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Abstract 13 

Microbially Induced Carbonate Precipitation (MICP) is a novel soil strengthening technique that 14 

involves a bio-geo-chemical process. Temperature plays a crucial role in influencing the biological 15 

and chemical processes involved in the formation of carbonate precipitates, which in turn affect the 16 

mechanical properties of the treated soil. The aim of this study was to investigate the impact of 17 

temperature on the cementing structure of MICP-treated soils and its subsequent effects on their 18 

strength parameters. The results revealed that temperature considerably affected the content, size, 19 

and distribution of CaCO3 crystals produced, resulting in variations in the friction angle, cohesion, 20 

stiffness, peak strength, residual strength, and dilation of the MICP-treated soil samples. Lower 21 

strength enhancement was observed when fewer and smaller carbonate crystals were produced at 22 
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4°C and 50°C. In contrast, higher numbers of larger crystal clusters were produced at 20°C and 23 

35°C, which effectively bonded the soil particles. Increasing the number of bacterial injections at 24 

50°C promoted the formation of larger crystals and enhanced strength effectively. This study 25 

highlights the temperature effects on calcium carbonate growth in biocemented soils, which is a 26 

critical step in determining the field-scale application of this innovative soil stabilization technique. 27 

 28 

Keywords: environmental temperature; urease activity; MICP performance; consolidated drained 29 

triaxial tests  30 

 31 

1 Introduction  32 

Microbially Induced Carbonate Precipitation (MICP) is a biochemical process that involves 33 

microorganisms inducing an enzyme-catalyzed reaction to increase the supersaturation ratio of 34 

carbonate minerals, such as calcium carbonate, and causing their precipitation in an aqueous 35 

environment within soil pores or geo-structure cracks (Mitchell and Santamarina 2005; DeJong et 36 

al. 2006). The solid surfaces of soil particles or geo-structures provide the nucleation sites for CaCO3 37 

crystal formation. Among the various MICP processes for soil stabilization, ureolysis-driven MICP 38 

is the most extensively studied, owing to its high chemical conversion efficiency and ease of control. 39 

In this process, ureolytic bacterial cells are introduced into the soil matrix through either bio-40 

augmentation or bio-stimulation (Gomez et al. 2017; Graddy et al. 2021), followed by multiple 41 

injections of cementation solution containing CaCl2, urea and nutrient broth. Ureolysis bacteria 42 

express urease enzyme, which catalyzes the hydrolysis of urea (Equation 1). The addition of calcium 43 

(Ca2+) to this system induces the precipitation of calcium carbonate (CaCO3) as the CO3
2- ions 44 
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produced by the hydrolysis of urea react with the supplied Ca2+ (Equation 2), whilst the addition of 45 

nutrient broth to this system maintains the bacterial activity throughout the precipitation period:  46 

2

2 2 2 4 3( ) 2 2UreaseCO NH H O NH CO                           (1) 47 

2 2

3 3( )Ca CO CaCO s                               (2) 48 

 49 

The precipitated CaCO3 crystals bind the soil particles, increasing soil strength and stiffness, whilst 50 

maintaining a relatively high soil permeability, or filling the cracks in geo-structures and reducing 51 

their permeability (Wang et al. 2023). Therefore, MICP has many applications such as soil 52 

stabilisation (DeJong et al., 2006, 2010; van Paassen et al. 2010; Naveed et al. 2019), production of 53 

cemented sandstones (Konstantinou et al. 2021a), improvement of liquefaction resistance (Montoya 54 

et al. 2013; Xiao et al. 2018; Darby et al. 2019), control of soil erosion (Jiang et al. 2017; Chek et 55 

al. 2021), maintenance of wellbore integrity, fracture sealing (Cuthbert et al. 2013; Phillips et al. 56 

2018), and the modification and protection of materials (Tobler et al. 2018). Moreover, MICP has 57 

been suggested for producing energy piles (Venuleo et al. 2016; Martinez et al. 2019), preventing 58 

the corrosion of marine materials (Guo et al. 2019), separating oil and water (Tang et al. (2021), 59 

forming deep foundations (Lin et al. 2016, 2021; Zamani et al. 2021), stabilizing gas hydrate-60 

bearing sediments (Hata et al. 2020), and achieving ocean negative carbon emission (Zhang et al. 61 

2022). 62 

 63 

As the use of Microbially Induced Carbonate Precipitation (MICP) expands and its applications 64 

extend to various environmental conditions, the impact of factors such as pH, salinity, oxygen level, 65 

and temperature on its effectiveness must be considered. Of these, temperature is a critical factor. 66 
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Despite the fact that various studies have shown that soil engineering properties, such as strength, 67 

stiffness, deformation, and creep behavior, are minimally affected by temperature within the range 68 

of room temperature to 90°C (Burghignoli et al. 1999; Liu et al. 2018), the impact of environmental 69 

temperature on the effectiveness of MICP for soil stabilization is significant. This is mainly because 70 

temperature affects the processes involved in MICP and the properties of carbonate crystals, which 71 

indirectly impact the engineering behavior of MICP-treated soils. For instance, Cheng et al. (2017) 72 

reported that 25°C was more efficient than 4°C and 50°C in generating the largest CaCO3 crystals 73 

and achieving the highest unconfined compressive strength (UCS) of MICP-treated soils. In addition, 74 

earlier studies have shown that crystal number and characteristics were considerably influenced by 75 

bacterial quantity and crystal growth dynamics, which were highly dependent on temperature in the 76 

range of 4-50°C (Wang et al. 2022a).  77 

 78 

Based on these findings, it is crucial to further investigate the impact of treatment temperature on 79 

the cementing structure in MICP-treated soils, and how this influences their strength parameters. 80 

Given that MICP is employed in a wide range of applications, from stabilization of gas hydrate-81 

bearing sediments where temperatures can range from 3.5 to 14.5oC at the seafloor (Fujii et al., 2015; 82 

Li et al., 2018; Ye et al., 2020), to energy piles where temperatures can reach 30oC at shallow depths 83 

and 80oC at higher depths, and wellbore integrity and fracture sealing where temperatures can be 84 

35-55oC (Toribio et al. 2004) or even reaching or exceed 100oC based on typical geothermal 85 

gradients (Tian et al. 2015; Jing et al. 2022) , this study focuses on a series of MICP treatment tests 86 

conducted within the temperature range of 4-50°C. To investigate the strength parameters of MICP-87 

treated soils, triaxial tests are essential. Previous studies have examined the strength parameters of 88 
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soil after treatment at room temperature, such as Montoya and DeJong (2015), Cui et al. (2017), 89 

Gao et al. (2019), and Nafisi et al. (2020). However, in this study, MICP is carried out at various 90 

temperatures, and triaxial tests are performed to obtain the strength parameters of MICP-treated 91 

samples, which was not conducted previously. Additionally, SEM imaging and X-ray diffraction 92 

(XRD) analysis are used to analyze the effects of temperature and extra bacterial injections on 93 

calcium carbonate crystals and their impact on soil parameters. This study discusses the implications 94 

of these findings for resulting engineering properties and treatment protocols for subsurface 95 

applications of MICP. 96 

 97 

2 Materials and methods                      98 

2.1 Sand properties and specimen preparation 99 

In this study, a fine silica sand conforming to the CHINA ISO standard was employed. The sand has 100 

an average grain size of 0.125 mm and a coefficient of uniformity, Cu of 5.6, as depicted in Fig.1. 101 

Based on the Unified Soil Classification System (ASTM, 2017), the sand is classified as poorly 102 

graded. To prepare the samples, split acrylic cylindrical molds with an inner diameter of 38 mm and 103 

a height of 80 mm were used (Fig. 2a). The weight of the dry sand was calculated to achieve a 104 

targeted relative density (RD) of 50%. The sand was poured into the columns using a dry pluviation 105 

method. The sand columns were then flushed multiple times with deionized water to remove any 106 

air present until the flow rate stabilized and the specimen became completely saturated. The outlet 107 

tube was closed with a drain valve to maintain the sand column's saturation until the biotreatment 108 

process was initiated. 109 

 110 
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2.2 Biological suspension and cementation solution  111 

The urease-active strain S. pasteurii (CGMCC1.3687) was chosen in this study, as it has 112 

demonstrated superior urease activity compared to many other alternative ureolytic bacteria. The 113 

strain was cultivated in a NH4-YE liquid media (ATCC 1366) comprising 20 g/L yeast extract, 10 114 

g/L ammonium sulfate, and 0.13 M tris buffer at 30°C for approximately 24 hours in a shaking 115 

incubator at 200 rpm/min until it reached an optical density at 600 nm (OD600) of 1.0. The bacterial 116 

activity of the bacterial suspension tested at OD600 of 1.0 was approximately 40 mM/h. The 117 

cementation solution used consisted of 0.75 M urea, 0.5 M calcium chloride, and 3 g/L nutrient 118 

broth. A urea to calcium chloride ratio greater than one was chosen as previous studies have 119 

demonstrated its greater effectiveness (Montoya et al. 2013, 2015; Martinez et al. 2013). All 120 

chemical reagents used in this study were of analytical grade.  121 

 122 

2.3 MICP treatment 123 

A gravity filtration method was used for the MICP treatment process, where injection was performed 124 

from the top to the bottom using gravity (see Figure 2a and b). The staged injection method was 125 

employed for the MICP treatment, and the MICP treatment parameters are listed in Table 1. To 126 

improve bacterial attachment to soil particles, a 24-hour retention period was utilized for Test No. 127 

1-4. Additionally, a 24-hour bacterial settling time was chosen to enhance bacterial settlement and 128 

distribution homogeneity (Wang 2022a, b; Konstantinou et al. 2021). As bacterial urease activity 129 

decreases rapidly at 50°C (Wang et al. 2022a), the number of bacterial suspension (BS) injections 130 

at 50°C was increased to 3 and 6, respectively, in groups 5 and 6. Moreover, the time between BS 131 

and cementation solution (CS) injections was reduced to 2 hours instead of 24 hours in these two 132 
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tests. In all tests, 1.0 pore volume (PV) of BS or CS were injected each time, and the total number 133 

of CS injections was 6. During the retention times of the experiment, the samples were kept at the 134 

specified temperature. To achieve four temperatures (4°C, 20°C, 35°C, and 50°C), the setup was 135 

placed in a refrigerator, at room temperature, and in two ovens (see Figure 2c). After completion of 136 

the biological treatment process for the soils in the columns, the specimens were flushed with two 137 

pore volumes of deionized water to eliminate all excess soluble salts before removing the specimens 138 

from the columns following established practices (Whiffin et al. 2007; Dejong et al. 2010). 139 

 140 

2.4 Triaxial tests 141 

Consolidated drained (CD) triaxial tests (ASTM 2020) were conducted to determine the strength 142 

and stress-strain relationships of MICP-treated specimens. In the study by Montoya and DeJong 143 

(2015) on MICP-treated sands, samples were prepared by first applying confining pressure, 144 

followed by MICP treatment to match field soil conditions. However, in other studies such as Cui 145 

et al. (2017) and Gao et al. (2018), samples were treated with MICP first, demolded, and then 146 

positioned in the test apparatus before applying confining pressures for triaxial tests. Due to 147 

temperature requirements, the procedure of Cui et al. (2017) and Gao et al. (2018) was followed in 148 

this study. It should be noted that this procedure may damage some cementation bonds before 149 

triaxial shear begins, potentially resulting in lower strength parameters than the true values. 150 

 151 

First, the specimens were saturated with deionized water using a vacuum saturation method for 24 152 

hours and then placed in the triaxial apparatus. Hydraulic saturation was applied for 12 hours at a 153 

confining pressure of 20 kPa, and back-pressure saturation was sequentially applied until the B-154 
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value exceeded 0.95. After consolidation, the confining pressure was maintained, and the specimens 155 

were sheared under drained conditions at a constant displacement loading rate of 0.1 mm/min. 156 

Stress-strain curves were obtained for each confining pressure to determine peak and residual 157 

strength, with the residual strength defined as the stress level at which the yield strength stabilized 158 

after a decrease from the peak strength due to accumulated damage (at a strain of 20% in this case). 159 

The two key shear strength parameters, friction angle and cohesion strength, were obtained by 160 

consolidating each of the four samples at effective confining pressures of 100, 200, 300, and 400 161 

kPa based on the Mohr-Coulomb (MC) failure criterion (Wood 1990).  162 

 163 

2.5 CaCO3 content measurement and chemical efficiency calculation 164 

After completion of the triaxial tests, samples weighing between 15 to 25 g were collected every 15 165 

mm along the height of the sand column. These samples were subjected to oven-drying at 105℃ for 166 

at least 24 hours to determine their CaCO3 content using the ASTM Method (ASTM 2014). To 167 

perform the measurement, each sample was mixed with 30 ml of 3 M hydrochloric acid inside a 168 

sealed chamber, ensuring no contact between samples. The chamber was gently agitated to allow 169 

for the reaction between CaCO3 and hydrochloric acid, which produced CO2, leading to an increase 170 

in pressure within the chamber. The reading was taken when the pressure gauge indicated no further 171 

change in pressure, and the amount of CaCO3 was calculated as follows: 172 

 3 2CaCO g 0.034 CO  pressure 0.0198                          (3) 173 

 174 

The chemical conversion efficiency of MICP was then calculated, which is defined as the ratio of 175 

the precipitated mass of CaCO3 in the sand to the calculated mass of CaCO3 from cementation 176 
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solutions (Wang 2018): 177 

 
 

   
3 1

2 3 2

CaCO / (sand)
% 100%

CaCl CaCO / (sand)

m m
Efficiency

c V M m
 

 
                  (4) 178 

where, m(CaCO3)/m1(sand) is the measured CaCO3 content, c(CaCl2) is the concentration of CaCl2 179 

in the cementation solutions，V is the total volume of cementation solution injected into samples，180 

M(CaCO3) is the molar mass of CaCO3 (100 g/mol), and m2(sand) is the dry mass of sand used to 181 

prepare sample columns.  182 

 183 

2.6 Scanning electron microscopy (SEM) imaging and X-ray diffraction (XRD) analyses 184 

After the MICP treatment, samples were oven-dried at 105℃ and prepared for scanning electron 185 

microscopy (SEM) imaging using a PHENOM XL Scanning Electron Microscope to investigate the 186 

microscale properties of the CaCO3 crystals that formed. Additionally, X-ray diffraction (XRD) 187 

analysis was performed on the samples treated at different temperatures using a Regiku Miniflex 188 

600 X-ray diffractometer. 189 

 190 

3 Results and discussion 191 

3.1 CaCO3 content and chemical efficiency 192 

In the case of a single bacterial suspension injection (Fig. 3a), the highest average CaCO3 content 193 

was obtained at 35℃ (sample T35(BS1) in Fig. 3a), while temperatures of 4℃ and 50℃ resulted 194 

in relatively lower average CaCO3 contents (samples T4(BS1) and T50(BS1) in Fig. 3a). Injecting 195 

bacterial suspension multiple times increases the average CaCO3 content (Fig. 3b). The distribution 196 

of CaCO3 content along the height of the sand column becomes more heterogeneous as the average 197 

CaCO3 content increases (Fig. 3a and b). Least-squares regression was used to obtain the fit lines 198 
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of the data. The chemical conversion efficiency of the sample ranges from 17.3% to 67%, with the 199 

peak obtained at 35℃ (Fig. 3c). At 50℃, the chemical conversion efficiency is logarithmically fitted 200 

with the number of BS injections, ranging from 17.3% to 56.5% (Fig. 3d). 201 

 202 

The findings of this study are consistent with those of Wang et al. (2022b), except for the highest 203 

CaCO3 content, which was achieved at 35℃in this study, while Wang et al. (2022b) reported the 204 

highest content at 20℃. The difference may be attributed to the variation in the interval between 205 

consecutive injections of the cementation solution in the two studies. Wang et al. (2022b) used a 48-206 

hour interval, while this study employed a 24-hour interval, which was sufficient to precipitate 0.5 207 

M of CS at both 20℃ and 35℃. As bacterial activity decreases over time at higher temperatures, 208 

the shorter injection interval maintained a relatively higher bacterial activity and CaCO3 conversion 209 

efficiency, indicating that the injection interval between BS and CS needs to be carefully considered 210 

at higher temperatures (e.g., 50℃). Moreover, increasing the number of BS injections compensated 211 

for bacterial decay caused by high temperature, maintained the supersaturation state in the solution, 212 

and resulted in higher CaCO3 content than the amount produced when BS was injected only once. 213 

Therefore, a 24-hour injection interval is suitable for temperatures below 35℃, while a shorter 214 

interval should be adopted at high-temperature conditions to ensure the desired treatment effect.  215 

 216 

3.2 Stress-strain and volumetric-strain responses 217 

Previous studies by Feng and Montoya (2016) and Xiao et al. (2019) have shown that samples 218 

treated with microbial-induced calcium carbonate precipitation (MICP) at room temperature exhibit 219 

strain softening behavior. This study confirms that strain softening is not dependent on treatment 220 
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temperature, as samples treated at temperatures ranging from 4 to 50℃ showed similar behavior. 221 

However, more pronounced softening was observed at 20℃ and 35℃, while gradual softening was 222 

observed at 4℃ and 50℃ after reaching peak strength (Fig. 4). Peak strength increased with 223 

increasing confining pressure, as expected. At 50℃, an increase in the number of injections of 224 

bacterial suspension resulted in increased peak strength and brittle behavior of the samples (Fig. 4). 225 

 226 

All MICP-treated samples exhibited volumetric expansion at small strains and a dilative response 227 

at large strain (Fig. 5). The amount of dilation decreased with increasing confining pressures (Fig. 228 

5 a-d). Samples treated at 4℃ and 50℃ exhibited less contraction at small strains compared to those 229 

treated at 20℃ and 35℃. Among all temperatures, the sample treated at 35℃ showed the largest 230 

dilatancy when the strain was 15% at a given confining pressure (e.g., 100 kPa), followed by those 231 

treated at 20℃, 4℃, and 50℃ (Fig. 5a). The volumetric behavior of the samples was related to the 232 

treatment temperature, which directly affects the CaCO3 content. Higher carbonate content led to 233 

higher dilatancy at large strains at a given confining pressure, as reported by other studies (e.g., Lin 234 

et al., 2016; Xiao et al., 2019) conducted at room temperature. When the strain was small, 235 

contraction was observed for all samples, but samples treated at 50℃ showed substantial dilatancy 236 

improvement as the number of injections of bacterial suspension was increased. 237 

 238 

The stress paths and critical state lines in q-p’ space are shown in Fig. 6 (a) and (b). The critical state 239 

lines moved upwards with increasing CaCO3 content produced in samples at varied temperatures or 240 

with varying numbers of bacterial injections. This indicates that temperature and bacterial injection 241 

number influence the CaCO3 content produced, which consequently affects the strength behavior of 242 
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MICP-treated soil. The low strength behavior of MICP-treated soil at 50℃ can be improved by 243 

increasing the number of injections of bacterial suspension. 244 

 245 

3.3 Peak strength and residual strength 246 

The increase in confining pressure led to an increase in both peak strength (qp) and residual strength 247 

(qR), as shown in Fig. 7 b and d. For instance, the peak strength of the sample treated at 20℃ rose 248 

from 623.6 kPa to 1576.8 kPa as the confining pressure was increased from 100 kPa to 400 kPa, 249 

while the residual strength rose from 271.7 kPa to 812.2 kPa (Fig. 7). Increasing the number of BS 250 

injections also resulted in a important improvement in both peak and residual strengths (Fig. 7 b and 251 

d). 252 

 253 

The effect of temperature and number of BS injections on peak and residual strengths can be 254 

attributed to the variation in CaCO3 content, as illustrated in Fig. 7 by the CaCO3 contents. In the 255 

residual state, the strength of the sample is mainly due to the non-broken calcium carbonate between 256 

particles and the surface roughness of soil particles caused by CaCO3 precipitation. The cementation 257 

degraded substantially after reaching the peak state, especially in stronger specimens, but the non-258 

broken calcite still acts as cementation, and the roughness of sand particles may also contribute to 259 

the residual strength. 260 

 261 

Multiple BS injections resulted in an increase in peak and residual strengths because the calcite 262 

crystal clusters grew in size. However, the sample with the highest strength was still the one with 263 

one injection of BS at 35℃. This highlights the significance of adjusting the temperature 264 



13 

 

specifically for each MICP application. In cases where temperature cannot be controlled, altering 265 

the MICP recipe, specifically the number of bacterial solution injections, is suggested. 266 

 267 

3.4 Effective strength parameters 268 

Fig. 8a shows that the effective cohesion and friction angle of the sand sample initially increased 269 

and then decreased as the temperature increased from 4℃ to 50℃. The effective strength parameters 270 

were smaller at lower and higher temperatures compared to those in the temperature range of 4℃-271 

50℃. Within this range, the effective cohesion and friction angle varied from 3.1 kPa to 80.9 kPa 272 

and from 26.8° to 36.6°, respectively. The effective cohesion and friction angle increased linearly 273 

with an increase in the number of bacterial solution injections. Furthermore, the effective cohesion 274 

increased exponentially with an increase in the average CaCO3 content, while the effective friction 275 

angle increased linearly with the average CaCO3 content, as depicted in Figure 9. These results are 276 

consistent with previous studies conducted at a standard temperature of 25℃ (e.g., Cui et al. 2017; 277 

Chou et al. 2020).    278 

 279 

Temperature has a noteworthy effect on the strength of sand treated with MICP, with CaCO3 content 280 

and product uniformity being the primary factors (Feng and Montoya 2016; Cui et al. 2017; Nafisi 281 

et al. 2020; Konstantinou et al. 2021). Previous triaxial testing studies have shown that an increase 282 

in CaCO3 content leads to an increase in both effective cohesion and friction angle (Cui et al. 2017; 283 

Chou et al. 2020). For non-cemented soil, grain size distribution, angularity, and particle 284 

interlocking primarily affect the effective cohesion and friction angle. However, for cemented soil, 285 

CaCO3 precipitation has a bonding effect on sand cementation, leading to a substantial increase in 286 
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cohesion, which defines the non-frictional part of shear resistance (DeJong et al. 2010). Additionally, 287 

the ‘added’ calcium carbonate crystals increase particle interlocking, leading to an increase in the 288 

friction angle. The study shows that the increase in cohesion is more pronounced than the increase 289 

in friction angle in MICP-treated specimens due to the added cementation at the contact points. 290 

 291 

3.5 Microstructure characterization 292 

As the temperature increased from 4℃ to 35℃, more CaCO3 crystals precipitated on the surface of 293 

sand particles or at the particle contacts. However, for the sample treated at 50℃, the number of 294 

CaCO3 crystals decreased dramatically. This is consistent with the macro-scale measurement of 295 

CaCO3 content shown in Figure 3. The size of the CaCO3 crystals also varied with temperature. 296 

Small crystals mainly precipitated in samples treated at 4℃, while larger crystal clusters were 297 

formed in samples treated at 20℃ and 35℃. On the other hand, crystal clusters were observed at 298 

50℃, but their size was smaller than those obtained at 20℃ and 35℃. The size of the crystal clusters 299 

increased with the increase in the number of BS injections, with the average diameter of crystal 300 

clusters reaching 25 μm and 40 μm for samples treated with BS injected 3 times and 6 times, 301 

respectively (Figure 10). 302 

 303 

The XRD diagrams confirmed the presence of calcite at the peaks with angles of 29.4o and 55o 304 

(Figure 11). To further analyze the data, the areas under the two peaks were measured for each 305 

condition and presented in Table 2 (units in cps*degrees). The findings showed that the optimum 306 

point was at 35 degrees Celsius, where both areas under the two peaks were larger. The carbonate 307 

measurements with the acid method also supported these results as shown previously. 308 
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 309 

3.6 Correlation between CaCO3 microstructure and soil strength behavior  310 

Figure 12 illustrates magnified SEM images (Figure 12a) and a schematic of cementing pattern 311 

(Figure 12b). The distinguish of crystal cluster is also illustrated in Figure 12a. At 20℃, 35℃, and 312 

50℃, smaller and more crystals form into clusters in the cementing pattern (compared to the case 313 

with multiple BS injections), whereas at 4℃, the cluster pattern is not evident. Increasing the 314 

number of BS injections at 50℃ results in larger crystals. Figure 13 presents the quantification of 315 

number and size of crystal or clusters, with crystal or clusters numbered according to size. Among 316 

the four temperatures (4℃, 20℃, 35℃, and 50℃), 20℃ (see Figure 12 and Figure 13b) produces 317 

the largest crystal number range, while 35℃ produces the largest crystal size range (see Figure 12 318 

and Figure 13c). This indicates that 4℃ and 50℃ produce fewer and smaller crystals, while 20℃ 319 

and 35℃ produce more and larger crystal clusters. Moreover, 20℃ produces a larger number of 320 

smaller clusters than 35℃ (see Figure 12 and Figure 13 b-c). In the case of multiple bacterial 321 

injections, larger crystals tend to form instead of forming large clusters (See Figure 12). The size of 322 

crystal increases as the number of BS injections increases from 1 to 6 (Figure 13d-f). This might be 323 

because the injected bacteria preferentially attach to calcite, which acts as a better nucleation site 324 

for crystals than quartz.  325 

 326 

Based on Figures 12 and 13, it can be concluded that when bacteria are only injected once, but the 327 

temperature changes, clusters with different sizes and numbers tend to form with temperature 328 

changes. However, when the temperature is fixed at 50℃, but the injection number of bacterial 329 

suspension increases, large crystals tend to form. To compare the effect of clusters and larger crystals 330 
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on increasing the strength behavior of MICP treatment, the correlation between average CaCO3 and 331 

effective cohesion, effective friction angle, peak deviatoric stress, and residual deviatoric stress were 332 

analyzed separately for tests 1-4 and 4-6 (results are shown in Figures 14 and 15). 333 

 334 

The results indicate that when the CaCO3 content is the same, compared to large CaCO3, crystal 335 

clusters are more effective in increasing effective cohesion (Figure 14a), peak strength (Figure 15), 336 

and residual strength (Figure 15). This may be because increasing cluster size not only improves 337 

bonding efficiency, leading to an increase in cohesion but also enhances surface roughness, resulting 338 

in a more effective increase in friction. However, large crystals are more effective in increasing the 339 

effective friction angle at the low average CaCO3 content range compared to crystal clusters and 340 

less effective at the high average CaCO3 content range. This may be because, at the low average 341 

CaCO3 content range, the big crystals are more effective in forming friction between soil particles, 342 

compared to smaller but a larger number of crystals. However, at the high average CaCO3 content 343 

range, the big crystals are still effective in forming friction between soil particles, but because the 344 

crystals are big, the number of crystals is fewer compared to crystal clusters, resulting in reduced 345 

overall friction effectiveness. Further work can be done to study the effect of crystal and cluster 346 

properties on MICP-treated soil, both experimentally and numerically. 347 

 348 

4 Conclusions 349 

This study aimed to investigate the effectiveness of microbially induced calcium carbonate 350 

precipitation (MICP) in treating granular media at different temperatures. A series of consolidated 351 

drained triaxial compression tests were conducted to evaluate the engineering properties of treated 352 
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soils, and micro-scale investigation was conducted to explore the characteristics of the precipitated 353 

minerals responsible for these properties. Based on the findings, the following conclusions were 354 

drawn: 355 

 356 

Increasing the treatment temperature from 4℃ to 35℃ increased the CaCO3 content of samples, 357 

but at 50℃, the content decreased considerably. All MICP-treated samples exhibited strain softening 358 

and volumetric dilatancy, with peak and residual strength values varying with treatment temperature. 359 

Samples treated at 35℃ exhibited the highest peak and residual strength, followed by 20℃, while 360 

samples treated at lower and higher temperatures resulted in lower strength. Increasing the number 361 

of bacterial solution injections improved the peak and residual strength of samples treated at 50℃. 362 

 363 

The effective cohesion and friction angle followed a similar pattern as peak and residual strength, 364 

increasing and then decreasing with temperature. The amount of CaCO3 precipitation was attributed 365 

to the difference in strength enhancement of MICP-treated sand at different temperatures. 366 

 367 

SEM images and XRD results showed that rhombohedral calcite was the dominant type of CaCO3 368 

crystals produced at different temperatures, with most crystals forming as clusters on particle 369 

surfaces or at particle contacts. Crystal cluster sizes increased as the temperature increased from 4℃ 370 

to 35℃ and decreased at 50℃. 371 

 372 

The mechanical behavior of MICP-treated sand was found to be closely related to treatment 373 

temperature, and altering the MICP recipe, specifically the number of bacterial solution injections, 374 
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was suggested as a potential solution when temperature cannot be controlled. The efficiency of 375 

MICP in soil strength enhancement was found to depend on the properties of produced CaCO3, and 376 

any environmental factors affecting these properties should be considered when predicting MICP 377 

efficiencies. 378 

 379 

The study showed that crystal clusters are better than large crystals in increasing effective cohesion, 380 

peak strength, and residual strength when CaCO3 content is the same, due to improved bonding 381 

efficiency and surface roughness. However, large crystals are more effective in increasing the 382 

effective friction angle at low average CaCO3 content range. Further research is needed to explore 383 

the impact of crystal and cluster properties on MICP-treated soil. 384 
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Table 1 MICP treatment protocols  1 

Test No. 

Sample 

numbers 

Dry density, 

d (g/cm3) 

Relative density, Dr 

(%) 

Treating 

temperature  

(℃) 

Injection number 

of bacterial 

suspension  

Mean effective 

stress, p′(kPa) 

T4 6 1.48 50 4 1 100, 200, 300, 400 

T20 6 1.49 50 20 1 100, 200, 300, 400 

T35 6 1.48 50 35 1 100, 200, 300, 400 

T50 (BS1) 6 1.48 50 50 1 100, 200, 300, 400 

T50 (BS3) 6 1.49 50 50 3 100, 200, 300, 400 

T50 (BS6) 6 1.48 50 50 6 100, 200, 300, 400 

 2 



Table 2 The areas under the two calcite peaks in the XRD diagrams for the various treatment 

temperature conditions (units in cps*degrees) 

 29.4
o
 55

o
 

T4 150.825 180.325 

T20 650.975 181.3 

T35 806.8 184.225 

T50-BS1 51.65 157.225 

T50-BS3 107.725 160.325 

T50-BS6 115.725 171.3 

 

 



 

Figure 1 Particle size distribution of the sand used in this study 

 



 

Figure 2 Schematic of the soil column experiments: (a) sand column preparation, (b) and (c) MICP 

treatment   

 



  

(a)                                           (b)   

   

(c)                                           (d)   

Figure 3 CaCO3 distribution along sand columns and chemical transform efficiency of MICP: (a, c) specimens treated 

at different temperatures with bacteria introduced only once; (b, d) specimens treated at 50℃ with bacteria introduced 

once, twice, and three times, respectively. 

 



  

(a)                                         (b) 

   

(c)                                         (d) 

Figure 4 Stress-strain behaviour of MICP-treated sand at different confining pressures: (a) pc'=100 kPa; (b) pc'=200 kPa; 

(c) pc'=300 kPa; and (d) pc'=400 kPa; T, indicates the treatment temperature, BS, indicates the injection number of 

bacterial suspension; Cavg indicates the average CaCO3 content 

 



  

(a)                                         (b) 

   

(c)                                         (d) 

Figure 5 Volumetric behaviour of MICP-treated sand at different confining pressures: (a) pc'=100 kPa; (b) pc'=200 kPa; 

(c) pc'=300 kPa; and (d) pc'=400 kPa; T, indicates the treatment temperature; BS, indicates the injection number of 

bacterial suspension; Cavg indicates the average CaCO3 content. 

 



   

(a) (b) 

Figure 6 Stress path and critical state line in q-p' space: (a) specimens treated at temperatures range from 4℃ to 50℃ 

with bacteria introduced only once; (b) specimens treated at 50℃ with bacteria introduced once, twice, and three times, 

respectively. 

 



 

(a)                                      (b) 

 

  (c)                                              (d) 

Figure 7 Measured and fitted relationship of qp-T-σ3 and qR-T-σ3: (a, c) specimens treated at different 

temperatures with bacteria introduced only once; (b, d) specimens treated at 50℃ with bacteria introduced once, 

twice, and three times, respectively. 

 



      

（a）                                          (b) 

Figure 8 Relationship between strength parameters and average CaCO3 content at (a) different temperature; 

(b) different BS injection numbers at 50℃(1) 



   

(a)                                                   (b) 

Figure 9 Effects of average CaCO3 content on (a) effective cohesion; and (b) friction angle.  

 



 

Figure 10 SEM images of specimens treated at different temperatures: (a) T=4℃ (BS1); (b) T=20℃ (BS1); (c) 

T=35℃ (BS1); (d) T=50℃ (BS1); (e) T=50℃ (BS3); (f) T=50℃ (BS6) 



 
(a) 

 
(b) 

Figure 12 The XRD results of biocemented sand at: (a) different temperatures; and (b) different BS 

injection number at 50℃; Q indicates Quartz, Ca indicates calcite. 
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(b)                                          (e) 
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(c)                                         (f)  

 



   

(a)                                                   (b) 

Figure 14 Effects of average CaCO3 content on (a) effective cohesion; and (b) friction angle. 



  

(a)                                        (b) 

   

(c)                                        (d) 

Figure 15 Effects of average CaCO3 content on peak strength (a, c) and residual strength (b, d) at 100 kPa (a, c); and 

400 kPa (b, d) 
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