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A B S T R A C T   

The node-based smoothed particle finite element method (NS-PFEM) is computationally efficient with pure linear 
interpolation, while some intrinsic defects hinder its application in dynamic and hydro-mechanical coupled 
analysis. This study proposes a dynamic implicit stable NS-PFEM (SNS-PFEM) with some features: (1) the 
subdomain-based stress point stabilization is applied to overcome the spurious non-zero energy mode of NS- 
PFEM; (2) the polynomial pressure projection is implemented into the dynamic SNS-PFEM to guarantee the 
pore pressure stabilization; (3) the implicit time marching scheme of generalized-α method to integrate the 
stabilized equations is derived, which is error-controllable, unconditionally stable regardless of time step and 
permeability; and (4) an updated Lagrangian remeshing scheme is implemented to deal with the large defor-
mation. The proposed implicit SNS-PFEM is first validated by several benchmark examples, and then applied to 
analyse the seabed under wave loading, the cutting slope experiment, and the slope failure under seismic 
loading. All results demonstrate the proposed method is stable and accurate in modelling the hydro-mechanical 
coupled dynamic problems under small and large deformation with nonlinear soil constitutive models and 
different drainage conditions.   

1. Introduction 

Investigating the dynamic effects of the saturated soil is always 
essential and challenging in analysing practical geotechnical problems, 
such as the responses of seabed under waves and currents (Jeng et al., 
2013; Ye and Jeng, 2011), the surface penetration with dynamic loading 
(Kim et al., 2015; Sabetamal et al., 2014; Sabetamal et al., 2016), the 
wave propagation in the saturated field (Kontoe et al., 2008; Markert 
et al., 2010), to name a few. The mutual interaction of soil skeleton and 
pore fluids could be particularly significant in the seismic-induced 
geohazards, since the shaking of ground base could rapidly increase 
the pore pressure and lead to the abrupt loss of the strength of saturated 
soil with structure collapsing, which is commonly termed as liquefaction 
(Li et al., 2004; Markert et al., 2010; Ye and Jeng, 2012). Furthermore, 
most of the aforementioned problems are also accompanied with large 
deformation and highly nonlinear behaviours of soil, which pose huge 
difficulties in the numerical simulations. Therefore, it is of great value to 
develop accurate and efficient numerical tools for the dynamic analysis 

of two-phase geotechnical problems with large deformation. 
Mathematical models of hydro-mechanical coupled dynamics in 

porous medium have long been developed. Biot extended the classical 
consolidation equations to coupled dynamic theory by introducing the 
inertia terms of the soil skeleton and pore fluids (Biot, 1956a; Biot, 
1956b; Biot, 1962). It was then improved to consider the compressibility 
of solids and acceleration convective term of fluids (Zienkiewicz et al., 
1980). The full Biot dynamic model can be formulated as several formats 
(Monforte et al., 2019; Yuan et al., 2022; Zienkiewicz and Shiomi, 
1984), i.e., u-U, u-w-p, and u-U-p (where u is the solid displacement, U 
the fluid displacement, w the fluid velocity and p the pore pressure.). 
These formulations are widely applicable in conditions with both low- 
frequency and high-frequency dynamic loading (Zienkiewicz and 
Shiomi, 1984). However, they are all computationally expensive 
because each node carries 4–5 degrees of freedom in 2D conditions, i.e., 
two additional displacement or velocity components of the fluid phase. 
The most popular format used in geotechnical practice is the reduced u-p 
formulation with only 3 degrees of freedom of each node (Xu et al., 
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2017a; Xu et al., 2017b; Yuan et al., 2022; Zienkiewicz and Shiomi, 
1984), which neglects the relative acceleration between solid and fluid 
phases. It is attractive in its applicable range due to the simple formu-
lations and less computational cost. Besides, the u-p formulation has 
been proven sufficient to deal with most of the conventional geotech-
nical dynamic problems, e.g., the problems with ocean wave and 
earthquake loading (Monforte et al., 2019; Xu et al., 2017a; Ye and Jeng, 
2012; Zienkiewicz and Shiomi, 1984), and also the problems involving 
soil-structure interaction (Carbonell et al., 2022; Monforte et al., 2018; 
Sabetamal et al., 2021). 

There is still an intrinsic flaw endangering the numerical stability of 
u-p format, that is, the spurious pore pressure oscillations due to the 
violation of the inf-sup Ladyzhenskaya-Babuška-Brezzi (LBB) condition 
(Brezzi and Bathe, 1990; White and Borja, 2008). This problem is 
especially significant in the undrained limit with equal-order interpo-
lation for u and p. Fortunately, numerous stabilization techniques have 
been developed for Galerkin-type numerical frameworks, including the 
separate interpolations for coupled variables (Haga et al., 2012), finite- 
incremental calculus (FIC) (Onate, 2000; Preisig and Prevost, 2011), 
polynomial pressure projection (PPP) (Wang et al., 2022a; Wei et al., 
2016; White and Borja, 2008; Zhao and Choo, 2020), fractional step 
methods (Pastor et al., 2000), enhanced strain formulations (Mira et al., 
2003), to name a few. Among them, the polynomial pressure projection 
has remarkable advantages in its solid theoretical foundation and con-
venience of implementation into the existing code as a plug-in (Mira 
et al., 2003; Wang et al., 2022a; White and Borja, 2008; Zhang et al., 
2022a, 2022b). It has been successfully applied in a wide range of hydro- 
mechanical coupled numerical methods (Wang et al., 2022a; Wei et al., 
2016; White and Borja, 2008; Zhang et al., 2021; Zhao and Choo, 2020), 
including the dynamic condition with low-order u-p element in FEM 
(Monforte et al., 2019). 

On the other hand, numerous numerical methods have been devel-
oped for the geotechnical simulations with dynamics and large defor-
mation, which can be categorized into two branches: the mesh-based 
methods, including the Arbitrary Lagrangian-Eulerian scheme (ALE) 
(Sabetamal et al., 2014), the material point methods (MPM) (Andersen 
and Andersen, 2010; Soga et al., 2016; Yerro et al., 2015), and the 
particle finite element method (PFEM) (Wang et al., 2021a, 2021b); the 
meshfree-based methods, such as the smoothed particle hydrodynamics 
(SPH) (Bui and Fukagawa, 2013; Bui and Nguyen, 2017) and other 
meshfree Galerkin methods (Chen et al., 2001; Puso et al., 2008; Wei 
et al., 2020). The meshfree-based methods have great flexibility with the 
huge variation of geometry, whereas there are still some intrinsic 
drawbacks such as the difficulty of enforcing the essential boundary 
conditions (Chen et al., 2017; Liu, 2009), more complex quadrature 
rules for high-order interpolation, etc (Belytschko et al., 1994; 
Belytschko et al., 1996; Chen et al., 2001; Puso et al., 2008). The PFEM is 
developed to combine the deformation ability of meshfree methods and 
the rigorous mathematical bases of FEM (Cremonesi et al., 2020; Mon-
forte et al., 2017a, 2017b; Wang et al., 2021a, 2021b; Zhang et al., 2015; 
Zhang et al., 2022a, 2022b). It uses an updated Lagrangian framework 
by rebuilding the mesh frequently with incremental displacement, 
where the severely distorted elements can be automatically eliminated. 
However, the traditional PFEM still has some drawbacks. For example, 
the pure linear element used in the u-p format could incur volumetric 
locking and spurious pore pressure oscillations requiring the special 
treatments (Hughes, 2000; Monforte et al., 2019). Although the mixed 
element (3-node for pore pressure and 6-node for displacement) is free 
of the aforementioned problems and accurate with complex soil 
constitutive models (Sabetamal et al., 2022; Sabetamal et al., 2021; 
Wang et al., 2021a, 2021b; Zhang et al., 2022a, 2022b), the computa-
tional cost is relatively huge due to the increased degrees of freedom and 
high-order interpolation (Wang et al., 2022a). Besides, the variable 
mapping between the quadrature points and nodes are needed for each 
remeshing process for PFEM with T6 element (Jin et al., 2020a, 2020b; 
Zhang et al., 2022a, 2022b), which can be avoided by using the PFEM 

with T3 element and node-based strain smoothing method while pre-
serving the high accuracy without volumetric locking. 

The strain-smoothing techniques are then developed, aiming to 
preserve the pure linear interpolation while overcome its defects, lead-
ing to some new methods such as the edge-based smoothed PFEM (ES- 
PFEM) (Jin et al., 2020a, 2020b; Nguyen-Xuan and Liu, 2013) and node- 
based smoothed PFEM (NS-PFEM) (Yuan et al., 2019; Zhang et al., 
2018). Recently, the NS-PFEM is popular in geotechnical simulation 
because it is free from variable mapping and volumetric locking (Zeng 
and Liu, 2018). It has been proved that the node-based smoothed FEMs 
give larger displacement in the force driving problems than FEM, and 
this softening effect will increase as the number of smoothing domains 
decreases (Liu et al., 2010). The NS-PFEM is “overly soft”, which gives 
softer response than the true solution, because the number of nodes is 
always smaller than that of elements and edges in a triangular mesh 
(Zeng and Liu, 2018). This feature can cause spuriously oscillated so-
lutions in hydro-mechanical coupled analysis (Wang et al., 2022a). For 
the dynamic problems with NS-PFEM, the eigenvalues of stiffness matrix 
will be reduced to be lower than that of the mass matrix, which is named 
the spurious non-zero energy mode (Puso et al., 2008). This mode can 
lead to obvious deterioration in numerical stability and accuracy (Chen 
et al., 2001; Jin and Yin, 2022; Puso et al., 2008). Two types of inte-
gration stabilization remedies can be considered to solve the “overly 
soft” drawback and spurious non-zero energy mode of NS-PFEM, leading 
to the stable node-based smoothed PFEM (SNS-PFEM). One is the strain 
gradient stabilization, which assumes that the strain is linearly distrib-
uted in a circle domain centered on the node and the stress is evaluated 
on four quadrature points (Feng et al., 2016; Li and Liu, 2019; Vo-Minh 
and Nguyen-Son, 2021; Yang et al., 2019). The other is the subdomain- 
based stress point stabilization, which uses the subdomain-smoothed 
gradients evaluated on several additional stress points to augment the 
smoothed weak forms (Chen et al., 2001; Puso et al., 2008; Wang et al., 
2022a). The latter is computationally more efficient for NS-PFEM, 
because the subdomain-smoothed gradient is just the compatible 
gradient calculated beforehand for linear shape function, and thus no 
extra computational effort is required. Some recent studies have devel-
oped the explicit NS-PFEM for dynamic analysis of saturated porous 
medium (Jin and Yin, 2022; Yuan et al., 2022), and the strain gradient 
technique is used to stabilize the temporal oscillations (Jin and Yin, 
2022). The explicit scheme is always conditionally stable, which is 
difficult to handle the large time step and low-permeability conditions 
(Jin and Yin, 2022; Soga et al., 2016; Xu et al., 2017a). It is necessary to 
further develop a SNS-PFEM with implicit time marching scheme for the 
hydro-mechanical coupled dynamics, so as to be error-controllable and 
unconditionally stable with wider choice of time step. 

This study is developed based on the implicit quasi-static SNS-PFEM 
(Wang et al., 2022a). The paper is organized as follows. In Sections 2.1 
and 2.2, the strong and weak forms of the governing equations for dy-
namics in the porous medium, together with the formulations of poly-
nomial pressure projection, are presented. Section 2.3 introduces the 
node-based smoothed method and subdomain-based stress point stabi-
lization technique. Section 2.4 gives a detailed derivation of the step-by- 
step time integration algorithm with the CH generalized-α method (Han 
et al., 2015; Kontoe et al., 2008). Section 2.5 briefly illustrates the 
remeshing scheme for large deformation and the whole computational 
circle of the proposed SNS-PFEM. In Section 3, several benchmark ex-
amples are simulated to validate the accuracy and efficiency of SNS- 
PFEM together with some reference solutions. The effects of PPP and 
nodal integration stabilization are highlighted by comparison. In Section 
4, three problems with more realistic geotechnical features and large 
deformation are calculated to demonstrate the ability of the method, 
including the seabed under wave loading, the Selborne slope experi-
ment, and the slope failure under seismic loading. 
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2. SNS-PFEM for hydro-mechanical coupled dynamics 

2.1. Governing equations and spatial discretization 

The “u-p” formulation is adopted for the dynamic analysis of satu-
rated porous medium, where the inertia term uses the density of mixture 
and neglects the small relative acceleration between fluid and solid 
skeleton. The momentum equilibrium equation including the inertia 
term is presented in Eq. (1). The mass conservation equation is exhibited 
in Eq. (2), where the fluid is simplified to be incompressible. The other 
governing laws of the effective stress principle and Darcy’s law are 
presented in Eq. (3) and (4) respectively: 

∇⋅σ − ρü+ f = 0 (1)  

∇⋅u̇+∇⋅̃v = 0 (2)  

σ ′

= σ + pI (3)  

ṽ = −
k

ρf g
⋅∇p (4)  

where σ′ is the effective stress tensor, I the identity tensor, f the body 
force in the medium, ̃v the Darcy velocity of fluid flux, ρf the density of 
fluid, g the gravity acceleration, k the hydraulic conductivity tensor, u 
the solid displacement field, and p the fluid pressure. The u and p are the 
driven variables in the governing equations and also act as the nodal 
variables in the final finite element formulations. 

The definition of infinitesimal strain and the rate-form constitutive 
equation are written as Eqs. (5)–(6), with Dep the elastoplastic modulus 
tensor. The natural and essential boundary conditions for the solid and 
fluid components are exhibited in Eq. (7) and (8) respectively: 

ε = ∇su =
1
2
(∇u +∇uT) (5)  

d
dt

σ ′

= Dep :
d
dt

ε (6)  

⎧
⎨

⎩

u − u = 0 on Γu
n⋅σ − t = 0 on Γt

Γ = Γu ∪ Γt, Γu ∩ Γt = ∅
(7)  

⎧
⎨

⎩

p − p = 0 on Γp
n⋅̃v + q = 0 on Γq

Γ = Γp ∪ Γq, Γp ∩ Γq = ∅
(8)  

where u is the given displacement, t the traction force, p the given pore 
pressure, and q the flow flux on the boundary. 

Following the standard procedures of Galerkin method, the finite 
element equations of hydro-mechanical coupled dynamics can be writ-
ten as the Eq. (9), 
⎧
⎨

⎩

L
h
u = MÜ + CU̇ + Fints(U) − KupP − Fext = 0

L
h
p = KT

upU̇ + KppP − Qext = 0
(9)  

where U is the nodal displacement, P the nodal pore pressure, M the 
mass matrix, Kuu the stiffness matrix, Kpp the permeability matrix, Kup 

the coupling matrix, C the damping matrix, Fext the external load vector 
and Qext the flow flux term. Note that the compressibility of fluid is 
neglected, as shown in Eqs. (2) and (9). The number of dots at the top of 
variables denotes the order of derivative to time. This is a group of 
second-order time-dependent ordinary differential equations of the 
nodal displacement and pore pressure. The detailed formulations and 
explanations of each term are summarized in Appendix A. The key 
points in the detailed derivation, including the weak form and spatial 
discretization, can be found in several preceding studies concerning the 

FEM of fully coupled Biot’s consolidation. For the subsequent con-
struction of node-based smoothed PFEM, the linear triangular element 
(T3) is chosen for both the displacement and the pore pressure, although 
Eq. (9) is independent of the choice of interpolation scheme. 

2.2. Polynomial pressure projection (PPP) 

It is well-known that the equal-order linear interpolation for 
displacement and pressure can incur severer numerical instability in the 
undrained limit due to the violation of the discrete inf-sup condition 
(Brezzi and Bathe, 1990; White and Borja, 2008). Some recent studies 
revealed that this problem plagued the coupled quasi-static NS-PFEM 
(Wang et al., 2022a). Section 3.2 in this study illustrates that spurious 
pressure oscillation is also significant in coupled dynamic problems. The 
polynomial pressure projection (PPP) offers an efficient remedy within 
the pure T3-based interpolation. It can be easily formulated as a plug-in 
to the permeability matrix without modifying the remaining code. 

The stabilized mass conservation weak form of PPP is presented in 
Eq. (10), with the polynomial pressure projection term S defined in Eq. 
(11). The operator 

∏
is defined in Eq. (12), where x is the spatial co-

ordinates. 
∏

projects the piecewise linear shape function to a piecewise 
constant function space, which makes the modified equation meet the 
weak inf-sup conditions. In this study, Ωe is the element domain, and Ve 
is the element area. The detailed theories and proofs can be found in the 
preceding works (Brezzi and Bathe, 1990; Choo and Borja, 2015; White 
and Borja, 2008; Zhang et al., 2021). A simplified nodal integration 
formulation of the term S consistent with the node-based smoothed FEM 
can also be found in our previous paper (Wang et al., 2022a). 

L
h
p,stab = L

h
p +

∫

Ω
εf

[
Np −

∏
Np

]T ∂
∂t

[
ph −

∏
ph
]
dx

= KT
upU̇ + KppP + SṖ − Qext = 0

(10)  

S =

∫

Ω
εf

[
Np −

∏
Np

]T[
Np −

∏
Np

]
dx (11)  

∏
ph(x)|Ωe

=
1
Ve

∫

Ωe

ph(x)dx (12) 

The polynomial pressure projection coefficient εf is determined using 
the technique proposed by (Sun et al., 2013), including an additional 
assumption of incompressibility of fluid and solid grains, as shown in 
Eqs. (13)–(14), 

εf =
1

K + 4G/3

〈

1 − 3
cwΔt

h2

〉(

1 + tanh
(

2 − 12
cwΔt

h2

))

(13)  

cw = kf (K + 4G/3) (14)  

where Δt is the current length of time step, kf the permeability coeffi-
cient, K and G the bulk and shear modulus of solid skeleton respectively. 
h is a characteristic length of spatial discretization which is evaluated by 
h =

̅̅̅̅̅̅
As

k
√

for each smoothing domain Ωs
k, where As

k is the area of 
smoothing domain Ωs

k shown in Fig. 1. As the time step and permeability 
grow from extremely low to a high level, the εf will decrease to zero 
gradually. In this way, the PPP can automatically guarantee accuracy 
and stability from undrained limit to drained condition (Choo and Borja, 
2015; Zhang et al., 2022a, 2022b; Zhao and Borja, 2021). 

2.3. Node-based gradient smoothing and integration stabilization 

The node-based strain smoothing technique is introduced to improve 
the performance of FEM with low-order element (Liu et al., 2009a, 
2009b), which originates from the stabilized conforming nodal inte-
gration in meshfree methods (Chen et al., 2001). In this approach, the 
gradient of shape function around a node is smoothed by taking the 
weighted average over a constructed smoothing domain intersected 
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with several elements. Each smoothing domain works with the infor-
mation propagated from all the connected elements, which makes NS- 
FEM more robust with mesh distortion and better accuracy in strain 
energy norm than FEM-T3 (Nguyen-Xuan and Liu, 2013; Wang et al., 
2022a; Zeng and Liu, 2018). NS-FEM can reduce the volumetric locking 
of T3 element due to its “overly soft” property, but also bring numerical 
instability (Li and Liu, 2019; Nguyen-Xuan and Liu, 2013). 

The first step from FEM-T3 to the node-based smoothed FEM is to 
construct the smoothing domains and subdomains as shown in Fig. 1. 
Regarding that all the vertices of these node-based domains are the 
centroids of elements or the midpoints of edges, this procedure is 
automatic with a given T3 mesh. Then the node-based gradient 
smoothing operator ∇ is defined in Eq. (15), with which the smoothed 
displacement gradient Bu and fluid pressure gradient Bp can be calcu-
lated as in Eqs. (16)–(17). This procedure can also be equivalently 
conducted in a contour integration approach, where only the evaluation 

of shape function is needed (Liu and Trung, 2016).(See Fig. 2) 

∇NI(x) =
∫

Ωs
k

∇NI(x)W(xI − x)dx,

with W(xI − x) =

{
1/As

k, x ∈ Ωs
k

0, x ∕∈ Ωs
k

(15)  

Bu,I(x) =
∫

Ωs
k

Bu,I(x)W(xI − x)dx =
1
As

k

∑nk

q=1
As

k,qBu,I(q), ∀x ∈ Ωs
k (16)  

Bp,I(x) =
∫

Ωs
k

Bp,I(x)W(xI − x)dx =
1
As

k

∑nk

q=1
As

k,qBp,I(q), ∀x ∈ Ωs
k (17) 

The spurious non-zero energy mode of NS-PFEM in the implicit dy-
namic scheme can be observed in the example of Section 3.4. The 
subdomain-based stress point stabilization is developed in this paper to 
efficiently treat this instability (Wang et al., 2022a; Wang et al., 2022b; 
Zhang et al., 2022a, 2022b). This idea originates from the modified 
stable nodal integration (SNI) method proposed by Chen and co-workers 
(Hillman and Chen, 2016; Puso et al., 2008; Wei et al., 2016). It uses the 
difference between the smoothed B and the subdomain-smoothed Bsub 

matrix to augment the smoothed stiffness and permeability matrices. In 
the T3 interpolation scheme, the subdomain-smoothed gradient Bsub is 

just equal to the compatible gradient B. The stabilized weak forms L
h
u 

and L
h
p,stab are presented in Eqs. (18)–(19), where ΔU and ΔP are the 

incremental nodal variables in the current load step. The derived sta-
bilized node-based smoothed stiffness matrix Kuu, permeability matrix 
Kpp, coupling matrix Kup, and damping matrix C are exhibited in Eqs. 
(20)–(23), where the subscript I and J denotes two nodes, and the global 
matrices are assembled by each smoothing domain. The numerical 
integration of Eqs. (20)–(23) can be simply performed by the 1-order 
Gaussian quadrature, that is, the multiplication of function value with 
its supporting area, because all the smoothed variables are constant on 
each subdomain. Besides, all the calculated variables are also constant 
on each node-based smoothing domain, so that the variables trans-
ferring between the nodes and quadrature points can be avoided in SNS- 
PFEM, which is more efficient than the traditional FEM. 

Fig. 1. Node-based smoothing domain and subdomain on the triangular mesh.  

Fig. 2. Geometry and mesh of the shear wall with openings.  
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L
h
u = MÜ + CU̇ +

∫

Ω
BT

u σdΩ +

(

εs

∫

Ω
(Bu − Bu)

T D(Bu − Bu)dΩ
)

ΔU

−

(∫

Ω
BT

u mNpdΩ
)

P − Fext = 0

(18)  

L
h
p,stab =

(∫

Ω
BT

u mNpdΩ
)T

U̇ +

(∫

Ω
BT

p kf BpdΩ
)

P

+

(

εs

∫

Ω
(Bp − Bp)

T kf (Bp − Bp)dΩ
)

ΔP + SṖ - Qext = 0
(19)  

[Kuu,IJ ]Ωs
k
=

∫

Ωs
k

BT
u,IDBu,Jdx + εs

∑nk

q=1

∫

Ωs
k,q

(Bu,I − Bu,I)
T D(Bu,J − Bu,J)dx

= BT
u,I |Ωs

k
DBu,J |Ωs

k
As

k + εs

∑nk

q=1
(Bu,I |Ωs

k,q
− Bu,I |Ωs

k,q
)

T D(Bu,J |Ωs
k,q
− Bu,J |Ωs

k,q
)As

k,q

(20)  

[
Kpp,IJ

]

Ωs
k
=

∫

Ωs
k

BT
p,Ikf Bp,Jdx + εs

∑nk

q=1

∫

Ωs
k,q

(Bp,I − Bp,I)
T kf (Bp,J − Bp,J)dx

= BT
p,I |Ωs

k
kf Bp,J |Ωs

k
As

k + εs

∑nk

q=1
(Bp,I |Ωs

k,q
− Bp,I |Ωs

k,q
)

T kf (Bp,J |Ωs
k,q
− Bp,J |Ωs

k,q
)As

k,q

(21)  

[
Kup,IJ

]

Ωs
k
=

∫

Ωs
k

BT
u,ImNp,Jdx (22)  

C = a1M + a2Kuu (23) 

By implementing SNI into NS-PFEM, a novel framework called stable 
node-based smoothed PFEM (SNS-PFEM) is achieved. It should be noted 
that the SNS-PFEM has lost the overly soft property and may suffer from 
volumetric locking when modelling nearly incompressible solids (Wang 
et al., 2022b). This difficulty can be alleviated through two approaches. 
First, the stabilization coefficient εs is used as a tuning parameter be-
tween 0 and 1. The value is usually fixed as 1, but can also be lowered to 
release some softening so long as the stabilization is guaranteed 
(Moutsanidis et al., 2020; Puso et al., 2008). Second, a novel locking-free 
SNS-PFEM with selective integration and bubble function has been 
proposed and fully validated (Wang et al., 2022b). It is efficient in 
dealing with volumetric locking but requires additional computational 
costs. This paper focuses on hydromechanical modelling with 
compressible soil skeleton, and Poisson’s ratio is set smaller than 0.4 in 
all the simulations. 

2.4. Temporal integration with the CH generalized-α method 

From the view of mathematics, the SNS-FEM equations of hydro- 
mechanical coupled dynamics are a group of second-order differential 
equations about displacement and pore pressure. The dynamic responses 
should be acquired by step-by-step direct temporal integration, espe-
cially for the highly nonlinear geotechnical problems since the modal 
and frequency analysis are unfeasible. For the implementation of tem-
poral integration, the time range is first divided into a lot of intervals, 
and then some assumptions of the variation of state variables in one-time 
interval are introduced to calculate the difference from old current tn to 
new current tn+1. The explicit integration methods are popular for their 
low computational cost, but the stability condition will require high 
permeability and small time step in the hydro-mechanical coupled 
analysis (Jin and Yin, 2022; Soga et al., 2016; Xu et al., 2017a). On the 
contrary, many implicit schemes are unconditionally stable and error 
controllable under adequate parameter values, which is more suitable 
for long-term, highly nonlinear geotechnical problems. 

Numerous implicit time marching schemes have been applied in 
geotechnical dynamic problems, such as the Wilson-θ method (White 

and Borja, 2008), Newmark-β method (Newmark, 1965), WBZ-α method 
(Wood et al., 1980), HHT-α method (Hilber et al., 1977), CH general-
ized-α method (Han et al., 2015; Sabetamal et al., 2014), to name a few. 
The CH generalized-α method proposed by Chung and Hulbert is supe-
rior because it can preserve the numerical damping of high frequencies 
and second-order accuracy of low frequencies simultaneously (Han 
et al., 2015; Sabetamal et al., 2014). The fundamental idea is that the 
different state variables are evaluated at different instances with sepa-
rate weights in an average form. As shown in Eq. (24), the acceleration 
in the inertia term is evaluated at tn+1− αm with weights αm and 1 − αm, 
while the velocity, displacement, pore pressure, load and flow flux terms 
are controlled by another coefficient αf . 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ütn+1− αm
= αmÜtn + (1 − αm)Ütn+1

U̇tn+1− αf
= αf U̇tn + (1 − αf )U̇tn+1

Utn+1− αf
= αf Utn + (1 − αf )Utn+1

Ptn+1− αf
= αf Ptn + (1 − αf )Ptn+1

Fext
tn+1− αf

= αf Fext
tn + (1 − αf )Fext

tn+1

Qext
tn+1− αf

= αf Qext
tn + (1 − αf )Qext

tn+1

(24) 

The displacement and velocity are approximated using the New-
mark-β method with two controlling parameters β and γ in Eq. (25). The 
temporal integration of pore pressure is conducted using the Wilson-θ 
method in Eq. (25). These approximations are based on the theories of 
the truncated Taylor’s expansions and mean value theorem. Therefore, 
the integration parameters control the accuracy and stability of the 
numerical solutions. 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

U̇tn+1 = U̇tn + ((1 − γ)Ütn + γÜtn+1 )Δt

Utn+1 = Utn + U̇tn Δt + ((
1
2
− β)Ütn + βÜtn+1 )Δt2

∫ tn+1

tn
Pdt = Ptn+θ Δt = ((1 − θ)Ptn + θPtn+1 )Δt

(25) 

The time-discrete algebraic equations to be solved are exhibited in 
Eq. (26). Different treatments are applied to the momentum and mass 
conservation equations respectively. The equilibrium weak form in Eq. 
(18) is evaluated at different instances for the inertia term (at tn+1− αm ) 
and the remaining terms (at tn+1− αf ). The mass conservation equation 
(19) is integrated at the time interval from tn to tn+1. In the aforemen-
tioned numerical framework, the unconditional stability and second- 
order accuracy of the CH generalized-α method, Newmark-β method 
and Wilson-θ method can be achieved only when the inequality con-
straints Eq. (27) are satisfied, which have been proved in Han et al (Han 
et al., 2015). In this study, all the time integration parameters are fixed 
to meet the requirements as follows: αf = 0.45, αm = 0.35, β = 0.3, γ =
0.6, θ = 1. 
⎧
⎪⎪⎨

⎪⎪⎩

MÜtn+1− αm
+ CU̇tn+1− αf

+ Fints
(Utn+1− αf

) − KupPtn+1− αf
= Fext

tn+1− αf

KT
up(Utn+1 − Utn ) + Kpp

∫ tn+1

tn
Pdt + S

∫ tn+1

tn
Ṗdt =

∫ tn+1

tn
Qextdt

(26)  

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

αm⩽αf ⩽0.5

β⩾
1 + 2(αf − αm)

4
γ = 0.5 − αm + αf

θ > 0.5

(27) 

The nonlinear Eqs. (26) can be solved using the standard Newton- 
Raphson iteration procedure. The ith iteration in the time step tn+1 is 
exhibited in Eq. (28), where the equivalent stiffness matrix is defined in 
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Eq. (29). The detailed algebraic derivations are presented in Appendix B. 
Noticing that we can also simulate the dynamics of single solid phase by 
only using the solid-related subblocks in Eq. (28). 
[

K̂uu − (1 − αf )Kup

− (1 − αf )K
T
up − (1 − αf )

(
θΔtKpp + S

)

]

tn+1

[
δU
δP

](i)

tn+1

=

[
ΔRu
ΔRp

](i)

tn+1

(28)  

K̂uu =
1 − αm

βΔt2 M +
(1 − αf )γ

βΔt
C+(1 − αf )Kuu (29)  

2.5. Remeshing strategies 

The large deformation process can be adequately simulated with the 
remeshing strategy and variable mapping in the traditional particle 
finite element framework. For the SNS-PFEM, however, only the 
remeshing procedure is needed, because all the key variables are carried 
directly by the node-based smoothing domains. In each analysis step 
with relatively small deformation, the calculation is conducted using the 
standard SNS-FEM, which is similar to some studies in the PFEM-based 
or SPFEM-based geotechnical simulations (Jin et al., 2020a, 2020b; 
Zhang et al., 2020; Zhang et al., 2016a, 2016b). Then the position of 
nodes (particles) is updated using incremental displacement. Next, a 
new mesh will be established with the remeshing methods, namely the 
Delaunay triangulation and α-shape method (Cremonesi et al., 2020), 
where the node connectivity may have been changed because the 
principles behind the Delaunay triangulation can automatically avoid 
the mesh distortion. Finally, the next analysis step is carried out based 
on the updated state variables and mesh. 

The α-shape method is likely to incur some volume fluctuation in the 
calculation domain, and then the principle of mass conversation may be 
violated. As reported in the previous study on PFEM (Zhang et al., 2013), 
this error can be controlled by adjusting the parameter α for each spe-
cific problem to improve the accuracy of the boundary identification, 
and the range 1.1⩽α⩽1.6 is recommended. The volume fluctuation can 
be reduced to lower than 6 % for the soil collapse problem (Zhang et al., 
2013) and around 1 % for the water dam break simulation (Franci and 
Cremonesi, 2017). Besides, for the problems with partly predictable 
boundary evolution, the geometrically constrained Delaunay triangu-
lation could be used (Cremonesi et al., 2020). This approach can also 
improve the accuracy of boundary identification and further reduce the 
error in mass fluctuation. 

Noticing that the advanced remeshing techniques, such as adding or 
removing nodes, Laplacian smoothing of node distribution and adaptive 
mesh refinement, have not been applied here. If extremely large defor-
mation (i.e., exploding or granular flowing) is taken place and some 
nodes become too close or distinct from others, the remeshing strategy 
used in this paper is not sufficient to handle such problems. The afore-
mentioned mesh refinement techniques should be considered (Carbonell 
et al., 2022; Moutsanidis et al., 2020). 

The dynamic SNS-PFEM is implemented within a self-developed 
MATLAB code suite including the modules of pre-processing, solver 
and post-processing, which is developed based on our previous studies 
(Wang et al., 2022a; Wang et al., 2022b). The computational cycle of the 
SNS-PFEM for hydro-mechanical coupled dynamics is summarized as 
follows.  

1. Initialize the geometry and all the given parameters.  
2. Discretize the domain into a cloud of nodes (particles). Form the mesh 

using Delaunay triangulation.  
3. Assemble the matrices including (lumped) mass, stabilized smoothed 

stiffness, permeability, hydro-mechanical coupling, PPP term and 
damping matrices. Apply all the essential boundary conditions.  

4. Solve the nonlinear dynamic SNS-FEM equations in a single step using the 
Newton-Raphson iteration scheme until the convergence criterion is 
satisfied.  

5. Update the positions of nodes and renew all the physical quantities of 
interest.  

6. Rebuild the mesh with Delaunay triangulation and α-shape method. Then 
go back to step 3 until all the calculation steps are finished. 

3. Validation 

In this section, several examples are presented to verify the numer-
ical accuracy and stability of the proposed SNS-PFEM, highlighting the 
performance of the nodal integration and pore pressure stabilization 
techniques. The first two problems, i.e., the free vibration of a shear wall 
and the dynamic response of an elastoplastic beam under a sudden load, 
only concern the solid phase without water. While the remaining three 
examples investigate the dynamic effects of hydro-mechanical coupling 
with 1D and 2D geometry in small and large deformation conditions. 
Both linear elastic and elastoplastic materials are taken into 
consideration. 

3.1. Free vibration analysis of a shear wall 

In this example, the free vibration analysis of an elastic shear wall 
with four openings is conducted. The plane stress problem is set with a 
uniform T3 mesh of 646 nodes and 1126 elements. The material pa-
rameters are set as Young’s modulus E = 1 kPa, Poisson’s ratio ν = 0.2, 
and density ρ = 0.1 kg/m3, just the same as the values adopted by the 
meshless local Petrov-Galerkin method (MLPG) (Gu and Liu, 2001), 
boundary element method (BEM) (Brebbia, 1984) and edge-based 
smoothed FEM (ES-FEM) (Liu et al., 2009a, 2009b). The standard 
eigenvalue and eigenvector analysis is performed using Eq. (30), where 
the NS-PFEM is implemented by reducing the integration stabilization 
coefficient εs to 0. 

KuuΦ − ω2MΦ = 0 (30) 

Table. 1 presents the first eight natural frequencies acquired by 
different numerical methods. It shows that the frequencies of SNS-PFEM 
are quite close to the reference solutions, and fall into the intervals be-
tween FEM-T3 and FEM-T6. However, the frequencies of NS-PFEM are 
significantly lower than that of the remaining methods, which indicates 
the typical “overly soft” property. Fig. 3 presents the corresponding first 
eight vibration modes. All the patterns by different methods are similar 
to each other, except some of the high-frequency modes of NS-PFEM 
highlighted by the red arrows exhibit weird sawtooth noises. This is 
due to the spurious non-zero energy mode of direct nodal integration, 
which can be effectively cured by the integration stabilization of SNS- 
PFEM. The foregoing results demonstrate that the SNS-PFEM is accu-
rate in the free vibration analysis and effective in circumventing the 
overly soft property and spurious modes of NS-PFEM. 

3.2. Deep elastoplastic beam under suddenly applied loading 

The second example investigates the dynamic response of a deep 
beam under the suddenly applied loading to verify the correctness of the 
time integration algorithm, especially concerning material nonlinearity. 
As shown in Fig. 4, a half geometry with 431 nodes and 764 elements is 
taken due to symmetry. The modelling parameters are set as the same in 
the reference paper using BEM (Pavlatos and Beskos, 1994): L = 24 m, H 
= 6 m, Young’s modulus E = 100 kPa, Poisson’s ratio ν = 0.333, and the 
density ρ = 1500 kg/m3. The von Mises elastoplastic model with the 
yield stress σy = 0.16 kPa is used, and the suddenly applied pressure p =

0.015 kPa is applied, which equals the collapse load in the plane stress 
condition. The time step is fixed as Δt = 0.5 s. 

The Fig. 5 (a, b) and (c, d) depict the time history of the vertical 
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Table 1 
Natural frequencies of a shear wall (rad/s).  

Mode MLPG (Ref) BEM (Ref) FEM-T3 FEM-T6 NS-PFEM SNS-PFEM 

1  2.069  2.079  2.105782  2.031193  1.879306  2.092357 
2  7.154  7.181  7.194403  6.998749  6.643763  7.163196 
3  7.742  7.644  7.638199  7.608918  7.523335  7.633736 
4  12.163  11.833  12.2289  11.6241  10.57635  12.11086 
5  15.587  15.947  15.66034  15.09706  14.13232  15.57323 
6  18.731  18.644  18.56965  18.15624  17.08996  18.5096 
7  20.573  20.268  20.15568  19.67854  18.54825  20.0879 
8  23.081  22.765  22.5063  21.99649  20.71811  22.43498  

Fig. 3. First eight vibration modes of the shear wall with different methods.  

Fig. 4. Simply supported beam: (a) geometry and boundary conditions; (b) mesh with half geometry; (c) suddenly applied load.  
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displacement at point A in the plane stress and plane strain conditions 
respectively. For the elastic cases, the beam vibrates in a perfectly har-
monic way. While for the elastoplastic cases, the beam first undergoes a 
large displacement including some plastic deformation and then vi-
brates in the range of small elastic deformation. The results of SNS-PFEM 
and NS-PFEM agree well with those of the FEM and BEM in both plane 
strain and plane stress conditions. It reveals that the CH generalized-α 
method can give accurate dynamic responses in SNS-PFEM with both 
linear and nonlinear materials. Besides, the necessity of nodal integra-
tion stabilization is not obvious in this simple case. 

3.3. Dynamic consolidation of saturated elastic column 

The dynamic consolidation of a saturated elastic porous column is 
demonstrated in Fig. 6. The geometry is discretized into 312 nodes and 
540 elements. The time-varying uniform pressure is applied on the 
drained top, which first rises straightly to 1 kPa in 0.02 s and then os-
cillates harmonically with the amplitude of 0.25 kPa. The material pa-
rameters are set as the same as reference (Han et al., 2015): Young’s 
modulus E = 10 MPa, Poisson’s ratio ν = 0.2, and the density ρ = 2000 
kg/m3. In the first simulation of a drained condition, the time step takes 
the value of Δt = 0.005 s, and the permeability is set as k = 0.01 m/s. The 
polynomial pressure projection is activated in hydro-mechanical 
coupled analysis by default. The variation of the vertical displacement 
at surface point A and the pore pressure at bottom point B with different 
numerical methods are presented in Fig. 7. It shows the trend of 

settlement and pore pressure dissipation with some fluctuations due to 
the wave loading. The abbreviation T3/6 means the 6-node quadratic 
interpolation for displacement and 3-node linear interpolation for pore 
pressure, which is proved free from nonphysical pressure oscillations in 
FEM. The results indicate that both the NS-PFEM and SNS-PFEM with 
PPP can get accurate and stable solutions in the 1D dynamic consoli-
dation case with high permeability. 

To trigger the non-physical pore pressure oscillations, the second 
analysis is conducted to model a nearly undrained condition. The time 
step takes the value of Δt = 0.001 s, and the extremely low permeability 
is set as k = 10-15 m/s. The time history of pore pressure at point B with 
different numerical treatments is exhibited in Fig. 8, and the contour of 
pore pressure at t = 0.05 s is shown in Fig. 9, where the stabilizations can 
be turned off by setting the coefficients εs and εf equals to 0. In Fig. 8 (a, 
c), the pore pressure experiences huge random oscillations when the PPP 
is not activated. Some slight instability can still be observed in the first 
0.2 s with the NS-PFEM with PPP, as shown in Fig. 8 (b). The completely 
stable solution can be achieved only with the SNS-PFEM with PPP, as 
shown in Fig. 8 (d). From the contours of pore pressure in Fig. 9, a 
typical checkerboard pattern will appear when the PPP is not used, 
which indicates a similar distribution to the volumetric locking of nearly 
incompressible solids. In conclusion, the non-physical pore pressure 
oscillation is severe in the undrained limit of hydro-mechanical coupled 
dynamic analysis with SNS-PFEM, and it can be overcome by the PPP 
technique. 

Fig. 5. Vertical displacement history of point A: (a) elastic plane stress; (b) elastoplastic plane stress; (c)elastic plane strain; (d) elastoplastic plane strain.  
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3.4. 2D wave propagation 

In this example, the dynamical wave propagation in a saturated 
rectangular region is studied to further investigate the performance of 
the proposed SNS-PFEM (Jin and Yin, 2022; Monforte et al., 2019; Wang 
et al., 2021a, 2021b). The plane strain condition is used with the 
following properties: Young’s modulus E = 14.5 MPa, Poisson’s ratio ν 
= 0.3, the density ρ = 2000 kg/m3, and the permeability k = 0.01 m/s. 
For the Drucker-Prager model used, the parameters are set as the friction 
angle ϕ = 5◦, dilatancy angle ψ = 5◦, and cohesion c = 15 kPa. The 
impulse harmonic pressure of half period 0.04 s is uniformly applied on 
the 1 m width strip C to D, as shown in Fig. 10. The region is discretized 
with 1729 nodes and 3263 elements. The time step is set as Δt = 0.001 s. 
Two monitoring points are set to record the evolution of the displace-
ment at point A and pore pressure at point B. 

The results of the elastic case are exhibited in Fig. 11 and Fig. 13. The 
in-plane movement of surface point A presents a typical quasi-elliptic 
trajectory, which is generated by the propagation of elastic Rayleigh 

wave. The time history of pore pressure at interior point B in undergoes 
four-stage ups and downs due to the coupling effect of impulse force and 
inertia, and gradually dissipates at the final stage. The pore pressure 
with the wave fields (using a magnifying factor of 300) at different 
scenarios are presented in Fig. 13, which agrees quite well with the 
previous studies (Brezzi and Bathe, 1990; Kontoe et al., 2008; Sabetamal 
et al., 2016). In Fig. 11, the results of SNS-PFEM agree well with the 
references, while the displacement curve of NS-PFEM is different from 
the others at the final stage, and the pore pressure of NS-PFEM experi-
ences non-physical oscillations at the dissipation stage. In Fig. 12, the 
simulations are performed with different mesh densities and time steps. 
All the results are stable, and the evolution of pore pressure is not 
influenced by the time step and spatial discretization. The displacements 
calculated with different time steps are close to each other for the same 
mesh, which indicates the generalized-α method is accurate, uncondi-
tionally stable and independent of time step. The maximum displace-
ment of fine mesh is larger than that of the coarse mesh, showing the 
coarse mesh could give rigid response in the dynamic SNS-PFEM. 

Fig. 6. 1D dynamic consolidation: (a) geometry and boundary conditions; (b) load history.  

Fig. 7. Time histories for: (a) vertical displacement at point A; (b) pore pressure at point B.  
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The results of the elastoplastic case are presented in Fig. 14 and 
Fig. 15. The displacement trajectory of surface point A is no longer 
quasi-elliptic but an unclosed curve with permanent plastic deforma-
tion. The pore pressure of point B also undergoes similar four stages, but 
its dissipation is quite slower. The pore pressure with rescaled wave-
fields at different times shows that a plastic concave is formed at the 
loading strip. Also, the results of SNS-PFEM are in good accordance with 
the FEM, while the results of NS-PFEM are not so reasonable. Fig. 16 
visually illustrates the comparisons of the contours of pore pressure and 
shear stress of two different methods. The distributions acquired by the 

NS-PFEM undergo severe numerical noises, which is typical for the 
spurious non-zero energy modes, while the distributions by SNS-PFEM 
are quite smooth. It can be concluded that the proposed SNS-PFEM is 
stable and accurate in the 2D wave propagation problem. Besides, the 
nodal integration stabilization technique plays a decisive role in curing 
the severe instability of NS-PFEM in hydro-mechanical coupled dynamic 
problems. 

3.5. Strip footing penetration 

This example investigates the strip footing penetration into the 
saturated Mohr-Coulomb (MC) soil to further validate the performance 
of the dynamic SNS-PFEM involving large deformation. The same 
problem has been simulated in previous studies with ALE (Sabetamal 
et al., 2016) and MPM (Salgado and Bisht, 2021). The plane strain 
condition is used with the following soil properties: Young’s modulus E 
= 2 MPa, Poisson’s ratio ν = 0.3, the density ρ = 1000 kg/m3, perme-
ability k = 10-6 m/s, friction angle ϕ = 20◦, dilatancy angle ψ = 0◦, and 
cohesion c = 10 kPa. All the soil properties are set as the same as the 
referenced studies for comparison (Sabetamal et al., 2016; Salgado and 
Bisht, 2021). The uniform vertical displacement of U = -2.5 m is applied 
over a period 1 s on the strip with width B = 1 m. The time step is set as 
Δt = 0.01 s. The half geometry is taken due to symmetry which is dis-
cretized with a locally refined mesh of 3545 nodes and 6890 elements, as 
shown in Fig. 17. 

The contours of velocity and equivalent deviatoric plastic strain are 
exhibited in Fig. 18, which are quite smooth, indicating the correctness 
of the remeshing scheme. As Fig. 19 shows, the normalized soil 

Fig. 8. Evolution of the pore pressure at point B under extremely low permeability with different numerical settings: (a) NS-PFEM without PPP; (b) NS-PFEM with 
PPP; (c) SNS-PFEM without PPP; (d) SNS-PFEM with PPP. 

Fig. 9. Contour of the pore pressure under extremely low permeability with 
different numerical settings. 
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resistance-displacement curve by the proposed coupled SNS-PFEM 
agrees well with the referenced solutions of ALE and MPM, even when 
the penetration goes deep. The jump of stiffness and mass in remeshing 
is believed to cause the slight fluctuation of the resistance-displacement 
curve with SNS-PFEM, which is unavoidable in PFEM-class methods (Jin 
et al., 2020a, 2020b; Monforte et al., 2017a, 2017b). Therefore, all the 
obtained results demonstrate the proposed SNS-PFEM performs well in 
simulating dynamic problems involving large deformation. 

4. Applications 

In this section, three examples of hydro-mechanical coupled dy-
namics are simulated to show the power of the proposed SNS-PFEM in 
modelling some sophisticated geotechnical problems. The first example 
investigates the dynamic response of the elastic porous seabed under the 
high-order wave and current loading. The second example simulates the 
whole process of the Selborne slope experiment from the failure 

Fig. 10. Set-up for the 2D wave propagation in the rectangular domain.  

Fig. 11. (a) The motion of point A; (b) the evolution of pore pressure at point B for the elastic case.  

Fig. 12. (a) The motion of point A; (b) the evolution of pore pressure at point B with different mesh densities and time steps in SNS-PFEM.  
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initiation to the post-failure movement. The last example explores the 
dynamic response of a saturated soil slope under a realistic seismic 
loading. 

4.1. Seabed under wave and current loading 

It has been widely validated by experiments and mathematical 
modelling that the ocean waves and currents will incur the transient 
dynamic response in the poroelastic seabed (De Groot et al., 2006; Ye 
and Jeng, 2012). As shown in Fig. 20, the wave with crests and troughs 
proceeds in one direction and exserts the periodic tension–compression 
dynamic pressure on the free drainage surface of the seabed. It tends to 
induce the alternate positive–negative distribution of dynamic pore 
pressure and dynamic effective stress (Monforte et al., 2017a, 2017b). 
When the dynamic excess pore pressure exceeds the initial static vertical 
effective stress, the soil will liquefy and lose its strength and stability. In 
this section, two types of wave loads are used for consistency with 
reference solutions. The formulations of the pressure of the second-order 
Stokes wave theory (Xu et al., 2017a) are presented in Eq. (31), and the 
pressure of the third-order nonlinear wave with a uniform current (Ye 
and Jeng, 2011; Ye and Jeng, 2012) are presented in Eqs. (32)–(33). The 

explanations for each variable are listed as follows: ρ is the density of the 
seawater, g the gravity acceleration, H the wave height, ω the wave 
angular frequency, λ the wave number, d the water depth, L the wave-
length and U0 the current velocity. A finite domain is adopted here to 
model the dynamic responses within a half-infinite field, which may 
cause some near-boundary error due to the wave flection. The compu-
tational domain is set as more than 3 times longer than the wavelength, 
together with the simply fixed and impervious lateral boundaries, which 
has been proved to preserve computational accuracy in the region, not 
near the boundary (Hughes, 2000; Monforte et al., 2017a, 2017b). If a 
smaller geometry is used, or the transient wave radiation in the porous 
domain needs to be investigated, more advanced treatments such as the 
artificial viscous-spring boundary should be considered (Xu et al., 
2017b). 

Pb,2 =
ρgH

2cosh(λd)
cos(λx − ωt)+

3πρgH2

8L
tanh(λd)
sinh2(λd)

[
1

sinh2(λd)

−
1
3

]

cos2(λx − ωt) (31)  

Fig. 13. Contour of the pore pressure with deformed configuration (scale factor 300) at different scenarios for the elastic case.  

Fig. 14. (a) The motion of point A; (b) the evolution of pore pressure at point B for the elastoplastic case.  
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Pb,3 =
ρgH

2cosh(λd)

[

1 −
ω2λ2H2

2(U0λ − ω0)

]

cos(λx − ωt)

+
3πρgH2

8L

[
ω0(ω0 − U0λ)

2sinh4(λd)
−

gλ
3sinh(2λd)

]

cos2(λx − ωt)

+
3ρλH3ω0(ω0 − U0λ)

512
9 − 4sinh2(λd)

sinh7(λd)
cos3(λx − ωt)

(32)  

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ω = ω0 + (λH)
2ω2

ω0 = U0λ +
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
gλtanhλd

√

ω2 =
(9 + 8sinh2(λd) + 8sinh4(λd))

64sinh4(λd)
(ω0 − U0λ)

(33) 

The first simulation is implemented on a 250 m wide and 200 m high 
region with the second-order stokes wave load. The geometry is dis-
cretized by 2997 nodes and 5792 elements. The related computational 
parameters are listed in the Table. 2, which takes the values from 
reference (Xu et al., 2017a). Along the vertical centre line, two moni-
toring points of depth 10 m (point A) and 100 m (point B) are set to 
record the evolution of vertical displacement and dynamic pore pres-
sure. The results are exhibited in Fig. 21. Both the dynamic pore pressure 
and displacement oscillate at first due to the abruptly applied wave 
loading, and then become stable to a harmonic mode synchronously 
with the load. The dynamic responses decline with depth. Besides, the 
predictions of the SNS-PFEM and referenced FEM are in good consis-
tency, although the latter uses a viscous-spring boundary. It verifies that 
a large geometry could decrease the influence of fixed boundaries. 

Fig. 15. Contour of the pore pressure with deformed configuration (scale factor 300) at different scenarios for the elastoplastic case.  

Fig. 16. Contour of pore pressure for the elastic case with (a) SNS-PFEM and (b) NS-PFEM; contours of shear stress for the elastoplastic case with (c) SNS-PFEM and 
(d) NS-PFEM. 
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The second simulation is conducted using a 250 m wide and 30 m 
high region with the coupled third-order nonlinear wave and current 
pressure. A uniform mesh with 3559 nodes and 6888 elements is 
adopted. The related computational parameters are listed in the Table. 
2, which takes the values from reference (Ye and Jeng, 2012). Fig. 22 
presents the periodic distribution of the dynamic pore pressure and 
wave-induced vertical effective stress at t = 20 s, which agrees quite well 
with the referenced results (Ye and Jeng, 2012). Under the wave crest, 
the dynamic pore pressure is positive, and the dynamic vertical effective 
stress is compressive. It is just the opposite under the wave trough. 
According to the criterion in Eq. (34), the liquefication occurs at the 
position where the wave-induced vertical effective stress exceeds the 
original effective stress from the buoyant weight. Fig. 23 shows that with 
this criterion, the liquefication only happens at the top zone under the 
wave trough when the excess tensile tensile stress is large enough. The 
liquification zones move with the wave trough and would not stay 
somewhere permanently. This phenomenon is referred to as “transient 
liquefaction” in the poroelastic seabed, which has been identified in 

some model experiments (Chowdhury et al., 2006; Mory et al., 2007). 
The results validate that the proposed implicit SNS-PFEM is a reliable 
approach to simulate the dynamic problems of the seabed under wave 
and current loading. 

σ′

yd⩾ − (γs − γw)y (34)  

4.2. Simulation of the Selborne cutting slope 

The Selborne experiment was implemented to provide a detailed 
record of the progressive failure of the slope of saturated high-plasticity 
clay (Cooper et al., 1998). As shown in Fig. 24, two layers of the 
weathered and unweathered Gault clays constitutes the 15 m high 
model, with the 9 m cutting made on the top weathered soil. The 
landslide is initiated by increasing the pore pressure on the boundary, 
which reduces the effective normal stress within the slope. The field was 
equipped with numerous of piezometers, extensometers and in-
clinometers to give precise surveying of the failure mechanism (Cooper 
et al., 1998). Such a problem may also be simulated with a quasi-static 
approach, while it is much better to include the dynamic effect to cap-
ture more realistic pre-rupture and post-failure phenomena with dy-
namic features (Soga et al., 2016). Because of the detailed benchmark 
field data, several large deformation numerical methods have modelled 
this experiment to validate their accuracy, such as the explicit MPM 
(Wang et al., 2021a, 2021b) and stabilized two-phase S-PFEM (Jin and 
Yin, 2022). The proposed SNS-PFEM uses the implicit generalized-α Fig. 17. Geometry and mesh of strip footing penetration on Mohr- 

Coulomb soil. 

Fig. 18. Contour of (a) total velocity; (b) equivalent deviatoric plastic strain at the penetration depth of 2.5 m with SNS-PFEM.  

Fig. 19. Normalized soil resistance-penetration depth curve in the strip 
footing analysis. 
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integration scheme with unconditional stability, which is superior to the 
explicit methods in the conditions of large time step and low 
permeability. 

As shown in Fig. 24, a non-uniform mesh of 5252 nodes and 10,217 
elements is used. The bottom boundary is undrained except the 24 m 
region for pore pressure loading. Both the weathered and unweathered 
Gault clay are simulated using the strain-softening Mohr-Coulomb (MC) 
model, where the friction angle ϕ and cohesion c are reduced with the 
accumulated equivalent plastic strain (PEEQ) as in Eqs. (35)–(37). 

Material properties are listed in the Table. 3, which are taken from 
references (Jin and Yin, 2022; Soga et al., 2016), except that the 
permeability is lowered to be more reasonable for the soft clay. The total 
computational period is set to 3 × 105s with the time step Δt = 50 s. The 
pore pressure 110 kPa is linearly applied in the first five time steps and 
then kept constant. The initial stress is generated by gravity loading with 
the soil density. It is well-known that the strain softening will increase 
the mesh dependency. This problem can be partly solved using some 
techniques, such as the smeared creak (Cervera and Chiumenti, 2006; 
Soga et al., 2016) or micropolar approaches (Deborst, 1993). In this 
study, the mesh size and softening parameters are directly taken from 
the references (Jin and Yin, 2022; Soga et al., 2016). 

ϕ = ψ = ϕr +(ϕp − ϕr)e
− ηεp

eq (35)  

c = cr +(cp − cr)e− ηεp
eq (36)  

εp
eq =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2(ep : ep)/3

√
(37) 

Fig. 25 presents the evolution of the contours of the horizontal 
displacement, equivalent deviatoric plastic strain and pore pressure 
together with the deformed geometry. The normalized time t* is defined 
by the ratio of the real-time t and the critical failure time T: t* = t/T. 
Due to the obvious difference in strengths of the weathered and un-
weathered soil, the failure mainly occurs in the top layer. With the 
boundary pore pressure reaching its peak value, the water starts to 
permeate and the pore pressure of the soil along the seepage path 

Fig. 20. Seabed under wave and current loading.  

Table 2 
Model parameters for the seabed under wave and current loading.  

Parameter Case 1 (Xu et al., 2017a) Case 2 (Ye and Jeng, 
2012) 

Seabed height a (m) 200 30 
Seabed width b (m) 250 250 
Young’s modulus E (MPa) 222.88 26.67 
Poisson’s ratio ν 0.4 0.33 
Permeability (m/s) 1E− 4 1E− 4 
Density of soil ρ(kg/m3) 1800 1800 
Density of water ρf (kg/ 

m3) 
1000 1000 

Wave number λ 0.0707 0.0739 
Wave height H (m) 2 3 
Wave depth d (m) 20 10 
Wave length L (m) 88.88 85 
Current velocity U0 (m/s) / 1 
Time step Δt (s) 0.2 0.5  

Fig. 21. Time histories of the (a) vertical displacement and (b) pore pressure at the monitoring points A and B under the second-order wave loading.  
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increases. It can decrease the normal effective stress and leads to the 
initial yielding of some points near the slope top and toe. Then a clear 
sliding surface gets through rapidly. After that, the massive post-failure 
movement is triggered, and the sliding of the soil mass is accompanied 
by the expansion of the failure band, which shows the feature of a 
progressive failure mode. Fig. 26 (a) gives the comparison of the initial 
failure surface of the proposed dynamic SNS-PFEM with the referenced 

MPM and experimental results (Cooper et al., 1998; Jin and Yin, 2022; 
Soga et al., 2016). They are quite close to each other with some slight 
differences, which may come from the unavoidable distinction between 
the sophisticated real soil property and the simplified soil constitutive 
model. 

Fig. 26 (b) exhibits the time history of the pore pressure at three 
monitoring points A, B and C, together with the results acquired by the 

Fig. 22. Distribution of dynamic pore pressure and wave-induced vertical effective stress at time t = 20 s under the third-order wave loading.  

Fig. 23. Contours of liquefaction zones with the third-order wave loading at different scenarios t = 24 s and 26 s (the dimension of geometry is 250 m * 4 m).  
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referenced field experiment and MPM simulation. It shows that the re-
sults of SNS-PFEM are quite close to that of MPM, and also fall into 
reasonable agreement with the field data, especially at the piezometers 
A and B. The pore pressure of points A and B from both the numerical 

predictions and experimental results undergo a sudden drop when the 
failure occurs. This phenomenon contributed to the local volumetric 
extension state near the shear band (Soga et al., 2016). 

Fig. 27 presents the evolution of the total displacements, velocities, 
and accelerations of three points D1, D2 and D3 at different heights. The 
movements of the three points are very slow during the first stage with 
the initial injection and seepage of water, which may correspond to 
elastic deformation, and then suddenly accelerate with the propagation 
of the failure zone. Point D3 near the slope toe reaches the static balance 
again soon after the global failure occurs, only experiencing a very small 
displacement. At the same time, point D1 near the top of the slope 
continues to run out at high speed and stops much later than point D3. 
All of the points undergo the stages of accelerating first and then 
decelerating, which depicts the whole process from the pre-failure to the 
post-failure. The asynchrony of the movements at different locations 
further validates the feature of progressive failure. The aforementioned 
results and comparisons demonstrate the accuracy of the proposed 

Fig. 24. Geometry and mesh of the Selborne cutting slope model.  

Table 3 
Properties of the soil constitutive model of the Selborne experiment.  

Parameter Weathered Gault 
clay 

Unweathered Gault 
clay 

Young’s modulus E (MPa) 20 20 
Poisson’s ratio ν 0.33 0.33 
Permeability (m/s) 1E− 7 1E− 7 
Density of saturated soil ρ(kg/ 

m3) 
1700 1700 

Friction angle (peak/residual, ◦) 13/3.0 25/5.0 
Cohesion c (peak/residual, kPa) 25/13.5 26/15 
Shape factor of softening, η 400 400  

Fig. 25. Evolution of horizontal displacement, deviatoric plastic strain and pore pressure of the Selborne cutting slope with SNS-PFEM.  
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dynamic SNS-PFEM in simulating the realistic dynamic experiments of 
slope failure with large deformation. 

4.3. Slope under seismic loading 

The last example investigates the dynamic responses of a saturated 
slope under realistic seismic loading to illustrate the performance of the 
proposed SNS-PFEM in simulating the practical geotechnical hazards. 

Fig. 26. (a) Comparison of the failure surfaces; (b) comparison of the evolution of pore pressure at the monitoring points A, B and C of SNS-PFEM with the 
experiment data and MPM simulation. 

Fig. 27. Evolution of total displacement, velocity and acceleration at the monitoring points A, B and C of the Selborne cutting slope.  
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This kind of problem used to be explored by the total stress scheme with 
undrained assumptions. However, only with the hydro-mechanical 
coupled approach, some physical processes such as soil liquefaction 
and pore pressure evolution can be acquired. As shown in Fig. 28, the 
domain is discretised with a uniform mesh of 4094 nodes and 7837 el-
ements. The soil is simulated with a strain-softening Tresca model as in 
Eqs. (35)–(37), where the parameters are set as in the Table. 4. The 
friction angle is set to 0 to simulate the pure cohesive clay. The seismic 
load is implemented by assigning the inertia force of earthquake accel-
eration to the slope, with the hyperbolic distribution of seismic coeffi-
cient as in Eq. (38), where a is the earthquake-induced acceleration, h is 
the height from the base and D = 2H is the total height of the geometry. 
This coefficient is set to include the amplification effect from the ground 
basement to the surface (Wang et al., 2021a, 2021b). The EI Centro 
seismic acceleration in the north–south direction in Fig. 28 is treated as 
the input horizontal body force (Archuleta et al., 2006; Wang et al., 
2021a, 2021b), which is magnified by a factor 1.3 to make the defor-
mation more significant. The total computational period of 20 s with the 
time step Δt = 0.02 s is set. The step length takes the same value as the EI 
Centro seismic signal interval. The initial stress is generated by gravity 
loading with the soil density. 

ah = a
(

1 + 2(h/D)
2
)

(38) 

The failure mode of the saturated slope subjected to seismic loading 
is presented in Fig. 29 (a). Firstly, a main plastic zone is formed at the 
bottom under the slope toe, with several small failure bands appearing 
behind it. All the failure bands start from the bottom and propagate 
towards the ground. Then, two intersecting straight faults and one single 
curved failure band get through the ground surface, forming an active 
wedge block behind the curved failure band. Finally, a clear quasi- 
circular slip surface gets through. The sliding body forms and suffers a 
large movement, presenting a typical deep failure mode of the cohesive 
soil slope. The earthquake-induced pore pressure experiences an 
obvious redistribution caused by the failure bands, as shown in Fig. 29 
(b). The velocity and acceleration at t = 20 s before and after applying 
the α-shape method are plotted in Fig. 30. For the sliding body, the 
maximum velocity appears along the quasi-circular slip surface and 
decreases towards the ground surface, presenting a rotation pattern. For 
the active wedge block, however, the maximum velocity occurs on the 
ground surface and decreases towards the bottom. As shown in Fig. 30, 
the soils on the top and along the failure bands have greater accelera-
tion. This distribution may be caused by the fixed bottom and hyperbolic 
seismic coefficient in Eq. (38). The earthquake-induced multiple shear 

bands can also be observed in the previous study for the slope in sen-
sitive clay (Wang et al., 2021a, 2021b). The variable redistribution 
before and after the remeshing process is not significant, except in some 
boundary regions where the unreasonable elements are deleted. In the 
SNS-PFEM, the variables are directly carried by the nodes (particles), 
thus variable mapping will not be used. This feature benefits in reducing 
the accuracy loss in the remeshing process. All the results indicate that 
the proposed dynamic coupled SNS-PFEM can effectively simulate the 
whole process of the earthquake-induced slope failure with large 
deformation. 

5. Conclusions 

This study proposed a dynamic hydro-mechanical coupled SNS- 
PFEM for analysing saturated porous medium with the u-p format. The 
subdomain-based stress point stabilization was adopted to circumvent 
the spurious non-zero energy mode of direct nodal integration in the 
dynamic Galerkin weak forms. The polynomial pressure projection 
(PPP) technique was implemented to accommodate the dynamic hydro- 
mechanical coupled formulations, aiming to overcome the unphysical 
pore pressure oscillation in the low-permeability limit. The step-by-step 
time integration algorithm based on the CH generalized-α method was 
derived, leading to an unconditionally stable implicit solution scheme. 

Five benchmark examples were simulated to validate the accuracy 
and efficiency of the proposed method, namely the free vibration of a 
shear wall, the elastoplastic beam under a sudden load, the 1D dynamic 
consolidation, the 2D wave propagation and the strip footing penetra-
tion. The required dynamic responses are in good consistency with the 
reference solutions in both elastic and elastoplastic, uncoupled and 
coupled conditions. The polynomial pressure projection was proved to 
be effective in stabilizing the undrained pore pressure oscillation. The 
nodal integration stabilization can help correct the overly soft defect in 

Fig. 28. Geometry and mesh of the slope with the seismic signal of 1940 EI Centro earthquake.  

Table 4 
Properties of the soil constitutive model of slope under seismic 
loading.  

Parameters Clay 

Young’s modulus E (MPa) 20 
Poisson’s ratio ν 0.3 
Permeability (m/s) 1E− 7 
Density of saturated soil ρ(kg/m3) 1700 
Cohesion c (peak/residual, kPa) 60/12 
Shape factor of softening, η 100  
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vibration mode and eigenvalue analysis, and also cure the temporal 
instability in calculating dynamic responses with time integration 
scheme. 

The proposed method was further applied to simulate some more 

sophisticated geotechnical dynamic problems, i.e., the elastic seabed 
under wave and current, the Selborne slope failure experiment, and the 
slope under real seismic loading. The results are reasonable and in good 
accordance with the experimental data and reference solutions. Some 
dynamic features, such as the transient liquefaction of the seabed and 
the progressive failure of a saturated slope, can be correctly depicted, 
which indicates that the proposed SNS-PFEM is reliable in modelling the 
hydro-mechanical coupled problems with realistic dynamic loading and 
large deformation. 

Several limitations still exist in the current coupled dynamic SNS- 
PFEM, which could lead to some future work. First, the u-p format ne-
glects the relative acceleration of fluid to the solid skeleton. This 
assumption only holds in the low-frequency conditions. It seems 
worthwhile to develop the u-U or u-w-p formats in SNS-PFEM to obtain 
more realistic dynamic responses in high-frequency conditions. Second, 
some dynamic constitutive models of soils such as PDMY can be 
implemented in this code (Iwan, 1967), to simulate the displacement 
accumulation or liquefaction under cyclic loading. Moreover, the cur-
rent SNS-PFEM is two-dimensional, which can be further extended to a 
three-dimensional version in a simple manner. 
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Appendix A 

A.1. Formulations of dynamic finite element equations 

The consistent mass matrix M is defined in Eq. (39), where ρ is the density of mixture used in Eq. (1), and Nu is the displacement interpolation 
matrix. The mass matrix of linear triangular element can also be lumped to a diagonalized form to save computational cost, which has been widely 
adopted in FEM practice. 

M =

∫

Ω
ρNT

u NudΩ (39)  

Nu = [Nu,1 Nu,2 ... Nu,n ] =

[
N1 0 N2 0 ... Nn 0
0 N1 0 N2 ... 0 Nn

]

(40) 

The internal force Fints from the effective stress is presented in Eq. (41), where the gradient Bu is defined in Eq. (43). The stiffness matrix Kuu in Eq. 
(42) is calculated by taking the derivative of internal force to the displacement. 

Fints(U) =

∫

Ω
BT

u σ
′

dΩ (41)  

Kuu =
∂Fints(U)

∂U
=

∫

Ω
BT

u DBudΩ (42)  

Bu = LdNu = [Bu,1 Bu,2 ... Bu,n ], Ld =

⎡

⎢
⎢
⎢
⎣

∂
∂x

0 ∂
∂y

0 ∂
∂y

∂
∂x

⎤

⎥
⎥
⎥
⎦

T

(43) 

The permeability matrix Kpp and coupling matrix Kup are defined in Eqs. (44)–(49). 

Kpp =

∫

Ω
BT

p kf BpdΩ (44)  

Kup =

∫

Ω
BT

u mNpdΩ (45)  

kf =
1
γf

[
kx 0
0 ky

]

(46)  

m = [ 1 1 0 ]T (47)  

Np = [Np,1 Np,2 ... Np,n ] = [N1 N2 ... Nn ] (48)  

Bp = Lf Np = [Bp,1 Bp,2 ... Bp,n ], Lf =

[
∂
∂x

∂
∂y

]T

(49) 

The external load vector Fext and flow flux term Qext are defined in Eqs. (50)–(51). 

Fext =

∫

Γt

NT
u tdΓ+

∫

Ω
NT

u fdΩ (50)  

Qext =

∫

Γq

NT
p qdΓ (51) 

For simplicity, the Rayleigh damping is used in this numerical framework, where the damping matrix C is the linear combination of the stiffness 
matrix Kuu and mass matrix M with the Rayleigh damping coefficients a1 and a2. 

C = a1M + a2Kuu (52)  

A.2. Derivation of hydro-mechanical coupled CH generalized-α method with PPP 

The following variants of Newmark-β method are presented in Eqs. (53)–(55). In Eq. (54), the velocity and acceleration at tn+1 are expressed as the 
function of displacement at tn+1 and other known variables at tn. In Eq. (55), the incremental velocity and acceleration are expressed as the function of 
the incremental displacement and other known variables at tn. 
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⎧
⎪⎪⎨

⎪⎪⎩

Utn+1 =

(

Utn + U̇tn Δt + (
1
2
− β)Ütn Δt2

)

+ βÜtn+1 Δt2 = Atn + βÜtn+1 Δt2

U̇tn+1 =
(

U̇tn + (1 − γ)Ütn Δt
)
+ γÜtn+1 Δt = Btn + γÜtn+1 Δt

(53)  

⎧
⎪⎪⎨

⎪⎪⎩

Ütn+1 =
1

βΔt2 (Utn+1 − Atn )

U̇tn+1 = Btn +
γ

βΔt
(Utn+1 − Atn )

(54)  

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ütn+1 − Ütn =
1

βΔt2 (Utn+1 − Utn ) −
1

βΔt
U̇tn −

1
2β

Ütn

U̇tn+1 − U̇tn = Ütn Δt + γΔt(Ütn+1 − Ütn ) =
γ

βΔt
(Utn+1 − Utn ) −

γ
β

U̇tn −

(
γ

2β
− 1

)

Ütn

(55) 

The Eq. (56) is acquired by substituting the Eqs. (53)–(55) into the equilibrium Eq. (26). Noticing that the effective internal force is integrated at 
tn+1− αf and the effective stress needs to be updated at tn+1, the constitutive model should be integrated twice at each Newton-Raphson iteration. The Eq. 
(57) is further converted to the Eq. (58) by eliminating all the first and second-order derivatives at tn+1, so as to arrive at the standard FEM equations 
with nodal variable increments. 

MÜtn+1− αm
+ CU̇tn+1− αf

+ Fints( Utn + (1 − αf )(Utn+1 − Utn )
)

− Fints
(Utn ) − KupPtn+1− αf

= Fext
tn+1− αf

− Fints
(Utn )

(56)  

(1 − αm)M(Ütn+1 − Ütn ) + (1 − αf )C(U̇tn+1 − U̇tn )

+
(
Fints( Utn + (1 − αf )(Utn+1 − Utn )

)
− Fints

(Utn )
)
− (1 − αf )Kup(Ptn+1 − Ptn )

= αf Fext
tn + (1 − αf )Fext

tn+1
− MÜtn − CU̇tn − Fints

(Utn ) + KupPtn

= (1 − αf )
(

Fext
tn+1

− Fext
tn

)

(57)  

(
1 − αm

βΔt2 M +
(1 − αf )γ

βΔt
C
)

(Utn+1 − Utn ) +
(
Fints( Utn + (1 − αf )(Utn+1 − Utn )

)
− Fints

(Utn )
)

− (1 − αf )Kup(Ptn+1 − Ptn ) = (1 − αf )
(

Fext
tn+1

− Fext
tn

)
+ (1 − αm)M

(
1

βΔt
U̇tn +

1
2β

Ütn

)

+(1 − αf )C
(

γ
β

U̇tn +

(
γ

2β
− 1

)

Ütn Δt
)

(58) 

The Eq. (59) is acquired by substituting the Eqs. (24) into the mass conservation Eq. (26) and then converting it into the incremental format. 

KT
up(Utn+1 − Utn ) +

(
θΔtKpp + S

)(
Ptn+1 − Ptn )

= (αf Qext
tn + (1 − αf )Qext

tn+1
)Δt − KppPtn Δt

(59) 

Finally, the nonlinear Eq. (26) is solved by the standard Newton-Raphson procedure. The linearized equations, the variable updating rules and the 
residual formulations at the ith iteration from tn to tn+1 are exhibited in Eqs. (60)–(66). The iteration will automatically stop when the pre-set 
convergence criterion is satisfied. 
[

K̂uu − (1 − αf )Kup

− (1 − αf )K
T
up − (1 − αf )

(
θΔtKpp + S

)

]

tn+1

[
δU
δP

](i)

tn+1

=

[
ΔRu
ΔRp

](i)

tn+1

(60)  

K̂uu =
1 − αm

βΔt2 M +
(1 − αf )γ

βΔt
C+(1 − αf )Kuu (61)  

[
ΔU
ΔP

](i)

tn+1

=

[
ΔU
ΔP

](i - 1)

tn+1

+

[
δU
δP

](i)

tn+1

(62)  

[
ΔU
ΔP

](0)

tn+1

=

[
0
0

]

(63)  

[
U
P

]

tn+1

=

[
U
P

]

tn

+

[
ΔU
ΔP

]

tn+1

(64)  
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