi2−jk1k2

have different signs. Therefore, each
linear constraint can be obtained by two conic constraints with
a common apex and an associated counterclockwise constraint.

Motivated by Henneberg’s construction which has been seen
as a cornerstone for distance rigidity theory, we now develop two
types of vertex addition operations to construct global angle rigid
and angle rigid angularities in 3-D, respectively.

Definition 7 (Type-I vertex addition): For a given angularity
A(V,A, p), we say the angularity A′ with the augmented vertex
set {V ∪ {i}} is obtained from A through a Type-I vertex addi-
tion if the new vertex i’s constraints with respect to A contain
at least one of the following two cases:

Case 1: two linear constraints
−→
j1i,

−→
j2i, in which {j1, j2} ⊆

V , and
−→
j1i and

−→
j2i are not aligned but intersecting,

see Fig. 6(a);
Case 2: one linear constraint

−→
j1i and one conic constraint

Cj1→j2 , in which {j1, j2} ⊆ V , and
−→
j1i and

−−→
j1j2 are

not aligned but intersecting, see Fig. 6(b).
Definition 8 (Type-II vertex addition): For a given angularity

A(V,A, p), we say the angularity A′ with the augmented vertex
set {V ∪ {i}} is obtained from A through a Type-II vertex
addition if the new vertex i’s constraints with respect to A
contain at least one of the following two cases:

Case 1: three near-spherical constraints Sj1j2 ,Sj1k1
,Sj2k1

with generic {pi, pj1 , pj2 , pk1
} and {j1, j2, k1} ⊆

V , see Fig. 6(c).
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Fig. 6. Type-I vertex addition and Type-II vertex addition. (a) Case 1 in
Type-I vertex addition. (b) Case 2 in Type-I vertex addition. (c) Case 1 in
Type-II vertex addition. (d) Case 2 in Type-II vertex addition.

Case 2: two near-spherical constraints Sj1k1
,Sj4k1

and one conic constraint Cj1→j4 with generic
{pi, pj1 , pj4 , pk1

} and {j1, j4, k1} ⊆ V , see
Fig. 6(d).

Now, we are ready to present a sufficient condition for global
angle rigidity using Type-I vertex addition.

Proposition 1: An angularity in 3-D is globally angle rigid if
it can be obtained through a sequence of Type-I vertex additions
starting from a generically angle rigid three-vertex angularity.

Proof: According to Lemma 1, a generically angle rigid
three-vertex angularity is globally angle rigid. Consider the two
cases in the Type-I vertex addition given in Definition 7. If
case 1 applies, each linear constraint corresponds to a ray ac-
cording to Definition 6. Then, the position pi of the newly added
vertex i is unique since two rays, not aligned, starting from two
different points may intersect only at one point; if case 2 applies,
pi is again unique since a ray starting from the axis of a cone can
have only one intersection with the cone. Therefore, pi is always
globally uniquely determined, after which all the involved angles
are also globally uniquely determined. Then, iteratively, after a
sequence of type-I vertex additions, the obtained angularity is
globally angle rigid.

In comparison, type-II vertex additions can only guarantee
angle rigidity instead of global angle rigidity.

Proposition 2: An angularity in 3-D is angle rigid if it can be
obtained through a sequence of Type-II vertex additions starting
from a generically angle rigid three-vertex angularity.

The proof can be easily constructed following similar ar-
guments as those for Proposition 1 and Theorem 1. The only
difference is that pi now may have multiple isolated solutions
and is only unique locally. Also, note that only two types of
constraints are defined in Type-II vertex addition operation
in Definition 8, but there are more possible combinations of
constraints which can also guarantee a locally unique point pi.

Corollary 1: For an angularity A(V,A, p), if there ex-
ists an angle rigid (resp. globally angle rigid) subangularity
A′(V,A,′ p) with A′ ⊂ A, then A(V,A, p) is also angle rigid
(resp. globally angle rigid).

Proof: Since the vertex set in the subangularity A′ is the same
as A, one has from Definitions 3 and 4 that angle rigidity of the
subangularity A′ implies angle rigidity of A.

Remark 3: The associated counterclockwise direction con-
straint introduced in Definition 6 can be used to remove the

Fig. 7. Three-vertex addition operation and merging operation.

reflection ambiguity such that the position of the added vertex i
in the Type-I vertex addition operation (see Definition 7) can be
globally uniquely determined. But this constraint is not sufficient
to make the position of the added point in Type-II vertex addition
operation (see Definition 8) globally uniquely determined. An
example is given in Fig. 1, where points 1, 2, 3 are in the
clockwise direction with respect to both points 4 and 4’. In other
words, not only reflection ambiguity but also flex ambiguity may
exist in Type-II vertex addition operation.

Remark 4: Note that Propositions 1 and 2 can also be used
as topological conditions to check global angle rigidity and
angle rigidity of angularities that can be sequentially constructed
from a triangle, respectively. For those angularities that are
not constructed through such sequential operations, rank-based
algebraic conditions can be employed to check their infinitesimal
or generic angle rigidity when the corresponding angularities’
embedding p is known [15, Th. 3].

B. Merging two Angle Rigid Angularities

After introducing how to add one vertex to an angularity
in Propositions 1 and 2, we now investigate how to add three
vertices to an angularity [see Fig. 7(a)], which becomes useful
later for merging two angle rigid angularities.

Definition 9 (Three-vertex addition operation): For a given
angularity A(V,A, p) and three new vertices {i1, i2, i3} � V ,
we say that the angularity A′ with the augmented vertex set
{V ∪ {i1, i2, i3}} is obtained from A through a three-vertex
addition operation if the new vertices’ constraints with re-
spect to A contain: two unaligned linear constraints

−−→
j1i1,

−−→
k1i1,

two unaligned linear constraints
−−→
j2i2,

−−→
k3i2, and one conic con-

straint Ci1→k1
and one associated counterclockwise constraint

Vi3−i2i1k1
for i3, in which {j1, j2, k1, k3} ⊆ V . We further de-

note the angle set corresponding to these added angle constraints
by A{i1,i2,i3}.

Now, we merge a three-vertex generically angle rigid angu-
larity to a globally angle rigid angularity by the three-vertex
addition operation [see Fig. 7(a)].

Proposition 3: For a globally angle rigid angularity
A(V,A, p) and a three-vertex generically angle rigid
angularity A3

(
{i1, i2, i3} ,A3, [p

T
i1
, pTi2 , p

T
i3
]T
)
, if one merges

A and A3 by adding the vertices i1, i2, i3 to A through the
three-vertex addition operation, then the merged angularity

A′
(
V ∪ {i1, i2, i3},A ∪A3 ∪ A{i1,i2,i3},

[
pT, pTi1 , p

T
i2
, pTi3

]T)
is globally angle rigid.

Proof: Note that the positions of the added vertices i1 and
i2 are globally unique according to Proposition 1 (case 1 of
Type I vertex addition). After pi1 and pi2 are fixed, the vertex
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i3 is constrained on the intersection of two cones with i1i2
as these two cones’ rotation axis because A3 is generically
angle rigid and �i3i1i2 and �i3i2i1 are fixed. By further us-
ing the given conic constraint for i3 together with the asso-
ciated counterclockwise constraint, one has that the position
of the added vertex i3 is also globally unique according to
Proposition 1 (case 2 of Type-I vertex addition).

Since the vertex set and the embedding of A are different
from those of A′, Corollary 1 cannot be used as the the proof
of Proposition 3. Fig. 7(a) shows the original angle constraints
to realize the three-vertex addition operation. According to [15]
and [24], the minimum number of angle constraints to guar-
antee an N -node angle-constrained framework’s angle rigidity
is 3N − 7. Therefore, the number of these angle constraints
in Fig. 7(a) is 7 because the total degrees of freedoms for
vertices i1, i2, i3 in 3-D is 9, and at least two angle con-
straints are needed to make A3 generically angle rigid. Thus,
at least 9-2=7 angle constraints related to i1, i2, i3 are needed
to merge A3 with A. Definition 9 only gives one set of angle
constraints for merging operation under global angle rigidity,
and there are many other acceptable sets, especially when the
number of angle constraints is larger than 7 or the merged
angularity is only required to be angle rigid. Now, we dis-
cuss how to merge two angle rigid angularities as shown in
Fig. 7(b).

Proposition 4: Suppose that the angularity A1(V1,A1, p)
is globally angle rigid and A2 (V2,A2, p

′) with V1 ∩
V2 = ∅ has a subangularity A′

2 (V2,A′
2, p

′) which can
be obtained through a sequence of Type-I vertex addi-
tions from a generically angle rigid three-vertex angular-

ity A3

(
{i1, i2, i3} ,A3,

[
pTi1 , p

T
i2
, pTi3

]T)
. If one merges A1

and A2 by adding the vertices i1, i2, i3 to A1 through the
three-vertex addition operation, then the merged angular-

ity A′′
(
V1 ∪ V2,A1 ∪ A2 ∪ A{i1,i2,i3},

[
pT, p′T

]T)
is glob-

ally angle rigid.
Proof: According to Proposition 3, adding the vertices

i1, i2, i3 to A1 through the three-vertex addition operation yields
global angle rigidity of the merged angularity with augmented
vertex set {V1 ∪ {i1, i2, i3}}. According to Proposition 1, Since
A′

2 can be obtained through a sequence of Type-I vertex ad-
ditions from A3, one has global angle rigidity of the angu-

larity A′
1−2

(
V1 ∪ V2,A1 ∪ A′

2 ∪ A{i1,i2,i3},
[
pT, p′T

]T)
after

merging A1 and A′
2. Because the angularity A′

1−2 is a suban-
gularity of A′′, the merged angularity A′′ is globally angle rigid
according to Corollary 1.

C. Minimal Angle Rigidity

Minimal angle rigidity plays an important role in deriving
angle rigidity’s necessary and sufficient conditions. Inspired by
Laman theorem for 2-D distance-constrained frameworks, we
now present some results on 3-D infinitesimal minimal angle
rigidity, whose definition is the same as [14, Definitions 9 and
10] after replacing 2-D by 3-D. Thus, for more details about the

definition of infinitesimal minimal angle rigidity, we refer the
readers to [14].

Lemma 2: A 3-D angularity A(V,A, p) is infinitesimally
minimally angle rigid if and only if it is infinitesimally angle
rigid and |A| = 3|V| − 7.

The proof of Lemma 2 follows straightforwardly from the
fact that the magnitude of each 3-D angle is invariant under its
associated vertices’ overall translation, rotation, and scaling.

Lemma 3: A 3-D infinitesimally minimally angle rigid angu-
larity must have a vertex associated with more than 2 but fewer
than 9 angle constraints.

From Lemma 2, the proof of Lemma 3 can be obtained
straightforwardly by following the proof of [14, Lemma 4].
However, according to Lemma 3, there are six cases for the
number of the vertex’s associated constraints, which makes it
challenging to use Laman’s induction method to get a neces-
sary condition for angle rigidity. Instead, we focus on a spe-
cial class of angularity, namely tetrahedral angularity whose
angle set A is a tetrahedral angle set. We say A is a trian-
gular angle set if for every (i1, j1, k1) ∈ A, there also exists
{(j1, k1, i1), (k1, i1, j1)} ⊂ A. We say A is a tetrahedral angle
set if A is a triangular angle set and for every triangular an-
gle subset T�i1j1k1

:= {(i1, j1, k1), (j1, k1, i1), (k1, i1, j1)} ∈
A, there always exists a vertex m ∈ V, m �= i1 �= j1 �= k1
such that T�i1j1 m ∈ A, T�i1k1 m ∈ A, T�j1k1 m ∈ A. We say
{T�i1j1k1

, T�i1j1 m, T�i1k1 m, T�j1k1 m} is a tetrahedral angle
subset corresponding to tetrahedron mi1j1k1.

Definition 10: An angularity A(V,A, p) is said to be in-
finitesimally minimally and tetrahedrally angle rigid if A is a
tetrahedral angle set, A is infinitesimally angle rigid and fails to
remain so after removing any tetrahedron in A.

Let nA ∈ N be the number of tetrahedra in the tetrahedral
angle set A. Let Ā be the multiset satisfying that each element
of Ā is a triplet, Ā consists of nA tetrahedral angle subset of A,

|Ā| = 3 ∗ 4 ∗ nA , and duplicate elements may exist in Ā.
Proposition 5: For an infinitesimally minimally and tetra-

hedrally angle rigid angularity A(V,A, p), one has that nA =

� 3|V|−7
5 �, and A must have a vertex associated with one or two

tetrahedra in Ā.
Proof: First, we prove nA = � 3|V|−7

5 �. From Lemma 2, an-
gle rigid angularities’ minimum number of independent angle
constraints (the definition of independent angles is given in [14,
Definition 8]) is 3|V| − 7. Since each tetrahedron has five in-

dependent angle constraints, one has nA = � 3|V|−7
5 �. Then, we

prove A must have a vertex associated with one or two tetrahedra.
Suppose on the contrary that each vertex is associated with at
least three tetrahedra in Ā. Since Ā is a tetrahedral angle set and
each vertex m will show up nine times in its associated tetrahe-
dral angle subset {T�i1j1k1

, T�i1j1 m, T�i1k1 m, T�j1k1 m}, all
the vertices’ appearance times in Ā will be at least 3 ∗ 9 ∗ |V|.
However, the set Ā only has 3 ∗ 4 ∗ nA triples, i.e., all the

vertices’ total appearance times in Ā are 3 ∗ 12 ∗ nA . Since

36nA = 36� 3|V|−7
5 � < 27|V|, this implies a contradiction, for

which A must have a vertex associated with one or two tetrahe-
dra.
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Although there are only two cases for the number of the
vertex’s associated tetrahedra in an infinitesimally, minimally
and tetrahedrally angle rigid angularity, the combinatory form of
those tetrahedra with respect to the other vertices inV is multiple,
which makes it challenging to obtain a similar conclusion like
Laman’s theorem. Nevertheless, the conclusions presented in
this section can be a foundation for further investigation of 3-D
minimal angle rigidity.

D. Angle Rigidity of Convex Polyhedra

As is well known, distance rigidity of convex polyhedra is
one of the oldest geometric problems and has been studied
by Euler [1], Cauchy [2], and Gluck [25], to name a few.
Although many distance rigidity-related results have been ob-
tained for convex polyhedra, the problem of angle rigidity of
convex polyhedra1 has not been investigated so far. Instead of
using edge-based frameworks, we use angularities introduced in
Section II-B to describe polyhedra with angle constraints.

For a convex polyhedron P , we define the corresponding
angularity A(V,A, p), where V is the vertex set consisting of
all the vertices of P , A is the angle set consisting of all the
angles2 of the faces of P , and p is the position vector of the
3-D embedding of the vertices in V . Define the angle function
fA(p) := [f1, . . . , f|A|]

T ∈ R|A| for the angularity A(V,A, p)
where fm : R9 → [0, π], m = 1, . . . , |A|, is the mapping from
[pTi , p

T
j , p

T
k ]

T of the mth element (i, j, k) in A to the angle
�ijk. The main difference between this section and the previous
sections is that the angle constraints of a polyhedron are not in
a cascading sequence, but all on its surfaces.

Lemma 4 ([32], Sec. 10.3.2, Th. 1): If all angles on the faces
of a convex polyhedron P remain constant when A is perturbed,
then all the dihedral angles of P remain constant.

Lemma 5 ([32], Sec. 10.4.1, Th. 1): If all edge lengths, angles
in faces, and dihedral angles of a convex polyhedron P remain
constant under a perturbation of A, then the perturbation must
be a translation or rotation of A.

With the properties of the perturbation provided in Lemmas
4 and 5, we now provide a specific class of A such that these
properties can be used for angle rigidity of convex polyhedra.

Theorem 2: The angularity A(V,A, p) obtained from a con-
vex polyhedron P with all faces being triangles is angle rigid.

Proof: Following Definition 1, we consider A’s equivalent
angularity A′(V,A, p′) with ‖p′ − p‖ < ε, ε > 0, and denote by
P ′ the corresponding polyhedron. Since A and A′ are equivalent,
each two corresponding face angles in A and A′ have the same
value (i.e., fA(p) = fA(p

′)). According to Lemma 4, one has
that each two corresponding dihedral angles formed by two
adjacent faces in P and P ′ have the same value.

Considering an arbitrary face triangle �ijk, i, j, k ∈ V ,
one has �ijk(pi, pj , pk) ∼ �ijk(p′i, p

′
j , p

′
k). Now, we scale

1We only consider closed polyhedra in this article.
2For a closed polyhedron, one can easily distinguish the inside that its surfaces

enclose from its outside, so it is possible to define the positive directions of
the faces to be the normals pointing outwards. Therefore, the angle constraints
on the surfaces of such a polyhedron can be associated with the clockwise or
counterclockwise directions.

Fig. 8. Angle rigidity of convex polyhedra. (a) Convex polyhedron with
triangular surfaces. (b) Surface triangulation. (c) Coplanar face.

A′ to obtain A′′, which satisfies ‖pi − pj‖ = ‖p′′i − p′′j‖,
‖pi − pk‖ = ‖p′′i − p′′k‖ and ‖pk − pj‖ = ‖p′′k − p′′j‖. We de-
note the scaled polyhedron by P ′′. Since the scaling will not
change all (face or dihedral) angles of a polyhedron, one
has fA∗−A(p

′) = fA∗−A(p
′′) and fA(p

′) = fA(p
′′), where A∗ =

{(i, j, k)|∀i, j, k ∈ A, i �= j �= k} is the complete angle set.
Now, we check A and A′′. First, all the face angles have the same
values in A and A′′ because fA(p) = fA(p

′) = fA(p
′′). Second,

all the dihedral angles in P and P ′′ have the same values because
P and P ′ have the same dihedral angles and A′′ is a scaling
of A′. Third, because �ijk(pi, pj , pk) � �ijk(p′′i , p

′′
j , p

′′
k), the

lengths of the edges in P have the same values as the lengths of
the corresponding edges in P ′′, which can be obtained by using
the law of sines iteratively for the face triangles in P and P ′′.
From the above three facts and using Lemma 5 for A and A′′, one
has that A′′ is the translation or rotation of A, under which the
values of all triple-vertex angles remain unchanged. It follows
that fA∗−A(p) = fA∗−A(p

′′) = fA∗−A(p
′). Therefore, A and A′

are congruent, and A is angle rigid.
Instead of focusing on convex polyhedra with triangular faces

[see Fig. 8(a)], we now study the case of convex polyhedra
whose faces are not necessarily triangles. Note that when a face
is not a triangle, the face’s vertices may become noncoplanar
under perturbations, for which we now develop the operations
of polygonal triangulation and surface triangulation.

Definition 11 (Polygonal triangulation [29]): Polygonal tri-
angulation is the decomposition of a polygon into a set
of triangles where any two of these triangles either do
not intersect at all or intersect at a common vertex or
edge.

Definition 12 (Surface triangulation): Surface triangulation
for a polyhedron P is the decomposition of the surface of P
using polygonal triangulation for each face of P and at the same
time any two decomposed triangles from two faces of P either
do not intersect at all or intersect at a common vertex or edge.

An example of surface triangulation is shown in Fig. 8(b).
Then, we define the corresponding triangulated angularity.

Definition 13 (Triangulated polyhedral angularity): Let K
be a surface triangulation of a polyhedron P with the vertex
setV = {1, 2, . . ., N} and embedding p = [p�1 , . . ., p

�
N ]�. Then,

we call A(V ∪ V,′ A, [p�, p′�]�) a triangulated polyhedral an-
gularity, where V′ is the vertex set consisting of the vertices
added in the surface triangulation K, p′ is the corresponding
embedding of the vertices in V′, and A denotes the angle set
consisting of the interior angles of all polygonal faces of the
polyhedron with vertices V ∪ V′ and embedding [p�, p′�]� and
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all the interior angles of triangles3 obtained by K for the surface
of P . Then, the polyhedron corresponding to K is called a
triangulated polyhedron P̃ .

Note that if P is convex, we say its corresponding A is a
convex triangulated polyhedral angularity. We first present two
lemmas which will be needed for the proof of the main result.

Lemma 6: When locally perturbing the convex triangulated

polyhedral angularity A
(
V ∪ V,′ A,

[
p�, p′�

]�)
, the vertices

of V ∪ V′ that are on a face of P̃ are always coplanar under the
angle constraints given in A.

Proof: We first prove that under the given angle constraints
all the triangles in a face of P̃ will be coplanar under the
local perturbation. Consider an arbitrary face S of P̃ whose
vertices consist of I = {i1, . . ., im}wherem ≥ 3. Suppose that
ik, 1 ≤ k ≤ m is one of the vertices in S and is involved in face
triangles�j1ikj2,�j2ikj3, . . .,�jn−1ikjn where j1, . . ., jn ∈
I and j1, . . ., jn �= ik, and an example is in Fig. 8(c). Note
that if j1 = jn−1 and j2 = jn, i.e., ik is only involved in
one triangle �j1ikj2 in S, then one has that j1, ik, j2 are
coplanar since three arbitrary points in 3-D are coplanar.
When ik is involved in more than one triangle in S, one has
{(j1, ik, j2), (j2, ik, j3), . . ., (jn−1, ik, jn)} ∈ A, (j1, ik, jn) ∈
A and �j1ikj2 + �j2ikj3 + · · ·�jn−1ikjn = �j1ikjn. Since
all the vertices ofV andV’ lie on the boundary of the polyhedron,
under the local perturbation, ik, j1, j2, . . ., jn must be coplanar;
otherwise �j1ikj2 + �j2ikj3 + · · ·+ �jn−1ikjn > �j1ikjn,
which violates the given angle constraints. Note that for each
triangle �ijk in face S, there always exists another triangle in
face S that shares a common edge with �ijk. Without loss of
generality, assume that the another triangle is �ijk̃ and the in-
tersected edge is ij. Consider the first case that i is only involved
in these two triangles in face S. Then {(j, i, k), (j, i, k̃)} ∈ A,
(k, i, k̃) ∈ A and �jik + �jik̃ = �kik̃. Under local perturba-
tion, these two triangles are coplanar. The second case is that
i is involved in multiple triangles, using the same argument
for the shared vertex as ik, one has that these triangles are
coplanar.

To prove that all the vertices in each face S is coplanar, we now
consider that vertex ik is involved in n− 1 coplanar triangles in
face S, and its neighboring vertex ik+1 is involved in ñ coplanar
triangles in S, for which an example is in Fig. 8(c). Note that
those n− 1 triangles from ik and ñ triangles from ik+1 must
share at least one common triangle because of the existence of
edge ikik+1. Then, those n+ ñ− 2 triangles of ik and ik+1

should be coplanar, and thus all the these triangles’ vertices are
coplanar. Next, if ik+1 has a different neighboring vertex than
ik, we consider this vertex and label it ik+2. Using the previous
argument again, one has that all triangles of ik, ik+1, ik+2 are
coplanar. Using this argument repeatedly for new neighboring
vertices until one reaches all vertices in I, one has that all the
triangles in S ∩ K are coplanar since the vertices of each triangle
in S ∩ K lie in I. Because all the triangles in S ∩ K cover all
the vertices in I, one has that the vertices of V ∪ V′ that is in

3Since the sum of three interior angles of each triangle is π, each triangle has
one redundant angle in the angle set.

S are coplanar under the perturbation. The same holds for the
other faces of P̃ . �

Lemma 7: When locally perturbing the convex triangulated
polyhedral angularity A(V ∪ V,′ A, [p�, p′�]�), if the scale of a
triangle in a face of P̃ remains constant, then all the edge lengths
of P̃ remain constant.

Proof: Note that after triangulating the faces of the polyhe-
dron P , the surface of P̃ becomes K, in which each triangle
�ijk ∈ K has three neighboring triangles and each of them
shares a different edge with the triangle �ijk. When the scale
of this arbitrary triangle�ijk inK is fixed, its three neighboring
triangles also have the same fixed scale using the law of sines.
Now, we show why the scales of all the other triangles in K
are fixed as well. Let the face where �ijk lies be S1 and the
total number of triangles in S1 is m. Then, after fixing the scale
of the three neighboring triangles of �ijk, one can fix �ijk’s
neighboring triangles’ neighboring triangle; such a propagating
fixing process will fix the scales of all the triangles in S1. Now,
consider S1’s neighboring face S2 that shares at least one edge
with S1. Since the scales of all triangles in S1 are fixed, the
length of this shared edge is fixed and the scale of the triangle
containing this edge in S2 is also fixed. Apply for S2 the same
argument for S1, all the triangles in S2 can be fixed. Because
the polyhedron P is closed, under the triangulation K, one can
always fix the neighboring triangles from those triangles with
fixed scale until all the triangles in K are fixed. Therefore, all
the edge lengths are constant provided that one triangle’s scale
is constant. �

Now, we present the main result about the convex triangulated
polyhedral angularity.

Theorem 3: A convex triangulated polyhedral angularity
A(V ∪ V,′ A, [p�, p′�]�) without any vertex of V′ lying in the
interior of a face of P is angle rigid.

Proof: We prove Theorem 3 following the proof of
Theorem 2. According to Lemma 6, one has that the vertices
of V ∪ V′ that are involved in a face of P̃ will be coplanar under
the perturbation. Therefore, using Lemma 4, each corresponding
dihedral angle formed by two adjacent faces keep constant under
the perturbation. On the other hand, Lemma 7 implies that all
the edge lengths of P̃ keep constant under the given conditions.
Based on these two facts and the proof of Theorem 2, one has
that A is angle rigid. �

A face in a convex polyhedron is said to be infinitesimally
angle rigid if the face can only translate, rotate and scale under
any local perturbation. We now consider the case where each
face of the convex polyhedron is infinitesimally angle rigid.

Corollary 2: A convex polyhedron with infinitesimally angle
rigid faces is angle rigid.

The proof of this corollary follows the proof of Theorem 2. On
the one hand, all angles in each face will remain constant under a
perturbation according to the definition of infinitesimally angle
rigid face. On the other hand, translation and rotation of a face
will not change the lengths of its edges. When one edge length
is fixed under the perturbation, the scale of the infinitesimally
angle rigid face is also fixed, which implies that the lengths of
the other edges of the face are fixed. Note that each face of
the convex polyhedron has at least three neighboring faces and
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each pair of them share a different edge with the original face.
Therefore, by fixing edge length iteratively, all the edge lengths
of the polyhedron will be fixed given one fixed edge length in
the polyhedron. From the above two facts and Lemma 5, one
has that the convex polyhedron is angle rigid.

E. Comparison With 2-D Angle Rigidity

Recently, rigidity or infinitesimal shape-similarity of 2-D
angle-constrained frameworks has been investigated in [13],
[14], [15]. Compared with the existing results in 2-D [13],
[14], [15], the contributions of the developed 3-D angle rigidity
in this article lie in three aspects. First, we show in Section
III-A that each angle constraint determines a conic or near-
spherical surface in 3-D, where a counterclockwise constraint
is defined to avoid reflection ambiguity. Second, the approaches
of constructing and merging 3-D angle rigid frameworks are
proposed in Sections III-A and III-B. The proposed sequential
construction approach for 3-D angle rigid and globally angle
rigid frameworks can also be employed as topological conditions
to check 3-D frameworks’ angle rigidity. Last, angle rigidity of
convex polyhedra is discussed in Section III-C, in which all
the angle constraints only lie in the faces of polyhedra and
no sequential construction from the given angle constraints is
applicable.

IV. APPLICATION TO 3-D DIRECTION-ONLY FORMATIONS

In the applications of autonomous aerial refueling, drone
swarm’s group display, and satellite formation keeping [33],
a desired 3-D formation is usually required to be formed by
those teams of vehicles, where 2-D angle-based formation algo-
rithms [13], [14], [15], [23] cannot be used. In addition, many
proposed formation control algorithms require the measure-
ments of aligned bearings [10], [34], bearings under specific
coordinate frames [11], [26], or relative positions [13], [19],
[24], [35]. An angle-based synthesized controller is proposed
in [36], which applies to d-dimensional space and arbitrary
topology if interagent distance measurements are available. In
some of those applications, compared with the aligned bearing
or relative position measurements, direction (or local bearing)
measurements are more accessible [14], [15], [22]. Therefore,
in this section, we design direction-only formation algorithms to
stabilize 3-D angle rigid formations with the help of 3-D angle
rigidity theory that we have just developed.

Consider a team of N ≥ 3 agents, labeled by 1, 2, . . . , N , in
3-D, each of which is governed by single-integrator dynamics

ṗi = ui, i = 1, . . . , N (2)

where pi ∈ R3 denotes agent i’s position, and ui ∈ R3 is the
control input to be designed. Each agent i can measure the
directions

−→
ij , j ∈ Ni and only communicates with its neighbors

when the formation is constructed by Type-I vertex addition,
where Ni denotes agent i’s sensing neighbor set. Following
Proposition 1 (case 2), we first introduce a constructive mecha-
nism for building an N -agent globally angle rigid formation by
Type-I vertex addition. Denote byα∗

jik ∈ (0, π) agent i’s desired
angle formed with agents j, k.

Algorithm 1: Construct An N -Agent Globally Angle Rigid
Formation Based on Type-I Vertex Addition (Case 2).

Step 1: Construct the first triangular formation using three
desired interior angles α∗

312, α∗
123, α∗

231.
Step 2: Add agent 4 using three desired interior angles
α∗
412, α∗

421, α∗
423 and one desired counterclockwise

constraint of agent 4 with respect to agents 1, 2, 3.
· · ·
Step k-2: Add agent k using three desired interior angles
α∗
ki1i2

, α∗
ki2i1

, α∗
ki2i3

, i1 < k, i2 < k, i3 < k and one
desired counterclockwise constraint of agent k with
respect to agents i1, i2, i3.
· · ·
Step N-2: Add agent N using three desired interior angles
α∗
Nj1j2

, α∗
Nj2j1

, α∗
Nj2j3

, j1 < N, j2 < N, j3 < N and
one desired counterclockwise constraint of agent N with
respect to agents j1, j2, j3.

Similarly, a mechanism based on the Type-II vertex addition
can also be proposed to construct an N -agent angle rigid forma-
tion. Correspondingly, in the follow-up sections, we first control
the first three agents to form the desired triangular formation,
and then control the remaining agents following the sequence
of Type-I or Type-II vertex additions. Finally, we consider the
control of convex polyhedral formations.

A. Formation Control for the First Three Agents

In this section, the control objectives for agents 1 to 3 are

lim
t→∞

ei(t) = lim
t→∞

(
α[i−1]i[i+1](t)− α∗

[i−1]i[i+1]

)
= 0 (3)

where i = 1, 2, 3, [i] = i for i = 1, .., 3, [i− 1] = 3 for i = 1,
[i+ 1] = 1 for i = 3, and αjik = arccos

(
bTijbik

)
. Different

from the bisector moving rule employed for 2-D angle rigid
formations [14], motivated by [37], we design the following
cyclic pursuing rule:

ui(t) = −
(
α[i−1]i[i+1](t)− α∗

[i−1]i[i+1]

)
bi[i+1](t) (4)

where each agent i only needs to measure the directions−−−−→
i[i+ 1] and

−−−−→
i[i− 1] in its own coordinate frame to im-

plement (4), and no interagent communication is required.
Now, we study the angle error dynamics. Suppose lij(0) �= 0
and sinαjik(0) �= 0, i, j, k = 1, 2, 3, then ∃T1 > 0 such that
lij(t) �= 0, sinαjik(t) �= 0, ∀t ∈ [0, T1). Then for t ∈ [0, T1),
according to the calculation of an angle’s time-derivative in [38,
Eq. (6)] or [14, Eq. (31)], one has

ė1 = α̇312 = −
(
ḃT13b12 + bT13ḃ12

)
/sinα312

= −
[
Pb13(ṗ3 − ṗ1)

l13 sinα312

]T

b12 − bT
13

Pb12(ṗ2 − ṗ1)

l12 sinα312
. (5)

where Pb13 = I3 − b13b
�
13. By substituting (4) into (5), it fol-

lows:

bT13ḃ12 = bT13Pb12/l12 [(α312 − α∗
312) b12 − (α123 − α∗

123) b23]

= − (sinα312 sinα123/l12) (α123 − α∗
123) . (6)
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Similarly

ḃT13b12=
(
bT12Pb13/l13

)
[(α312−α∗

312)b12−(α231−α∗
231)b31]

=
(
sin2 α312/l13

)
(α312 − α∗

312). (7)

By substituting (6) and (7) into (5), one obtains

ė1 = −(sinα312/l13)e1 + (sinα123/l12)e2. (8)

By following the steps similar to (5)–(8), one has the dynamics
ė2 and ė3. Then, one has the overall angle error dynamics of the
first three agents

ėf =

⎡
⎢⎣ė1ė2
ė3

⎤
⎥⎦ = F1(ef )ef =

⎡
⎢⎣−g312 g123 0

0 −g123 g231

g312 0 −g231

⎤
⎥⎦ ef

(9)

where gjik = sinαjik/lji, i, j, k ∈ {1, 2, 3}. Since e1 + e2 +
e3 ≡ 0, e1, e2, e3 are linearly dependent. Using the fact ė2 =
−g123e2 + g231e3 = −g231e1 − (g123 + g231)e2, (9) can be
equivalently described by

ės =

[
ė1

ė2

]
=

[
−g312 g123

−g231 −(g123 + g231)

][
e1

e2

]
= Fs(es)es.

(10)
Although (10) is derived for t ∈ [0, T1), we now show that T1

can be extended to infinity.
Lemma 8 (Noncollinearity): For the three-agent formation

under the control law (4), if the formation is not initially
collinear, it will not become collinear for ∀t > 0, and thus (10)
applies for any t > 0.

Proof: We prove by contradiction. Suppose collinearity may
occur for t > T1, and let Ts be the first time at which the three
agents approach being collinear. Then at T−

s , it must be true that
for the triangular formation formed by these three agents, two in-
terior angles approach zero and the third approaches π. Without
loss of generality, assume that agent 1 is the agent associated with
the interior angle approaching π, and thus α1(T

−
s ) = π − ε1,

α2(T
−
s ) = ε2 and α3(T

−
s ) = ε3 for some infinitesimally small

positive numbers ε1, ε2, and ε3 satisfying ε1 = ε2 + ε3. For
t ∈ [0, Ts), one has

ė1 = −g312e1 + g123e2. (11)

Since α∗
1 is bounded away from π, e1(T−

s ) > 0; since α∗
2 is

bounded away from zero, e2(T−
s ) < 0. In addition, one can fur-

ther check that at T−
s , g312>0 and g123>0. Hence, ė1(T−

s )<0,
which implies that at T−

s , if time further evolves, α1 decreases
away from π, which contradicts the assumption that at Ts, the
three agents become collinear and thus α1 becomes π. This
contradiction completes the proof. �

Now, we present the convergence result for the three agents.
Theorem 4: For the three-agent formation under the control

law (4), if α312(0), α123(0), α231(0) are not zero, the initial
angle errors ei(0), i = 1, 2, 3 are sufficiently small and the initial
distances l12(0), l23(0), l31(0) are bounded away from zero, then
the angle errors ei(t) converge exponentially to zero.

Proof: To show the local convergence of ei, we use lineariza-
tion to analyze the angle error dynamics (10). By taking e1 as an
example, the linearized dynamics around the desired equilibrium

es = 0 are

ė1 =

[
∂(−g312e1 + g123e2)

∂e1
|es=0

]
e1

+

[
∂(−g312e1 + g123e2)

∂e2
|es=0

]
e2

= − g∗312e1 + g∗123e2 (12)

where g∗jik = gjik|es=0, j �= i �= k and j, i, k ∈ {1, 2, 3}. Then,
by following the same step as (12) for e2, the linearized dynamics
of (10) can be written as

ės = A1es (13)

where A1 = Fs(es)|es=0 is a 2-by-2 constant matrix. Then,
one has tr(A1) = −g∗312 − g∗123 − g∗231 < 0 and det(A1) =
g∗312(g

∗
123 + g∗231) + g∗123g

∗
231 > 0, where tr() and det() repre-

sent the trace and determinant of a square matrix, respectively.
It follows that A1 is Hurwitz. Following [14, Th. 5], it is
straightforward to have that

e21 + e22 = ‖es‖2 ≤ V1

λmin(P1)
≤ V1(0)

λmin(P1)
e
− t

λmax(P1) . (14)

where V1 = eT
sP1es and −I2 = P1A1 +AT

1P1. Since e1 +
e2 + e3 ≡ 0, one has

e23 = e21 + e22 + 2e1e2 ≤ 2
(
e21 + e22

)
≤ 2V1(0)

λmin(P1)
e
− t

λmax(P1)

which implies that ei, i = 1, 2, 3, under the dynamics (9) is
locally and exponentially stable. �

Remark 5: The triangular formation’s local convergence
is still guaranteed if the control law (4) is general-
ized to ui(t) = −(α[i−1]i[i+1](t)− α∗

[i−1]i[i+1])(γ1bi[i−1](t) +

γ2bi[i+1](t)), where γ1 ≥ 0, γ2 ≥ 0 and γ1 + γ2 = 1. The sta-
bility analysis for the cases γ1 = 0 and γ1 = 1 is given in
Theorem 4. For the case γ1 ∈ (0, 1), where each agent moves
towards the inner side of its interior angle (or its opposite di-
rection), since u1(t), u2(t), u3(t) always lie in the plane formed
by p1(0), p2(0), p3(0), the evolution trajectories of the first three
agents will be within a 2-D plane. According to [39], the stability
under γ1 ∈ (0, 1) can be obtained straightforwardly. Combining
the above two cases, one has that a convex combination of bi[i−1]

and bi[i+1] in agent i’s controller is valid for the formation’s
convergence.

Since the convergence of (10) is only proved to be local, we
now propose another control strategy such that the triangular
formation is (almost) globally stable. Consider that agent 1 is
static, i.e., ṗ1(t) = 0, and agents 2 and 3 are controlled by

u2 = − (α123 − α∗
123) b23, u3 = − (α231 − α∗

231) b32 (15)

where no interagent communication is required.
Theorem 5: For the three-agent formation under the control

laws (15), if p1(0), p2(0), p3(0) are not collinear, then the angle
errors ei(t), i = 1, 2, 3 globally converge to zero.

Proof: According to the moving directions of agents 2 and 3,
the three agents will not be collinear for ∀t > 0. Now, we first
prove that no collision will occur between agents 2 and 3 using
contradiction. Suppose that agents 2 and 3 first collide at t =
Tc > 0. Then, there are three possible cases for the two agents’
status at T−

c , namely, (a) one of them is static, (b) they move

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on May 01,2024 at 08:11:17 UTC from IEEE Xplore.  Restrictions apply. 



6140 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 68, NO. 10, OCTOBER 2023

Fig. 9. Three possible collision cases.

toward each other, (c) they move along the same direction, which
are shown in Fig. 9. For the case (a), agent 2 being static implies
α123(T

−
c ) = α∗

123. Since the angle α132 decreases monotoni-
cally along the ray

−→
23, there exists a unique position p∗3 in

−→
23 such

that α231(p2(T
−
c ), p∗3, p1) = α∗

231. Since p∗3 is bounded away
from p2(T

−
c ) and agent 3 is controlled by an angle error feedback

law (15), it is impossible that agent 3 will collide with agent 2
at p2(T−

c ). For case (b), according to the moving directions of
the agents, α123(T

−
c ) < α∗

123 and α231(T
−
c ) < α∗

231. Then, the
fact that α123(T

−
c ) + α132(T

−
c ) is sufficiently close to π con-

tradicts the fact that π = α∗
123 + α∗

231 + α∗
312 > α123(T

−
c ) +

α231(T
−
c ) + α∗

312 since α∗
312 is bounded away from 0. For case

(c), denote by p∗2, p
∗
3 the desired positions of agents 2, 3, respec-

tively. According to the agents’ moving directions, p∗3 must be in
the right side of p∗2 and ‖u2(T

−
c )‖ = |e2(T−

c )| > ‖u3(T
−
c )‖ =

|e3(T−
c )|. Since α∗

123 = α212(p
∗
2, p1, p2(T

−
c )) + α123(T

−
c ) and

α132(T
−
c ) = α∗

132 + α313(p3(T
−
c ), p1, p

∗
3), one has |e2(T−

c )| =
α212(p

∗
2, p1, p2(T

−
c )) and |e3(T−

c )| = α313(p3(T
−
c ), p1, p

∗
3).

Since p2(T−
c ) is sufficiently close to p3(T

−
c ) and p∗2 is bounded

away from p∗3, α212(p
∗
2, p1, p2(T

−
c )) < α313(p3(T

−
c ), p1, p

∗
3)

which contradicts the fact |e2(T−
c )| > |e3(T−

c )|. Since these
three cases are impossible, l23(t) is bounded away from zero
∀t > 0, which also implies sinα123(t), sinα231(t) are bounded
away from zero. Then, following (5), one has the overall angle
error dynamics:[

ė2

ė3

]
= −

[
sinα123/l21 0

0 sinα231/l31

][
α123 − α∗

123

α231 − α∗
231

]

(16)

Since sinα123/l21 > 0 and sinα231/l31 > 0 are lower and up-
per bounded, e2, e3 converge to zero globally according to [40,
Th. 2.5.1]. �

B. Sequential Formation Control for the Remaining
Agents by Type-I Vertex Addition

In this section, we control the remaining agents to achieve
their desired angles defined in the constructive Algorithm 1’s
Steps 2 to N − 2. To be specific, the control objectives for agent
i, 4 ≤ i ≤ N, are

limt→∞ ei1(t) = limt→∞
(
αij1j2(t)− α∗

ij1j2

)
= 0 (17)

limt→∞ ei2(t) = limt→∞
(
αij2j1(t)− α∗

ij2j1

)
= 0 (18)

limt→∞ ei3(t) = limt→∞
(
αij2j3(t)− α∗

ij2j3

)
= 0 (19)

where i = 4, . . . , N , j1 �= j2 �= j3 j1 < i, j2 < i, j3 < i, and
α∗
ij1j2

∈ (0, π), α∗
ij2j1

∈ (0, π), α∗
ij2j3

∈ (0, π) denote three de-
sired angles that agent i aims at maintaining with its neighboring
agents j1, j2, j3.

We first illustrate how to control agent 4, and then extend the
result to theN -agent case. We propose the following control law
for agent 4

u4 = (α412 − α∗
412) b42 + (α421 − α∗

421) b41

+ (α423 − α∗
423) b43. (20)

where the real-time angle information α412 = arccos
(
bT14b12

)
cannot be calculated by agent 4’s own direction measurements,
but can be calculated via agent 1’s direction measurements−→
14,

−→
12. Therefore, the implementation of control law (20) relies

on not only agent 4’s direction measurements
−→
41,

−→
42,

−→
43, but also

the real-time angle information α412(t), α421(t), α423(t) which
can be sent from agents 1 and 2 to agent 4 through wireless
communication. Now, we present the convergence of agent 4.

Theorem 6: For the four-agent formation under
the control (4) and (20), if α123(0), α231(0), α312(0),
α412(0), α421(0), α423(0) are not zero or π, the initial angle
errors ei(0), e4i(0), i = 1, 2, 3 are sufficiently small, the initial
distances ljk(0), j �= k, j, k ∈ {1, 2, 3, 4} are bounded away
from zero and p4(0) is sufficiently away from the plane formed
by p1(0), p2(0), p3(0), then the angle errors e4i(t) converge
exponentially to zero.

Proof: Since ljk(0) and sinα412(0), sinα421(0), sinα423(0)
are not zero, ∃T2 > 0 such that for t ∈ [0, T2), ljk(t) �= 0 and
sinα412(t), sinα421(t), sinα423(t) are not zero. Now, we study
the dynamics of angle errors e41 = α412 − α∗

412, e42 = α421 −
α∗
421, e43 = α423 − α∗

423. Taking e41 as an example, similar to
(5), one has

ė41 = −
[
Pb14(ṗ4 − ṗ1)

l14 sinα412

]T

b12 − bT
14

Pb12(ṗ2 − ṗ1)

l12 sinα412
. (21)

Substituting (20) and (4) into (21) yields

ė41= − sinα142

l14
(α412−α∗

412)−
bT12Pb14b43
l14 sinα412

(α423 − α∗
423)

− e1b
T
12Pb14b12/(l14 sinα412)

+ e2b
T
14Pb12b23/(l12 sinα412).

Similarly, one can compute ė42 and ė43 to obtain

ė4 =
[
ė41 ė42 ė43

]T
= F4(es, e4)e4 +G4(es, e4)es

= −

⎡
⎢⎢⎣

sinα142

l14
0

bT12Pb14
b43

l14 sinα412

0 sinα142

l24

bT21Pb24
b43

l24 sinα421

0
bT23Pb24

b41
l24 sinα423

sinα243

l24

⎤
⎥⎥⎦
⎡
⎣e41e42
e43

⎤
⎦

+

⎡
⎣G11 G12

G21 G22

G31 G32

⎤
⎦[

e1
e2

]
(22)

where G11 = − bT12Pb14
b12

l41 sinα412
, G12 =

bT14Pb12
b23

l12 sinα412
, G21 = 0,

G22 = −
(

bT21Pb24
b23

l24 sinα421
+

bT24Pb21
b23

l21 sinα421

)
, G31 = − bT24Pb23

b31
l23 sinα423

,

G32 = −
(

bT23Pb24
b23

l24 sinα423
+

bT24Pb23
b31

l23 sinα423

)
. Then, we check the local

stability of the four-agent formation. Linearizing (22) around
the desired equilibrium {es = 0, e4 = 0} by following (12),
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one has the linearized dynamics

ė4 = A4e4 +B4es (23)

where A4 = F4(es, e4)|es=0,e4=0, B4 = G4(es, e4)|es=0,e4=0

are constant matrices. Now, we check whether A4 is Hurwitz.

det(λI3 −A4)

= (λ + sinα∗
142/l

∗
14) (λ + sinα∗

142/l
∗
24) (λ + sinα∗

243/l
∗
24)

−
(

λ +
sinα∗

142

l∗14

) (
b∗T21Pb∗24

b∗43
)

l∗24 sinα
∗
421

(
b∗T23Pb∗24

b∗41
)

l∗24 sinα
∗
423

(24)

where λ ∈ C denotes the eigenvalue of A4, l∗ji and b∗ji, j, i ∈
V are the distance and bearing evaluated at {es = 0, e4 =
0}, respectively. Checking the eigenvalues of A4 by letting
det(λI3 −A4) = 0, one has that A4 always has an eigenvalue
−sinα∗

142/l
∗
14 < 0. However, due to the second component in

(24), it is challenging to check the sign of the real parts of the
remaining two eigenvalues of A4. Here, we first calculate(

b∗T21Pb∗24
b∗43

) (
b∗T23Pb∗24

b∗41
)

=
(
l∗23b

∗T
21Pb∗24

b∗23/l
∗
43

) (
l∗43b

∗T
43Pb∗24

b∗41/l
∗
23

)
= [cosα∗

123 − cosα∗
423 cosα

∗
421] [cosα

∗
143

− cosα∗
142 cosα

∗
243] (25)

where we used the facts that b43 = (p3−p2)+(p2−p4)
l43

, Pb24(p2 −
p4) = 0, and b23 = (p3−p4)+(p4−p2)

l23
. Then, the other two eigen-

values of A4 satisfy

λ2 + (sinα∗
142/l

∗
24 + sinα∗

243/l
∗
24) λ + ε1 = 0 (26)

where ε1=− [cosα∗
123−cosα∗

423 cosα∗
421]

l∗24 sinα∗
421

[cosα∗
143−cosα∗

142 cosα∗
243]

l∗24 sinα∗
423

+
sinα∗

142

l∗24

sinα∗
243

l∗24
. If ε1 > 0, then the remaining two eigenvalues of

A4 have negative real parts, which implies that A4 is Hurwitz.
Note that ε1 > 0 is equivalent to

sinα∗
421 sinα

∗
423 sinα

∗
142 sinα

∗
243

> [cosα∗
123−cosα∗

423 cosα
∗
421][cosα

∗
143−cosα∗

142 cosα
∗
243].
(27)

Now, we prove that (27) holds for all tetrahedral formations
formed by agents 1–4. Splitting (27) into two inequalities
sinα∗

421 sinα
∗
423 > | cosα∗

123 − cosα∗
423 cosα

∗
421| and

sinα∗
142 sinα

∗
243 > | cosα∗

143 − cosα∗
142 cosα

∗
243|, we first

illustrate how to prove the first inequality by using the
facts that α∗

123 ∈ (0, π), α∗
423 ∈ (0, π), α∗

421 ∈ (0, π), and
α∗
123 + α∗

423 + α∗
421 < 2π, 2π > α∗

ijk + α∗
ijm > α∗

kjm >
0, i, j, k,m ∈ {1, 2, 3, 4}. There are three possible cases.

Case 1: cosα∗
123 > cosα∗

423 cosα
∗
421. When α∗

423 ≤ α∗
421,

by using 0 < α∗
421 < α∗

123 + α∗
423, one has

that 0 ≤ α∗
421 − α∗

423 < α∗
123 < π. It follows

that cos(α∗
421 − α∗

423) > cosα∗
123, which gives

sinα∗
421 sinα

∗
423 > cosα∗

123 − cosα∗
423 cosα

∗
421.

When α∗
423 > α∗

421, by using α∗
423 < α∗

421 + α∗
123,

one has −π < −α∗
123 < α∗

421 − α∗
423 < 0. It

follows that cos(α∗
421 − α∗

423) > cos(−α∗
123) =

cos(α∗
123), which also gives sinα∗

421 sinα
∗
423 >

cosα∗
123 − cosα∗

423 cosα
∗
421.

Case 2: cosα∗
123 < cosα∗

423 cosα
∗
421. When π≤ α∗

421+
α∗
423 < 2π, by using α∗

123 ∈ (0, π), (2π − (α∗
421 +

α∗
243)) ∈ (0, π] and α∗

123 < 2π − (α∗
421 + α∗

423),

one has cosα∗
123 > cos(2π − (α∗

421 + α∗
423)) =

cos(α∗
421 + α∗

423). It follows sinα∗
421 sinα

∗
423 >

cosα∗
423 cosα

∗
421 − cosα∗

123. When 0 < α∗
421 +

α∗
423 ≤ π, by using 0 < α∗

123 < α∗
421 + α∗

423 ≤
π, one also has sinα∗

421 sinα
∗
423 >

cosα∗
423 cosα

∗
421 − cosα∗

123.
Case 3: cosα∗

123 = cosα∗
423 cosα

∗
421. This case is obvious.

Combining the above three cases together, one has that
sinα∗

421 sinα
∗
423 > | cosα∗

123 − cosα∗
423 cosα

∗
421| holds for all

tetrahedral formations. The same analysis can be conducted for
the second inequality, which proves (27).

By combining (25)–(27), one has that A4 is always Hurwitz
for tetrahedral formations formed by agents 1–4. Writing (13)
and (23) into a compact form yields

˙̄e4 =

[
ės

ė4

]
= H4ē4 =

[
A1 0

B4 A4

][
es

e4

]
. (28)

Because A1 and A4 are Hurwitz, H4 is also Hurwitz. Then, for
the identity matrix I5 ∈ R5×5, there exists a positive definite
matrix P2 ∈ R5×5 such that P2H4 +HT

4 P2 = −I5. Construct
the Lyapunov function

V2 = ēT4 P2ē4. (29)

Taking the time-derivative of (29) yields V̇2 = −ēT4 ē4 ≤
−V2/λmax(P2), which implies that

‖e4‖2 ≤ ‖ē4‖2 ≤ V2

λmin(P2)
≤ V2(0)

λmin(P2)
e
− t

λmax(P2) (30)

which implies the exponential stability of ‖e4(t)‖
for t ∈ [0, T2). Since ‖ṗ4‖ ≤ |e41|+ |e42|+ |e43| ≤√
3‖e4‖ ≤

√
3V2(0)

λmin(P2)
e
− t

2λmax(P2) , one has ‖p4(t)− p4(0)‖ ≤∫ t

0 ‖ṗ4(τ)‖dτ ≤ 2λmax(P2)
√

3V2(0)
λmin(P2)

(1− e
− t

2λmax(P2) ) for

t ∈ [0, T2). Since V2(0) is sufficiently small, ‖p4(t)− p4(0)‖
is also sufficiently small for t ∈ [0, T2). Since p4(0) is
sufficiently away from the plane formed by p1(0), p2(0), p3(0),
p4(T

−
2 ) is also sufficiently away from the plane formed by

p1(0), p2(0), p3(0), which implies that l4i(T−
2 ), i = 1, 2, 3 and

sinα412(T
−
2 ), sinα421(T

−
2 ), sinα423(T

−
2 ) are not zero. Then,

one can extend T−
2 to T3, T3 > T2. In fact one can check that

when T3 → ∞, ‖p4(t)− p4(0)‖ is still sufficiently small for
∀t ∈ [0,∞), which implies that (22) is always well-defined and
‖e4(t)‖ is exponentially stable for ∀t ∈ [0,∞). �

Remark 6: The first three agents always lie in the plane
formed by p1(0), p2(0), p3(0) since the control actions (4) are
confined in this plane. If ∃T3 such that p4(T3) lies in that plane,
then p4(t), ∀t > T3 will always be in that plane according to the
control law (20). Then, the angle error (22) will not converge to
zero because in this caseF4(es, e4)becomes singular. Therefore,
Theorem 6 requires that p4(0) is sufficiently away from the plane
formed by p1(0), p2(0), p3(0).

Now, we precisely describe the requirements on l4i(0), i =
1, 2, 3, e4i(0) and the initial distance h4−123(0) between p4(0)
and the plane formed by p1(0), p2(0), p3(0) such that (22) is
well-defined. First, taking l41 as an example and letting the first
three agents static, one has

l41(t) = l41(0) +

∫ t

0

l̇41dτ ≥ l41(0)−
∫ t

0

|bT41(ṗ1 − ṗ4)|dτ
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≥ l41(0)− 4

√
V2(0)

λmin(P2)
λmax(P2)

(
1− e

− t
2λmax(P2)

)
(31)

which implies that if l41(0) > 4
√

V2(0)/λmin(P2)λmax(P2),
then no collision between agents 1 and 4 will occur for t > 0.

To guarantee that 1/ sinα412 is well-defined in (21), one
requires 0 < α412(t) < π. According to (30), one has

|e41| = |α412 − α∗
412| ≤ ‖e4‖ ≤

√
V2(0)/λmin(P2). (32)

It follows that α∗
412 −

√
V2(0)/λmin(P2) ≤ α412(t) ≤ α∗

412 +√
V2(0)/λmin(P2). Therefore, if

√
V2(0) <

√
λmin(P2) ∗

min{π − α∗
412, α

∗
412}, one always has 0 < α412(t) < π.

The distance h4−123(t) between p4(t) and the plane
formed by p1(0), p2(0), p3(0) can be calculated by

h4−123(t) =
V4−123

S123(0)
=

pT
41̄

(t)(p42̄(t)×p43̄(t))

3l12(0)l13(0) sinα213(0)
, where p4ī(t) =

pi(0)− p4(t), i = 1, 2, 3. Then, one has

V̇4−123 =
1

6
ṗT4 (p42̄ × p43̄) + pT41̄ [ṗ4 × (p3(0)− p2(0))]

≤ 1

6
(|e41|+ |e42|+ |e43|)

[
l42(max)l43(max) + l32(0)l41(max)

]
where l4i(max) = max{‖p4ī(t)‖, ∀t > 0} = l4i(0) +

4
√
V2(0)/λmin(P2)λmax(P2), and we used the fact

‖p4ī(t)‖ ≤ l4i(0) +
∫ t

0 ‖ṗ4(τ)‖dτ ≤ l4i(0) +
∫ t

0 (|e41|+
|e42|+ |e43|)‖dτ ≤ l4i(0) + 4

√
V2(0)/λmin(P2)λmax(P2).

Therefore, one has

h4−123(t) ≥ h4−123(0)−
∫ t

0

|V̇4−123(τ)|/S123(0)dτ

≥ h4−123(0)− ε2

(
1− e−0.5t/λmax(P2)

)
(33)

where ε2 =
4[l42(max)l43(max)+l32(0)l41(max)]

3l12(0)l13(0) sinα213(0)
λmax(P2)

√
V2(0)

λmin(P2)
. It

follows that if h4−123(0) > ε2, then agent 4 will never reach the
plane formed by agents 1, 2, 3.

Now, we extend the results to the N -agent case by designing
the control law for agent i, 4 ≤ i ≤ N as

ui =
(
αij1j2 − α∗

ij1j2

)
bij2 +

(
αij2j1 − α∗

ij2j1

)
bij1

+
(
αij2j3 − α∗

ij2j3

)
bij3 . (34)

Theorem 7: For the N -agent formation under the con-
trol (4) and (34), if sinαjik(0) �= 0, j, i, k ∈ {1, . . ., N}, the
initial angle errors em(0), eim,m = 1, 2, 3 are sufficiently
small, the initial distances lji(0) are bounded away from
zero and pi(0) is sufficiently away from the plane formed
by pj1(0), pj2(0), pj3(0), j1, j2, j3 ∈ Ni, then the angle errors
eim(t) converge exponentially to zero.

The proof of Theorem 7 can be obtained by combining The-
orems 4 and 6 and using the reasoning [14, Th. 6].

C. Sequential Formation Control for the Remaining
Agents by Type-II Vertex Addition

Now, we investigate the addition of the remaining agents by
Type-II vertex addition (we only focus on Case 1, and Case 2
can be similarly analyzed) developed in Definition 8. We design

the following control law for agent 4

u4 = − (α142 − α∗
142)(b41 + b42)− (α243 − α∗

243)(b42

+ b43)− (α341 − α∗
341)(b43 + b41), (35)

where α∗
142 ∈ (0, π), α∗

243 ∈ (0, π), α∗
341 ∈ (0, π) are three de-

sired angles that agent 4 aims at achieving with agents 1, 2,
3. The implementation of (35) only relies on agent 4’s direction
measurements

−→
41,

−→
42,

−→
43, and no interagent communication is re-

quired. To obtain the convergence of ẽ41 = α142 − α∗
142, ẽ42 =

α243 − α∗
243, ẽ43 = α341 − α∗

341, we aim at obtaining the dy-
namics of ẽ41, ẽ42, ẽ43. Since the three components in (35) are
similar, we first analyze the dynamics of αi4k, i, k ∈ {1, 2, 3}.
Using (5) and (35), one has

α̇i4k = Nk4iṗi − (Ni4k +Nk4i)ṗ4 +Ni4kṗk

= Nk4iṗi +Ni4kṗk + e4i (Ni4kb4i +Nk4ib4k)

+ e4k (Nk4ib4k +Ni4kb4m +Nk4ib4m)

+ e4m (Ni4kb4m +Nk4ib4m +Ni4kb4i) (36)

where Nkji = −bT
jkPbji/(lji sinαkji) ∈ R1×3 and m =

{1, 2, 3}/{i, k}. Defining fijk = −Nijkbji = sinαijk/ljk > 0
and specializing the cases {i = 1, k = 2,m = 3}, {i = 2, k =
3,m = 1}, {i = 3, k = 1,m = 2} in (36) yields the overall
angle error dynamics
˙̃e4 = [ ˙̃e41 ˙̃e42 ˙̃e43]

� = F̃4(es, ẽ4)ẽ4 + G̃4(es, ẽ4)es

=

⎡
⎢⎣ −f142 − f241 h(142,3) − f241 h(142,3) − f142

h(243,1) − f243 −f243 − f342 h(243,1) − f342

h(143,2) − f143 h(143,2) − f341 −f341 − f143

⎤
⎥⎦
⎡
⎣ẽ41ẽ42
ẽ43

⎤
⎦

+

⎡
⎢⎢⎢⎢⎢⎢⎣

−N241(b12 + b13) −N142(b21 + b23)

−N342(b21 + b23)
−[N243(b31 + b32)

+N342(b21 + b23)]

−N341(b31 + b32)

−N143(b31 + b32)
−N143(b31 + b32)

⎤
⎥⎥⎥⎥⎥⎥⎦
[
e1

e2

]

(37)

where h(ijk,m) = (Nijk +Nkji)bjm.
Theorem 8: For the four-agent formation under the control

(4) and (35), if

0 < h∗
(i4k,j) < 2min{f ∗

k4i, f
∗
i4k} (38)

i, j, k ∈ {1, 2, 3}, i �= j �= k, sinαj4k(0) �= 0, the initial angle
errors ẽ4i(0) are sufficiently small, the initial distances l4i(0) are
bounded away from zero and p4(0) is sufficiently away from the
plane formed by p1(0), p2(0), p3(0), then the angle errors ẽ4(t)
converge exponentially to zero.

Proof: Linearizing (37) around {es = 0, e4 = 0} by follow-
ing (12), one has the linearized dynamics

˙̃e4 = Ã4ẽ4 + B̃4es (39)

where Ã4 = F̃4(es, ẽ4)|es=0,ẽ4=0, B4 = G4(es, e4)|es=0,e4=0.
To obtain the stability of the linearized system (39), we aim
at proving that Ã4 is Hurwitz. By using the Gershgorin circle
theorem [41, Th. 6.1.1], the three eigenvalues of Ã4 must lie
within the union of the following three Gershgorin discs

|λ + f ∗
i4j + f ∗

j4i| ≤ |h∗
(i4j,k) − f ∗

i4j |+ |h∗
(i4j,k) − f ∗

j4i| (40)
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where i, j, k ∈ {1, 2, 3}, i �= j �= k. Note that f ∗
i4k > 0 for all

i, k = 1, 2, 3. Therefore, by using (38), one has

0 < |h∗
(j4i,k) − f ∗

i4j |+ |h∗
(i4j,k) − f ∗

j4i| < f ∗
i4j + f ∗

j4i. (41)

By combining (40) with (41), one has that the union of the
three Gershgorin discs in (40) always lies in the left half of
the complex plane, which implies that the three eigenvalues
of Ã4 have negative real parts. Therefore, (38) is a sufficient
condition to guarantee that matrix Ã4 is Hurwitz which implies
the exponential convergence of ẽ4 by following (28)–(30).

Also following (31)–(33), one can precisely describe the
requirements on lji(0), ẽ4i(0) and the initial distance h4−123(0)
in this case. Similarly, we can extend the results to N -agent case
by designing the following control law:

ui= −
(
αj1ij2−α∗

j1ij2

)
(bij1+bij2)−

(
αj2ij3 − α∗

j2ij3

)
(bij2

+ bij3)−
(
αj3ij1 − α∗

j3ij1

)
(bij3 + bij1), 4 ≤ i ≤ N

(42)

where α∗
j1ij2

∈ (0, π), α∗
j2ij3

∈ (0, π), α∗
j3ij1

∈ (0, π). Then,
the convergence result can be obtained following Theorem 7.

Remark 7: To implement the proposed sequential formation
laws, each agent is allowed to have its own local coordinate
frame [14]. Compared with the control law (42), which only
needs local direction measurements, the control law (34) needs
not only direction measurements, but also interagent communi-
cation. However, (42) can only stabilize tetrahedral formation
satisfying (38), and (34) can stabilize an arbitrary tetrahedral
formation, which is also an advantage over the 2-D control
laws [14]. In addition, the 3-D control laws proposed in Sections
IV-A and IV-B are based on pursuing rule, which is different
from the bisector rule proposed in 2-D case [14].

D. Convex Polyhedral Formations

Different from the sequential formations, we assume that the
angle constraints are only in the faces of a convex polyhedral
formation. From Theorem 2, we first show how to stabilize a
convex polyhedral angle rigid formation with 4 triangular faces
and 12 angle constraints, then extend it to more general cases.
The control laws for the four agents are designed as

ui = −ejikbik − emijbij − ekimbim (43)

where i �= j �= k �= m, i, j, k,m ∈ {1, 2, 3, 4}, eijk = αijk −
α∗
ijk. Using the calculations (36), one has the error dynamics

ėijk = Nijk (ṗk − ṗj) +Nkji (ṗi − ṗj)

= Nijk (−eikmbkm − ejkibki + eijmbjm + ekjibji)

+Nkji (−ejikbik − ekimbim + eijmbjm + emjkbjk) .
(44)

By specifying all possible combinations of i, j, k,m for (44),
one will have the error dynamics of the 12 face angles. However,
the three angles in each face of the tetrahedron are linearly
dependent, e.g., e123 + e231 + e312 = 0. Therefore, we choose
in each face two interior angles to form the state variable es =
[e123, e231, e234, e243, e214, e241, e341, e314]

� and take A1 =
{(1, 2, 3), (2, 3, 1), (2, 3, 4), (2, 4, 3),(2, 1, 4),(2, 4, 1),(3, 4, 1),

(3, 1, 4)}. Then, one has the closed-loop angle error dynamics

ės = A(es)es (45)

where A(es) ∈ R8×8 consists of the coefficients of the angle
errors in (44). Following the linearization step, (45) can be
linearized as ės = A∗

ses where A∗
s = A(es)|es=0.

Theorem 9: For the four-agent convex polyhedral formation
under the control (43), if
sinα∗

ijk + sinα∗
jki

l∗jk
> |

sinα∗
kij

l∗ji
− sinαjki

l∗jk
|+ |N ∗

ijkb
∗
km|

+ |N ∗
ijkb

∗
jm|+ |N ∗

kjib
∗
im|+ |N ∗

kjib
∗
jm|+ |N ∗

kjib
∗
jk| (46)

where (i, j, k)∈A1, m={1, 2, 3, 4}/{i, j, k}, sinαijk(0) �=0,
the initial angle errors eijk(0) are sufficiently small, and the
initial distances lij(0) are bounded away from zero, then the
angle errors eijk(t) converge exponentially to zero.

Proof: To check the local stability of (45), we examine the
eigenvalue distribution of matrix A∗

s ∈ R8×8. Taking e423 as an
example, its linearized dynamics can be written as

ė423= − sinα∗
423+sinα∗

234

l∗23
e423+

[
sinα∗

342

l∗24
− sinα∗

234

l∗23

]
e243

−N ∗
423b

∗
31e431 +N ∗

423b
∗
21e421 −N ∗

324b
∗
41e341

+N ∗
324b

∗
21e421 +N ∗

324b
∗
23e123 (47)

Using [41, Th. 6.1.1] again, to render the eigenvalue to be in the
left half of the complex plane, one requires

(sinα∗
423 + sinα∗

234)/l
∗
23 > |sinα∗

342/l
∗
24 − sinα∗

234/l
∗
23|

+ |N ∗
423b

∗
31|+ |N ∗

423b
∗
21|+ |N ∗

324b
∗
41|+ |N ∗

324b
∗
21|+ |N ∗

324b
∗
23|

which is one case of (46). Using the same step for the other
angles, the similar condition can be obtained. Thus, if the con-
dition (46) holds for all the six angles defined in A1, then A∗

s is
Hurwitz, which implies the local stability of (45).

For an N -agent convex polyhedral formation, the con-
trol law for agent i, 1 ≤ i ≤ N can be designed as ui =
−
∑

(j,i,k)∈A ejikbik, where A is the angle set containing all the
angles of the triangular faces of the convex polyhedral formation.
Using similar steps as (44)–(47), a stability condition can be
obtained to guarantee the local stability of the convex polyhedral
formation with triangular faces.

Remark 8: For all the designed formation control laws in this
section, the measurement topology is described by the desired
angle constraints, i.e., if there is an α∗

ijk, then agent j needs

to measure
−→
ji,

−→
jk. While the communication topology only

appears in (34), where if there is an α∗
ij1j2

, j1 < i, j2 < i, then
agent j1 needs to send the measured αij1j2 to agent i. Note
that both the measurement and communication topology are
distributed. In addition, the checking conditions (38) and (46)
can be transformed to be related only with desired angles by
using the law of sines.

Remark 9: Since the designed direction-only formation con-
trol laws are for single-integrators, to apply them to real robotic
vehicles, such as quadrotors, the feedforward of the vehicles’
nonlinear dynamics and feedback of the vehicles’ velocity are
usually needed [42]. Another important aspect is the on-board
sensing of the intervehicle directions, which can be accessed by
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Fig. 10. Formation trajectories and evolution of angle errors under the
controller (4) and (20).

Fig. 11. Formation trajectories and evolution of angle errors under the
controller (15) and (35).

monocular cameras with tag recognition, direction finding-based
Bluetooth 5.1 modules, and AOA-based UWB modules. We also
remark that direction-only formation control laws will be useful
for those coordinated tasks where the intervehicle distances are
hard to be measured, e.g., for swarm satellites and autonomous
underwater vehicles (AUV).

V. SIMULATION EXAMPLES

In this section, we use numerical examples with six agents
forming a triangular prism to validate the effectiveness of the
proposed formation control laws. The desired formation is
constructed by starting from �123 and adding the remaining
agents 4–6 sequentially through Type-I or Type-II vertex
additions. The tetrahedra used for vertex additions are
4123, 5124, 6145. We initialize all agents’ positions

as p1(0) = [0.5,−0.3, 0.4]�, p2(0) = [3.8, 0.3, 0.4]�,
p3(0) = [4.2, 4.3,−0.2]�, p4(0) = [4.3, 0.3, 4.2]�, p5(0) =
[4.3, 4.3, 3.8]�, p6(0) = [−0.1,−0.1, 3.9]�. The desired angles
are α∗

123 = π/2, α∗
231 = π/4, α∗

412 = π/4, α∗
421 = π/2,

α∗
423 = π/2, α∗

512 = arccos(
√
2/4), α∗

521 = π/2, α∗
524 =

π/4, α∗
614 = π/4, α∗

641 = π/4, α∗
645 = π/2.

When the six-agent formation is controlled by (4) and (20),
i.e., constructed by Type-I vertex addition, Fig. 10 gives the
formation trajectories and the evolution of angle errors. When
the six-agent formation is controlled by (15) and (35), i.e.,
constructed by Type-II vertex addition, Fig. 11 gives the for-
mation trajectories and the evolution of angle errors. Also, we
simulate the case where each agent i’s single-integrator model
is added by disturbances 0.01 ∗ [sin(it), sin(it+ π/2), sin(it+
π)]�, i = 1, . . ., 6. Fig. 12 gives the formation trajectories and

Fig. 12. Formation trajectories and evolution of angle errors under the
controller (15), (35) and disturbances.

the evolution of angle errors under the control laws (4) and (20)
and disturbances.

The achievement of the desired triangular prism formation and
the convergence of the angle errors in Figs. 10–12 illustrate the
effectiveness of the proposed formation control laws. For the
evolution of angle errors in Figs. 10 and 11, the convergence
speed of the angle errors in Fig. 10 is faster. From Fig. 11,
|α231 − α∗

231| decreases monotonically and agents 2 and 3 move
along the line formed by p2(0) and p3(0), which validate the
result of Theorem 5. In Fig. 12, the angle errors after convergence
are within 5× 10−3, which illustrates the formation’s robustness
against disturbances.

VI. CONCLUSION

In this article, we have proposed 3-D angle rigidity theory and
applied it to multiagent direction-only formation control. First,
by constructing an angle rigid angularity with flex ambiguity,
we have shown that angle rigidity in 3-D is a local property.
To construct globally angle rigid and angle rigid angularities,
two types of vertex addition operations have been developed,
respectively. Motivated by Laman theorem, minimal angle rigid-
ity has been investigated. When angle constraints are given in
surfaces of polyhedra, angle rigidity of convex polyhedra has
been studied by employing properties of perturbations for rigid
frameworks. Using the developed 3-D angle rigidity, we have
designed 3-D direction-only formation laws by following those
two types of construction approaches and the intuition of angle
error feedback.

This article has investigated 3-D angle rigidity and applied it to
direction-only multiagent formations. Our future work on angle
rigidity will consider the extension of 3-D angle rigidity to higher
dimensional spaces, and the necessary and sufficient condition
for angle rigidity. Our future work on formation control will
focus on direction-only multiagent formations governed by more
complicated agent dynamics, such as quadrotor dynamics, AUV
dynamics, spacecraft dynamics, and high-order dynamics.
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