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ABSTRACT

Microbial-Induced Carbonate Precipitation (MICP) is a naturally occurring process whereby bacteria produce
enzymes that accelerate the precipitation of calcium carbonate. This process is facilitated through various
bacterial activities, including ureolysis, sulfate reduction, iron reduction, and denitrification. The application of
MICP has been widespread in a range of engineering fields, such as geotechnical, concrete, environmental, and
oil and gas engineering for soil stabilization, concrete remediation, heavy metal solidification, and permeability
control. Numerous review papers have been published that summarize the mechanisms and properties associated
with different MICP applications. The purpose of this review paper is to provide a comprehensive summary of
the various engineering applications of MICP, along with the mechanisms, materials, and engineering properties
associated with each application. By comparing the similarities and differences in MICP research progress across
different engineering fields, this review aims to increase understanding of MICP, stimulate new research ideas,

and accelerate the development of MICP techniques.

1. Introduction

Microbial-induced carbonate precipitation (MICP) is a natural pro-
cess where bacterial activity alters the aqueous medium's super-
saturation conditions, resulting in the precipitation of carbonate mi-
nerals. Compared to the naturally occurring process of carbonate
mineralization, MICP occurs more rapidly due to the action of bacterial
enzymes. There are several pathways by which microbial metabolism
activity increases the pH of the aqueous medium, promoting MICP.
These pathways include ureolysis, sulfate reduction, iron reduction, and
denitrification etc.

The precipitated calcium carbonate crystals can bind soil particles
together, increasing soil strength and stiffness while controlling for
relatively high permeability. Compared to cement, the viscosity of the
bacterial suspension is low, making it possible to inject into small pores
or cracks in the structure so that the precipitated crystals can fill the
small cracks. Carbonate precipitates can also change the surface prop-
erties of oil-water separation materials, improving separation effi-
ciency. Additionally, carbonate minerals can co-precipitate with heavy
metals, increasing the solidification of contaminated soils. Carbonate
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precipitation is also an effective carbon sequestration method, making
MICP widely applicable in geotechnical, environmental engineering,
hydraulics, groundwater ecohydrology, oil and gas industry, en-
gineering geology, ocean engineering, structural engineering, and other
fields.

MICP mechanisms and engineering properties have been extensively
studied experimentally at different scales, from microscale using scan-
ning electron microscopy, microfluidics, and micro-CT, to core scale
using cube experiments combined with a series of mechanical testing
methods, and to large-scale laboratory and field experiments with in situ
monitoring methods. Factors affecting the success and performance of
MICP include MICP protocols, such as bacterial, chemical, and injection
properties, solid medium properties, such as porosity, pore structure,
etc., and environmental factors, such as temperature, oxygen level,
aqueous medium salt content, pressure, and local bacterial commu-
nities.

This review provides an overview of the various applications of
MICP and factors that impact its properties. Additionally, it identifies
research gaps, challenges, and future directions for the use of MICP in
different applications.
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2. Filling fractures or pores of geoformations for underground
projects

In 1992, Ferris and Stehmeier [30] introduced the application of
MICP for hydraulic control of geoformations by publishing a U.S. Patent
titled "Bacteriogenic mineral plugging" (U.S. Patent 5143,155, Sep-
tember 1, 1992). This marked the beginning of using MICP for various
applications such as (i) well closure, (ii) manipulating subsurface flow
paths to enhance oil recovery, (iii) sealing ponds or reservoirs, (iv)
forming subsurface barriers to control saltwater or contaminated
groundwater intrusion, and (v) treating fractures in cap rocks, wellbore
cements, or casing/cement/formation interfaces to mitigate leakage
from geologically sequestered CO, injection sites. These applications
require a significant reduction in the permeability of fractured geo-
formations or hydraulic conductivity of the porous medium. This sec-
tion presents recent trends and research conducted on these applica-
tions. Table 1 provides a summary of MICP research conducted on
filling fractures or pores of geoformations in underground projects, and
Fig. 1(a) illustrates these findings.

2.1. Sealing ponds, plugging reservoirs and landfill barriers

Applications such as sealing ponds, plugging reservoirs, and
building landfill barriers require a reduction in the permeability of
granular materials with pores, such as soils and porous sandstone. To
achieve this, several studies have utilized microbial-induced carbonate
precipitation (MICP). For instance, Chu et al. [19] reported a reduction
in sand permeability from 10* m/s to 107 m/s with an average of 2.1 kg
of calcium (Ca) per m® precipitated on sand particles. Stabnikov et al.
[111] utilized ferric hydroxide precipitation, produced by a ferrous-
containing solution percolated from iron ore and cellulose, along with a
combination of acidogenic and iron-reducing bacteria, to reduce sand
hydraulic conductivity from 10 m/s to 10 m/s. Zhong et al. [146]
demonstrated an 88.6% reduction in permeability from 1500 milli
darcies (md) to 136 md in a high-permeability reservoir and a decrease
to 22 md in a low-permeability reservoir. MICP treatment also led to a
7.9% increase in reservoir recovery. Furthermore, Hataf and Baharifard
[42] showed that MICP-treated soil samples experienced decreased
permeability, suggesting that MICP could be a useful and en-
vironmentally friendly method to form a barrier between waste and
groundwater or substrata.

2.2. Wellbore integrity and fracture sealing

MICP can reduce permeability in formations with carbonate pre-
cipitation, which is relevant for applications such as wellbore integrity
and fracture sealing. Several studies have demonstrated the effective-
ness of MICP in reducing permeability and improving wellbore in-
tegrity. Cuthbert et al. [23] conducted a field-scale experiment that
significantly reduced the permeability of a single fracture over several
square meters. Cunningham et al. [22] showed that MICP reduced the
permeability of a Berea sandstone core by more than 3 orders of
magnitude and improved wellbore integrity. In another study, Phillips
et al. [95] successfully treated compromised wellbore cement using
MICP. Tobler et al. [117] applied MICP to treat fractured granite cores,
and Wu et al. [127] performed 3D scanning and simulation on MICP-
treated fractured rock. Kirkland et al. [57] utilized MICP for wellbore
integrity applications and suggested that it can be employed to re-
mediate leakage pathways and improve waterflood efficiency. Peng
et al. [94] showed that MICP grouting can significantly reduce the
permeability of fractured rock. Lastly, Kolawole et al. [58] suggested
that MICP can enhance the long-term caprock integrity and CO, storage
security.
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3. Binding granular materials whilst maintaining drainage ability

MICP can enhance soil strength and stiffness by binding soil parti-
cles with precipitated calcium carbonate crystals without filling soil
pores completely. This results in improved drainage ability while
adding a controlled amount of cementation within the granular net-
work. This process has a variety of applications, including stabilization
of onshore and offshore soils, liquefaction provision, dust and deserti-
fication control, and erosion control. Table 2 summarizes research on
MICP for binding granular materials while maintaining drainage
ability, and Fig. 1(b) provides an illustration of the process.

3.1. Stabilization of onshore and offshore soils

The ability of CaCO3 crystals produced by MICP to bind soil particles
and maintain soil permeability is directly influenced by properties such
as crystal type, size, number, and distribution. These properties can be
analyzed using scanning electron microscopy (SEM), which has been
used by researchers to understand the mechanisms of increased soil
strength through MICP treatment. For instance, studies have shown that
precipitated calcite can form bonds at particle-particle contacts [27],
lower chemical concentrations of CaCOg3 lead to better distribution of
calcite precipitation [2] and that larger rhombohedral CaCOj3 crystals
precipitate around the bio-slurry of spherical fine crystals [12]. In ad-
dition, Mahawish et al. [79] observed both large calcium carbonate
crystals and microbes. While SEM is useful, it cannot capture the entire
MICP process. To overcome this, microfluidic chips have been designed
and fabricated to observe the spatial and temporal changes in CaCO3
crystal properties during MICP treatment. In previous studies, Wang
et al. [123,121] utilized scanned photos of sandy soil to design and
produce microfluidic chips. The channel inside the chips were made
hydrophilic and MICP treatment procedures were performed. It was
discovered that the properties of CaCOj crystals may vary both spatially
and temporally [120]. Changes in bacterial quantity during MICP
treatment can be measured [121], and the effects of bacterial density
and temperature on crystal growth rate and transformation processes
were explored ([122]). The time interval between injections of ce-
mentation solution was identified to affect the number and size of
crystals produced following MICP treatment in accordance with Ost-
wald's law [120]. This discovery was applied to a soil column experi-
ment which demonstrated that longer intervals between injections re-
sulted in larger CaCOs crystals and thus were more effective in
enhancing the strength of MICP-treated sand. By using Raman back-
scattering spectroscopy to analyze the chemical composition of the
precipitate, Xiao et al. [132] identified calcite and vaterite as the main
mineral phases in microfluidic chips. Furthermore, Xiao et al. [131]
discovered that high concentrations of calcium chloride (CaCl,) hin-
dered diffusion and decreased the uniform distribution of CaCO3 at the
microscale. In another study, Marzin et al. [82] placed grains in a mi-
crofluidic cell and discovered that NaCl in solution increased the ad-
hesion rate of bacteria.

In order to stabilize soil, it is important to increase its strength and
stiffness. To achieve this, the stress-strain behavior of microbial-in-
duced calcium carbonate precipitation (MICP) has been investigated.
According to DeJong et al. [27], MICP-treated specimens exhibit non-
collapse strain softening shear behavior, with higher initial shear
stiffness and ultimate shear capacity compared to untreated loose spe-
cimens. Montoya & DeJong [84] found that the peak strength of MICP-
treated soils generally increases with the CaCO3 content, and the soil's
behavior transitions from strain-hardening to strain-softening. Montoya
and DeJong [84] measured s-waves using bending elements and
showed that the small-strain shear stiffness (Gpax) of MICP-treated
samples was 634 MPa, 1815 MPa and 2940 MPa when the CaCO3 con-
tent was 1.3%, 3.06% and 5.31%, respectively.
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Fig. 1. Summary of MICP applications. (a) filling fractures or pores of geoformations in underground projects; (b) binding granular materials whilst maintaining
drainage ability; (c) construction remediation; (d) bioremediation purposes; (e) material modification and protection.

Wu et al. [128] explained the stress-dilatancy relationship of bio-
cemented sand using Rowe's stress-dilation theory, showing that bio-
cemented sand behaves like dense sand in terms of stress-dilation re-
lationship, and the higher the CaCO3 content, the greater the expansion.
The strength and stiffness behavior are highly affected by CaCO3 con-
tent. Soon et al. [110] suggested that a minimum calcite content of
1.0% is required to provide measurable improvement in soil strength.
Similarly, Lin et al. [73] showed that soil strength increased even when
the calcium carbonate content was as low as 1%. Gao et al. [34] showed
that a calcite content of 1.0% and 0.79% was sufficient to achieve shear
strength in loose sand (Dr = 30%) and medium dense sand (Dr =
50%), respectively. Cui et al. [20] found that the effective friction angle
(up) and the effective cohesion (cy) increase with CaCO5 content, and
can be well-fitted using linear and exponential functions, respectively.
Mahawish et al. [79] achieved a maximum compressive strength of
around 14 MPa. Furthermore, at similar CaCO3 content, the strength
behavior may vary due to different MICP protocols producing CaCO5
crystals with different microscale properties. Al Qabany & Soga [97]
found that a lower chemical concentration resulted in stronger samples.
Cheng et al. [13] found that higher soil strength can be obtained at a
similar CaCO3 content when the treatment is performed under a low
degree of saturation.

In addition to increasing soil strength and stiffness, controlling hy-
draulic conductivity is also crucial for certain applications, whether it is
necessary to maintain good drainage or to substantially reduce per-
meability. The amount and properties of CaCO3; produced can alter the
hydraulic properties of soil, with crystal amount and characteristics

being determined by bio-chemical parameters, injection method, and
porous medium characteristics. Achieving a balance of slower reactions
can result in lower urease activities and chemical solution concentra-
tions, which can lead to a lower reduction in hydraulic conductivity but
still provide effective strength enhancement. However, for a complete
reduction of permeability, high urease activities, flow rates, and che-
mical solution concentrations are required to plug the pores. Whiffin
et al. [126] observed reductions in permeability ranging from 80% to
40% after treatment with varying post-treatment permeability values.
Treatment recipes can also affect the size of the precipitated CaCO5
crystals and thus the permeability. Al Qabany and Soga [97] found that
high concentrations of urea and calcium chloride solutions caused a
rapid drop in permeability during early stages of CaCO3 precipitation,
while a low-chemical-concentration solution resulted in a more gradual
and uniform decrease in permeability. Al Qabany and Soga [97]
showed that there was a greater reduction in permeability for samples
with lower initial relative density, and Rowshanbakht et al. [101] found
that the permeability of soil samples decreased as the relative density of
soil increased. Mujah et al. [88] compared the strength and perme-
ability of bio-cemented samples to those treated with ordinary Portland
cement (OPC) and found that bio-cemented sand samples provided
higher strength and permeability compared to samples treated with a
similar content of OPC after 28 days of curing.

In the context of soil stabilization, achieving treatment homogeneity
is of utmost importance. van Paassen et al. [91] conducted a large-scale
study on biogrouting as a ground improvement method and demon-
strated that seismic measurements can be utilized to monitor the
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Table 2 (continued)

Testing

Treating material

Cementation solution

Bacterial Strain

Application

References

XRD,

desert sand samples

yeast extract (20 gL ™), (NH,)2SO4

Sporosarcina pasteurii

combating desertification

[143]

SEM, sand fixation experiments, Compressive strength

test

1o g~L'1), Tris buffer (0.13 mol~L'1; pH

9.0), and urea (20 g-L‘l)

(ATCC 11859)

Internal and costal erosion control

Internal erosion test

mixing a natural gravel soil

Urea- CaCl, (02M, 04M, 06 M, 1-0M,

2:0 M), Nutrient broth 6 g/1

S. pasteurii (ATCC

internal erosion control in earth-

filled embankment dams

[49], [47]; [50]

with a British Standard graded

sand

6452)

simulation of tidal cycles

sandy soil was sourced from

0.7 M CaCl, and urea served as fixation

fluid and ce-mentation fluid

Sporosarcina pasteurii

erosion mitigation and stabilisation
of sandy soil foreshore slopes

[102]

Troon beach in Ayrshire, UK

the Qingdao Sea Sand, mainly bench-scale flume erosion tests, Penetration resistance
test

composed of siliceous sand
beach sand collected from

Atlantic Beach, Florida

equimolar of calcium chloride and urea

(1 mol/L)

sporosarcina
pasteurii (DSM 33)

increase erosion resistance of sand

[67]

erosion testing;acid-wash and control testing, crust-

depth Testing

urea/ calcium (2.5 M)

S. pasteurii NRS929

(USDA)

erodibility improvement for beach

sand

[7]

Small-scale laboratory model tests, erosion test

a commercial calcareous sand
originated from the State of

Hawaii

0.5M urea and 0.25M CaCl,

S. pasteurii, ATCC

11859

mitigating coastal sand dune erosion

[75]

Small-scale laboratory model tests

Natural clean silica sand

Bacillus sp.

coastal protection

[104]
[124]

Small-scale laboratory model tests, Scouring/erosion
tests

sand from a construction site

Purified water 100 mL; Tryptone 1.5¢g,

Soy peptone 0.5 g,

Sporosarcina pasteurii

mitigate scouring/erosion of sand

embankment in coastal areas

NaCl 0.5g, Urea 2g
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biogrouting progress spatially and temporally without disturbing the
ground. Cheng and Cord-Ruwisch [10] found that uniform cementation
throughout the entire length of a 1-meter sand column required the
percolation of alternating solutions containing bacteria or calcium ions.
Martinez et al. [81] showed that injection of bacteria at a concentration
of 7 x 10° cells/mL and an injection rate of 10 mL/min for 1.5 pore
volumes followed by a 6-hour retention period was the most effective
method for achieving uniform distribution in MICP experiments con-
ducted in half-meter columns. Cheng and Cord-Ruwisch [11] conducted
a 2-meter column MICP experiment and observed clogging close to the
injection end when fine sand particles with diameters smaller than
0.3mm were used, but not when the particle size was bigger than
0.5 mm. In a three-dimensional fine sand cementation trial, Cheng and
Cord-Ruwisch [11] achieved a relatively homogeneous cementation to
a depth of 20 cm in the horizontal direction, with 80% of the cemented
sand having a strength between 2 and 2.5 MPa. Gomez et al. [35] de-
monstrated that biostimulation may yield comparable results to bio-
cementation at the meter scale. Wu et al. [127] conducted biogrouting
tests in 1 m3 models with pure silica sand and rock blocks filled with
sand, achieving relatively uniform MICP treatment using low-pH single-
phase injection [15] and high temperature single-phase injection
methods [130] due to the bio-cementation process lag period. San
Pablo et al. [103] suggested that lower ureolytic rates enhance the
spatial uniformity and extent of biocementation.

Along with achieving homogeneity, recent advancements have ad-
dressed other challenges associated with Microbially Induced Calcium
Carbonate Precipitation (MICP), including treating soils beyond sand,
reducing by-product NH,*, and applying MICP in the field. For in-
stance, Zamani and Montoya [138] found that the efficacy of MICP on
silty sands relies on relative density, fines content, and soil fabric. Moon
et al. [86] discovered that adding kaolin as a filler material increased
contact points among particles, resulting in improved strength and
stiffness of MICP-treated soils.

MICP has also been tested in simulated marine environments with
high ion content [14,136], reduced oxygen availability [70], and tem-
perature variance [93], as well as in calcareous sand [21,78] and
marine clays [136]. Cheng et al. [14] demonstrated that seawater can
be used instead of cementation solution for MICP. Yu and Rong [136]
discovered that Sporosarcina pasteurii strains can multiply in seawater
and have urease activity, making it possible to use MICP for con-
structing ocean islands and reefs far from the mainland. Li et al. [70]
found that adequate air supply is essential to improve the MICP pro-
cesses. Peng et al. [93] discovered that CaCO5 precipitation at 10 °C was
higher than that at 30 °C, while Liu et al. [78] emphasized the im-
portance of CaCO3 content in increasing the strength and stiffness of
MICP-treated calcareous sand. Cui et al. [21] found that precipitated
calcium carbonate bonds particles, thereby enhancing the shear
strength of calcareous sand. To remove the byproduct NH,*, Lee et al.
[69] suggested using a high pH and high ionic strength rinse solution.
Lastly, Terzis et al. [116] presented a full-scale application of slope
stabilization via MICP followed by long-term GIS surveillance and
concluded that MICP can be an efficient tool for improving the structure
and performance of fine soils.

3.2. Liquefaction provision

Numerous researchers have analyzed the mechanisms of MICP in
relation to soil liquefaction resistance. In 2013, Montoya et al. [85]
discovered that sands treated with MICP demonstrated a significant
increase in resistance to liquefaction. This was evidenced by a decrease
in pore pressures and shaking-induced settlements, as well as an in-
crease in maximum acceleration at the ground surface. The study also
revealed a transition in soil behavior from soil-like to rock-like. Sima-
tupang et al. [108] investigated the correlation between small-strain
stiffness and liquefaction resistance, discovering two mechanisms that
contributed to the enhanced resistance: (1) the calcite precipitated in
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the sand bind the sand grains, thereby reducing strain and excess pore-
pressure generated during the cyclic loading, and (2) the enhanced
dilative nature of the sand due to the relative angularity provided by
the calcite crystals or the ratio of the crystal size to grain size of the
sand. Xiao et al. [129] also identified the factors contributing to im-
proved resistance to liquefaction, which included an increase in surface
roughness and filling of voids between particles.

Research has shown that carbonate content highly affects the li-
quefaction resistance of MICP-treated sand. For example, the number of
cycles to liquefaction increased with increasing cementation content,
and MICP treatment was shown to significantly reduce the liquefaction
potential of calcareous sand [129]. In addition, Darby et al. [24] found
that cone penetration resistances and shear wave velocities were sen-
sitive to light, moderate, and heavy levels of cementation, and were
able to capture the effects of cementation degradation. Sun et al. [112]
found that as the CaCO3 content increased, the number of cycles before
liquefaction (NL) and residual strength (r,) increased exponentially,
while the damping ratio (D) decreased exponentially. Moreover, the
linear correlations between specific gravity and CaCO5 content, Ny, tr
and D can be established for MICP-solidified loess soil.

Apart from CaCO3 content and properties, soil types, properties and
saturation ratio also affect liquefaction resistance behavior of MICP-
treated sand. Simatupang and Okamura [107] found that the lower the
degree of saturation during calcite precipitation and the higher the
calcite content in the samples, the higher the liquefaction resistance of
the EICP-treated sand. He and Chu [43] found that reduction in the
degree of saturation from 100% to a range of 95-88% more than
doubled the undrained shear strength and lead to a transition from
strain softening to strain hardening in the stress-strain behavior of sand
with relative density Dr 10% and Dr 30%. Xiao et al. [129] found that
the liquefaction resistance of clean calcareous sand may be significantly
improved by MICP treatment. Zamani et al. [140] found that by ap-
plying MICP, the liquefaction resistance increases significantly for all
amounts of fines tested, and that the treatment efficiency depends on
the amount of fines present, which dictate the relative density and the
fabric governing the structure. Similarly, Zamani and Montoya [139]
found that the presence of fines by itself leads to generation of higher
levels of pore-water pressure during the injection process, which ne-
cessitates higher strength improvement to prevent the development of
excessive plastic strains. Therefore, improvement in shear strength and
stiffness relative to the magnitude of the hydraulic conductivity level
and their rate of change during the MICP process are key parameters in
determining the radius of treatment. However, Karimian and Hassan-
lourad [55] found that the number of cycles required for inducing li-
quefaction after MICP treatment increases over five times for the sand
sample and less for silty mixtures. Bio-treated samples are still liquefi-
able, but due to bonded clusters, their resistance has increased. In ad-
dition, Karimian and Hassanlourad [55] found that there is no sig-
nificant difference in the amount of calcium carbonate precipitation
between sand and silty sand, which means that the inclusion of fines in
the sand does not notably affect the calcium carbonate content.

3.3. Dust and desertification control

Gomez et al. [36] conducted a field-scale study involving applica-
tion of MICP to improve the erosion resistance of loose sand deposits
and provide surface stabilization for dust control and future re-vege-
tation. Improvement was assessed to a depth of 40 cm using dynamic
cone penetration (DCP) testing and measurements of calcite content.
Hamdan and Kavazanjian [39] conducted wind tunnel tests to show
that enzyme-induced carbonate precipitation (EICP) holds promise as a
method for mitigation of fugitive dust emissions. Shi et al. [106] ex-
plored effects of MICP on prevention of mine dust and suggested that
MICP has strong development prospects. Zomorodian [147] conducted
bench-scale experiments and wind tunnel experiments investigating the
effectiveness of MICP for stabilization of silica and carbonate sands and
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demonstrated that 28-day singly cured, MICP-spray-treated crustal sand
layers were stable to simulated 20 m's~! winds measured at 20 cm
above the surface layer. Li et al. [71] conducted laboratory and field
MICP experiments and suggested that MICP can effectively rectify the
shortcomings of straw checkerboard barrier (SCB) technology, and that
combining both technologies for mitigating desertification should have
promising outcomes by accelerating the process of sand fixation, ve-
getation restoration, and ecological restoration. Meng et al. [83] con-
ducted MICP field tests on artificial mounds and bare sandy land lo-
cated in Ulan Buh Desert, Ningxia Hui Autonomous Region, China and
found that MICP could significantly enhance the bearing capacity and
wind erosion resistance of surficial soil through the formation of soil
crusts. Zhang et al. [143] showed that excess Mg®* slightly promoted
bacterial growth.

3.4. Internal and costal erosion control

In the study by Jiang and Soga [49], it was observed that MICP
treatment effectively mitigated internal erosion in a soil containing
25% sand and 75% gravel. However, for specimens containing 50%
sand and 50% gravel, MICP treatment was only successful with a spe-
cific injection method and at low axial stress. The efficiency of internal
erosion reduction was found to be controlled by the calcium carbonate
precipitation content in the soil, as suggested by Jiang and Soga [47].
Higher precipitation content resulted in larger clusters of cemented
sand particles, thus reducing the likelihood of erosion. Jiang et al. [50]
also found that MICP treatment reduced erosion and volumetric con-
traction in sand-clay mixtures and that the treatment was more effec-
tive in mixtures with a higher gap ratio due to their larger porosity.

Salifu et al. [102] demonstrated that MICP was effective in miti-
gating sediment detachment on steep slopes, which typically experience
collapse due to tidal events. Kou et al. [67] found that cementation
between sand particles increased the erosion resistance of sand. Chek
et al. [7] found that higher optical densities, bacteria quantities relative
to void volume, and bacteria quantities relative to urea led to lower
erodibility and greater crust depth, while Liu et al. [74] found that
MICP and enzymatic-induced carbonate precipitation (EICP) were ef-
fective in mitigating sand dune erosion, especially under mild-to-
moderate wave and dune slope conditions. However, the effectiveness
of MICP treatment deteriorated at steeper dune slopes exposed to pro-
longed periods of wave attack. Shahin et al. [104] performed lab-scale
flume experiments that showed MICP was effective in preventing
coastal erosion, and Wang et al. [124] found that MICP was efficient in
protecting soil against rain erosion.

4. Construction remediation using MICP

MICP has a wide range of applications in the field of concrete and
building material repairs. One area of research involves using MICP to
deposit layers of CaCO3 on surfaces to reduce water adsorption, fill
cracks, or produce self-healing concrete. The relevant studies can be
divided into two categories: (i) surface deposition and crack repair, and
(ii) self-healing applications. Table 3 summarizes the research con-
ducted in these areas, and Fig. 1(c) provides an illustration.

4.1. Surface deposition and repair of cracked samples

De Muynck et al. [25] conducted a study to evaluate the improve-
ment in the durability of cementitious materials treated with MICP.
They found that the surface deposition of calcium carbonate crystals
reduced water absorption by 65-90%, depending on the porosity of the
specimens. This, in turn, decreased the carbonation rate and chloride
migration by about 25-30% and 10-40%, respectively. They also ob-
served an increased resistance to freezing and thawing. In another
study, De Muynck et al. [26] investigated the bio-treatment of concrete
surfaces and demonstrated that the bacterial deposition of a calcite
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layer on the surface of the concrete specimens reduced capillary water
uptake and permeability towards gas. The use of pure cultures was
more effective in decreasing water uptake compared to the use of mixed
ureolytic cultures as a paste. The results obtained with the species Ba-
cillus sphaericus were similar to those obtained with conventional
water repellents. Amidi and Wang [3] and Chaurasia et al. [6] also
investigated the use of MICP for surface treatment of concrete, evalu-
ating the efficiency of the resulting improvement in both microscale
and macroscale properties of the materials. Amidi and Wang [3] used
the organic carbonate dimethyl carbonate (DMC) as a means to provide
the required carbonate for the generation of carbonate precipitants.
Interestingly, instead of using a bacterial strain, DMC can be hydrolyzed
into methanol and carbonate under basic pH conditions at ambient
temperature and pressure.

Yang and Cheng [134] explored the use of microbial grouting as a
reinforcement method for deteriorated masonry structures by injecting
microorganisms and cementation solution into pores. They successfully
produced mortars with maximum strength of 55 MPa that have superior
mechanical properties and durability compared to conventional mortar.
In addition, according to Choi et al. [18], MICP can be effectively uti-
lized to repair cracks in mortar. The study demonstrated that the water
permeability of cracked samples was reduced by the MICP repair
technique, which is the primary objective in this application. The water
tightness of the treated mortar was comparable to that of the mortar
without any cracks [51]. Lambert and Randall [68] proposed using
MICP in conjunction with human urease to generate bio-bricks. The
resulting material was found to have a strength of up to 2.7 MPa, which
is comparable to natural materials used for the same purposes. These
innovative techniques have the potential to revolutionize the way cul-
tural relics are repaired and preserved for future generations. According
to Liu et al. [74], MICP improves tile water resistance by changing
surface microstructure, and higher concentrations of bacteria and ce-
mentation provide better protection with a threshold, while offering
durability with low impact on air permeability and color, making it an
effective method to prevent the weathering of ancient tiles [77].
Meanwhile, Zhao et al. [145] investigated the application of MICP to
enhance the durability and mechanical properties of recycled aggregate
concrete (RAC). They employed the bacterial strain Sp. Cell to treat
RCA with MICP, and the results showed that the treated RCA had re-
duced water absorption and apparent density, increased compressive
strength, better steel corrosion resistance, and fewer corrosion-induced
cracks. The authors attributed this improvement in performance to the
enhanced microhardness of the interfacial transition zones (ITZ).

MICP and EICP are two techniques that have shown potential in
repairing and protecting cultural relics such as compacted soil struc-
tures, rock buildings, and bricks. Zhang et al. [143] proposed the use of
MICP or EICP for repairing these structures. MICP improves tile water
resistance by changing surface microstructure. High bacteria and ce-
mentation concentrations improve protection, but with a threshold.
MICP offers durability with low impact on air permeability and color,
and can prevent weathering of ancient tiles. Liu et al. [74]. utilized an
improved version of EICP technology with sucrose to prepare a surface
protective material for tabia relics, a common building material in
ancient China. This protective material was found to have superior
performance compared to traditional EICP, with increased surface
hardness, salt corrosion resistance, weather resistance, and water re-
pellency.

4.2. Self-healing concrete

MICP has shown great potential in the development of self-healing
concrete. Chetty et al. [17] reviewed the use of various MICP micro-
organisms as self-healing agents and highlighted the need for sys-
tematic and comparable evaluation methods. Intarasoontron et al. [45]
used microencapsulated bacterial spores in specimens, but observed
lower ultimate loads than control specimens. Qian et al. [98] utilized
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spray-dried fermented bacteria to produce powder-based and capsule-
based microbial agents for concrete healing, which is more convenient
than liquid-based agents. Wang et al. [119] used MICP to self-heal
existing cracks in concrete by inserting free spores in a liquid solution,
and noted that high urease-producing bacterial strains are required for
this application. Yuan et al. [137] proposed the use of zeolite as a
bacterial carrier in the self-healing of cement mortar cracks. Sohail
et al. [109] studied the effectiveness of MICP for self-healing concrete
at high temperatures and humidity. In all cases, necessary curing
measures must be taken to keep the cracks wet and supply nutrients for
the bacteria to achieve self-healing effects.

5. MICP for bioremediation purposes

The use of MICP for solidifying heavy metal ions such as Pb(II), Cu
(ID, Zn (1), CA(I), Cv(VI), Ni(Il), and As(III) through urea hydrolysis
has proven to be successful. For instance, Chen et al. [9] explored the
uptake and biomineralization of Pb(II) using Bacillus cereus 12-2 iso-
lated from lead-zinc mine tailings. However, in some studies, alter-
native MICP mechanisms such as photosynthesis have been employed
[144]. Zhao et al. [144] proposed that a bioreactor based on the pre-
cipitation of CaCO3 induced by N. calcicola could be a promising and
cost-effective approach for removing cadmium (Cd). This section pro-
vides an overview of the removal mechanism, efficiency, influencing
factors, and bacterial toxicity of MICP for bioremediation purposes.
Table 4 summarizes the relevant research, and Fig. 1(d) illustrates it.

There are several mechanisms involved in the removal of heavy
metals using MICP, including: 1) pH increase to promote heavy metal
precipitation; 2) bio-sorption; 3) co-precipitation of heavy metals with
Ca?" and 4) lead carbonate (PbCO3) crystal formation. Firstly, the pH is
increased by MICP, which promotes heavy metal precipitation. For
example, Yang et al. [133] observed that MICP significantly increased
the pH of treated mine tailing soil, leading to the precipitation and
immobilization of toxic metals. Secondly, bio-sorption takes place
during MICP, as demonstrated by Zhao et al. [144], who found that
Cd?* was primarily sequestered in the organic-bound fraction within
the cells of N. calcicola bacteria. Jiang et al. [48] also suggested that the
mechanism of Pb immobilization includes abiotic and biotic precipita-
tion, as well as bio-sorption. Thirdly, co-precipitation of heavy metals
with Ca®* occurs during MICP. For example, Yang et al. [133] used X-
ray diffraction (XRD) to confirm the presence of MICP products, such as
calcite, gwihabaite, and aragonite, which could adsorb and co-pre-
cipitate with toxic metals. Zeng et al. [141] also used Fourier transform
infrared spectroscopic and X-ray diffraction analyses to confirm that the
precipitates were mostly calcite crystals, while lead was fixed as hy-
drocerussite. Additionally, Yin et al. [135] used XRD spectra to detect
the precipitation of (Ca 0.67, Cd 0.33) CO3 and calcite phases. Fourthly,
precipitation of heavy metal carbonate was observed. Kang et al. [53]
confirmed the presence of Pb along with carbon (C) and oxygen (O)
within the PbCOj crystals using energy dispersive X-ray spectroscopy.

In general, MICP is highly efficient in removing heavy metals. For
example, Mwandira et al. [89] achieved complete removal of 1036 mg/
L of Pb%* using MICP. Qian et al. [99] demonstrated 98.8% removal of
200 mg/L Pb using fungal-based MICP in just 12 days. He et al. [44]
reported removal efficiencies of up to 86% for Pb(II) and 76.8% for Cr
(VI) at an initial metal concentration of 25 mg1~ 1 Peng et al. [92] used
MICP to remove 99.50% of Cd within 7 days, while Zeng et al. [141]
successfully remediated 25 mg/L Pb*>* and 5.6205 mg/L Cd** in a real
landfill leachate using MICP.

Several factors have been found to impact the efficiency of removing
heavy metals by MICP. For instance, Kang et al. [52] identified bacterial
toxicity as a critical factor that may affect the removal efficiency of
heavy metals using MICP. Mixtures of different bacterial strains showed
higher growth rates, urease activity, and resistance to heavy metals
than single culture methods. Jiang et al. [48] found that the calcium
source and initial concentration of bacteria significantly influenced Pb
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immobilization efficiency, while Peng et al. [92] observed that initial
pH and Cd concentration were important parameters that influenced Cd
removal rate. Fang et al. [29] found that Ca®>* supplementation notably
improved Cd*>* removal efficiency by about 100%. Moreover, the ef-
fects of the same parameters on different heavy metals are variable. For
example, Mugwar et al. [87] reported that pH elevation and calcium
precipitation strongly affected the removal of zinc and cadmium, but
only partially affected the removal of lead and copper. Qiao et al. [100]
found that Cd removal was mainly due to the formation of cadmium
carbonate, Cu removal was dependent on the pH increase, while the
precipitation that contributed to Zn and Ni removal was more complex.
Qiao et al. [100] also found that the toxicity of these heavy metals to
MICP bacteria was, from most to least toxic, Cd > Zn > Ni > Cu.
Furthermore, Chen et al. [8] found that interactions between bior-
emediation and soil properties affected the efficiency of removing
heavy metals from soils. Oliveira et al. [90] found that particle size was
a key deciding factor and that MICP was not suitable for small particles
(< 100 pm), such as mine tailings.

Compared to other methods for heavy metal remediation, MICP
offers several advantages. According to Gadd [32], MICP can overcome
some of the limitations associated with biosorption. When heavy metals
are precipitated with biogenic minerals, they are usually incorporated
into the lattice of mineral crystals, making them geologically stable.
This was demonstrated in a study by Zhao et al. [144], where Pb-MICP
precipitates were stable under continuous acid degradation (pH = 5.5),
and only 1.76% of the lead was released after 15 days. Additionally,
MICP offers a low-cost and eco-friendly method for heavy metal re-
mediation through bio-immobilization of lead [89]. In terms of solidi-
fying heavy metal contaminated soils, Han et al. [40] found that MICP
contributes to better strength improvement, while retaining better
water permeability and higher durability, and rarely damages the ori-
ginal soil structure during grouting, making it more environmentally
friendly compared to other agglutinate binders.

Despite its advantages, there are also challenges facing MICP.
Firstly, it is important to optimize the dosage of urea and the recovery
of ammonium to improve the economic and environmental benefits of
the MICP process [141]. Secondly, there is a need to assess the longer-
term performance of heavy metal removal by MICP [144]. Finally, the
high costs of reactant materials, the uneven effect in large-scale fields,
destruction of the ecological equilibrium, and uncertain adaptability to
complex environments also need to be considered [40].

6. Material modification and protection

Table 5 summarizes research on the use of MICP for material
modification and protection, while Fig. 1(e) provides an illustration of
the findings. MICP can alter the physical properties of soil surfaces,
making it a valuable tool for modifying and protecting materials.

6.1. Preventing the corrosion of marine materials

Recently, MICP has shown promise in protecting steel from corro-
sion in marine engineering applications. By forming a dense miner-
alized layer on the steel surface, MICP can prevent corrosive agents in
the environment from directly contacting the steel surface, inhibiting
metal corrosion. Pseudoalteromonas lipolytica, a bacterium that can form
an organic-inorganic hybrid film composed of calcite and EPS, has been
observed to aid in forming a dense mineralized layer on the steel sur-
face, inhibiting corrosion and exhibiting self-healing properties [78].
Guo et al. [38] found that adding 0.6 wt% molybdenum in steel could
enhance the mineralization process, as molybdenum ions acted as
chemoattractants of Pseudoalteromonas lipolytica and activated the
chemotaxis pathway. The resulting uniform and dense biomineralized
layer effectively inhibited pitting corrosion. In a multi-bacterial en-
vironment, Pseudoalteromonas lipolytica mixed with Bacillus subtilis or
Pseudomonas aeruginosa showed excellent corrosion protection for steel,
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forming a more compact and denser carbonate layer than single bac-
teria and exhibiting better anti-corrosion properties for steel [37]. Ba-
cillus cereus was found to form an EPS film on the surface of stainless
steel that interacted with metal ions in solution to inhibit metal cor-
rosion [72]. Methanogenic bacteria extracted from buried steel piles
resulted in the formation of a dense, corrosion-resistant carbonate layer
on the surface of the piles [56]. Salinity is a factor that must be con-
sidered in the marine environment, as Bacillus subtilis and Bacillus
safensis displayed the maximal anti-corrosion effect on steel bars in a
3.5% sodium chloride solution [54].

6.2. Oil and water separation

The preparation of super-wetting materials is crucial for effectively
treating marine oil spills, and the roughness of the material surface
plays a significant role. An increase in surface roughness leads to an
increase in wettability. MICP produces calcium carbonate, which has
inherent hydrophilicity and high surface roughness, making it an ex-
cellent material for creating super-wetting oil-water separation mate-
rials. Tang et al. [113] utilized MICP to fabricate a superhydrophobic
calcium carbonate-coated stainless steel mesh (SSM) and then modified
the surface with stearic acid (SA) for oil-water separation. The surface
roughness was confirmed by SEM and white light interferometry. The
superhydrophobic mesh exhibited high oil fluxes (0.2-9.12 x 10*
L'm~>h~1), high separation efficiencies (> 94.8%), excellent wear
resistance, outstanding anti-pollution performance, and promising anti-
icing properties. In a subsequent study, Tang et al. [114] successfully
produced a dense and continuous layer of mineralized calcium carbo-
nate on the surface of a stainless-steel mesh using Shewanella algae.
They observed that the steel mesh could achieve oil-water separation on
the eighth day of mineralization, and the prepared mesh had a very
high permeation flux (1.55 X 105L-m~%h~') and high separation ef-
ficiency (=98.5%).

6.3. Energy piles and ground source heat pumps

Researchers have investigated the use of MICP as a method of en-
hancing soil-pile heat exchange rates by improving the thermal prop-
erties of soil. Venuleo et al. [118] observed that the thermal con-
ductivity of MICP-treated soil was significantly improved, particularly
for low degrees of saturation. The improvement is attributed to the
mineralized calcite crystals acting as 'thermal bridges' between soil
grains, offering a larger surface area for heat exchange than untreated
material where exchanges occur through smaller contact points. Mar-
tinez et al. [80] showed that the thermal conductivity of surrounding
soils is crucial for the efficiency of energy piles and ground source heat
pumps, and using MICP resulted in a significant increase in thermal
conductivity (up to 330%) as calcite content increased. Wang et al.
[125] also found that the thermal conductivity of sands increased sig-
nificantly after MICP treatment, and the improvement was more sig-
nificant with an increase in the number of treatment cycles. This en-
hancement is attributed to the MICP-induced CaCOj; crystals
functioning as 'thermal bridges' among sand grains, which provides a
more effective heat transfer path and increases surface contact area in
heat exchange processes. Cheng et al. [16] further suggested that using
MICP as a soil improvement technique can effectively improve the
thermal conductivity of soil surrounding energy piles, which has high
potential to enhance the efficiency of energy piles.

6.4. Artificially made rock

The MICP method has been suggested as a potential manufacturing
technique for creating customizable porous media, since coring can be
costly and may destroy cementation [66]. The method has been suc-
cessful in creating specimens with varying hydraulic conductivity,
porosity, and strength by using different base materials with varying
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targets for a successful MICP
operation

Define the appropriate metrics and ‘

Decide on the optimum MICP
formulation
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Fig. 2. Choosing an appropriate MICP design scheme based on the required application.

grain shapes, sizes, and particle size distributions [64]. Tests have been
conducted to measure parameters such as tensile strength, unconfined
compressive  strength, stiffness, and the failure envelope
[91,61,65,62,64].

Additionally, bio-treated specimens have been used successfully in
fluid flow experiments for applications in energy, hydraulics, and hy-
drology [60,63]. In the case of unconventional reservoirs, safety is a
primary concern when conducting fluid injection programs. These re-
servoirs are often comprised of weakly cemented sands found in in-
termediate depths in the groundwater zone. Precise distribution of
various compounds (foams, emulsified oils, aqueous colloidal silica
suspensions, etc.) at the target site is crucial to the effectiveness of in
situ groundwater treatment. Injection programs aimed at remediating
contaminated groundwater must take into account factors like hy-
draulic conductivity, porosity, and strength in order to prevent grain
displacement or fracture. Konstantinou [59], Konstantinou and Bis-
contin [61], and Konstantinou et al. [63] have utilized MICP to produce
realistic artificial weak sandstones or weakly cemented sands for la-
boratory testing of fluid injection relevant to the aforementioned ap-
plications. The infiltration/fracturing behavior of these materials dif-
fered substantially from competent materials, with significant leak-off
and main cavity openings with multiple offshots. MICP-treated speci-
mens allowed this behavior to be observed for the first time, whereas
previously only cohesionless sand or hard sandstone were typically
used in testing. The authors found that cemented specimens with
greater hydraulic conductivity and larger pore networks were more
difficult to crack due to excessive infiltration dominance, which pre-
vented the development of the necessary pressure for fracture [60].

7. Choosing an appropriate MICP design scheme based on the
required application, and potential new MICP applications

To design an effective MICP protocol, several factors must be con-
sidered, such as bacterial properties, chemical recipe, delivery of so-
lutions, and MICP treatment parameters. These factors should be
chosen based on the desired application and the success criteria, in-
cluding chemical efficiency, strength enhancement, hydraulic con-
ductivity reduction, impermeable barrier generation, and targeted
depth of operation. However, before defining the procedure, other
factors should be evaluated, such as environmental conditions and the
properties of the solid medium.

To develop an MICP protocol, three aspects should be taken into ac-
count: identifying the relevant environmental conditions and properties of
the porous medium, defining the target, and determining the optimal
MICP formulation. Selecting appropriate bacterial strains is crucial for the

15

procedure to survive various fluid conditions, such as seawater, fresh-
water, dry or undersaturated porous media, or the presence of other
chemical components. For instance, in deep ocean sea beds, Hata et al.
[41] isolated Sporosarcina newyorkensis, a ureolysis bacteria. A proposed
methodology for designing an MICP procedure is shown in Fig. 2, and this
section provides examples of how the MICP process is influenced by both
the target application and environmental conditions.

The choice of bacterial strain for MICP is influenced by several
factors, including oxygen levels, the presence of other chemicals, and
the targeted application. For instance, the selection of bacteria will
differ depending on whether the conditions are aerobic, anaerobic, or
anoxic. Different bacteria, such as S. pasteurii, E. aerogenes, P. fluor-
escens, Pseudomonas denitrificans, Alcaligenes, Denitro bacillus, and
Thiobacillus, may be used for different conditions.

Bacterial toxicity and its impact on heavy metal removal can com-
plicate the definition of an optimal MICP formulation. Controlling per-
meability requires adjusting CaCO3; production and its characteristics,
which is influenced by bio-chemical factors, injection technique, and
porous medium properties. To achieve a lower decrease in hydraulic
conductivity, slower reactions, lower urease activities, and lower che-
mical solution concentrations are recommended. On the other hand, high
urease activity, high flow rates, and sufficient chemical solution con-
centrations are necessary to generate an impermeable barrier.

For self-healing concrete and crack repairment applications, high
bacterial populations and urease activity are essential. In contrast,
uniform behaviour is required for intermediate depths in the ground. A
balance of high flow rates and lower reaction rates involving bacteria
with lower urease activities has been shown to be effective in achieving
this. Porous medium configuration and properties also affect the MICP
treatment process, and medium-grained particles are considered ideal
for bio-cementation.

In addition to existing applications, future applications such as re-
paration of roads and pavements, protecting water distribution pipes
from movement and corrosion, generating a barrier to prevent seawater
intrusion, and protecting monuments from acidic rainfall could be de-
signed based on the considerations discussed above.

8. Conclusions

While urea hydrolysis has been the primary method for studying
MICP, other potential methods and combinations of methods need to be
explored for more cost-effective and efficient MICP mechanisms to
become commercially viable. Although individual factors affecting soil
stabilization using MICP have been extensively researched, the impact
of combined factors and varying environmental conditions still needs
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further exploration.

The influence of local bacterial strains on MICP efficacy also re-
quires more investigation, along with optimizing processing procedures
for homogeneity and efficiency in large-scale applications.
Demonstrating MICP's effectiveness in real-world applications is crucial
before it can be widely adopted.

While MICP has been applied in various fields such as geotechnical
engineering, environmental remediation, and oil and gas extraction,
there are still many areas that have yet to be explored. For example,
MICP could be combined with fluid injection techniques to address sea
water intrusion or groundwater recharge, for underground hydrogen
storage, or to immobilize contaminants or NAPLs in contaminated
aquifers. MICP could also be used in combination with other con-
struction methods such as artificial ground freezing, or for sand pre-
diction and control during natural gas production. Further MICP could
be used for ocean negative carbon emission [142].

Despite its challenges, including its environmental impact and op-
erating system standards, MICP has shown progress and potential to be
an environmentally friendly biotechnology in the near future. A pro-
posed methodology for designing appropriate MICP treatment protocols
can aid in its widespread adoption.
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