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Abstract
For a long time in the practice of geotechnical engineering, soil has been viewed as 
an inert material, comprising only inorganic phases. However, microorganisms in-
cluding bacteria, archaea and eukaryotes are ubiquitous in soil and have the capacity 
and capability to alter bio- geochemical processes in the local soil environment. The 
cumulative changes could consequently modify the physical, mechanical, conductive 
and chemical properties of the bulk soil matrix. In recent years, the topic of bio- 
mediated geotechnics has gained momentum in the scientific literature. It involves 
the manipulation of various bio- geochemical soil processes to improve soil engineer-
ing performance. In particular, the process of microbial- induced calcium carbonate 
precipitation (MICP) has received the most attention for its superior performance for 
soil improvement. The present work aims to shape a comprehensive understanding of 
recent developments in bio- mediated geotechnics, with a focus on MICP. Referring to 
around one hundred studies published over the past five years, this review focuses on 
popular and alternative MICP processes, innovative raw materials and additives for 
MICP, emerging tools and testing methodologies for characterizing MICP at multi- 
scale, and applications in emerging and/or unconventional geotechnical fields.
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1 |  INTRODUCTION

For a long time, geotechnical engineering practice has 
viewed soil as an inert material for construction, comprising 
only three phases— mineral solids, pore water and trapped 
air. The understanding of the fundamentals of soil behaviour 
is primarily based on these three inorganic phases. However, 
one fact that has been ignored for a long time by geotechnical 
engineers is that microorganisms including bacteria, archaea 
and eukaryotes are ubiquitous in soil (Jiang et al., 2020; 
Mitchell & Santamarina, 2005). The importance of microbes 
in soil has been well recognized by agricultural, ecological 
and environmental scientists, and numerous studies have 
been conducted to reveal the interactions between microbial 
activities and crop production, ecological conservation and 
environmental remediation (DeJong et al., 2015). Microbes 
have the capacity and capability to alter bio- geochemical 
processes in the local soil environment, and the cumulative 
changes could consequently modify the physical (e.g. density 
and porosity), mechanical (e.g. strength and compressibility), 
conductive (e.g. hydraulic and thermal conductivity) and 
chemical (e.g. buffering and ion exchange capacity) proper-
ties of the bulk soil matrix (DeJong et al., 2010; Ivanov & 
Chu, 2008).

While various natural microbial processes can change 
soil properties, an engineered process is required for soil 
treatment. The microbially induced carbonate precipitation 
(MICP) process has been the primary focus of research in 
bio- mediated geotechnics to date (Dejong et al., 2013; Zhu & 
Dittrich, 2016), though other microbial processes can also be 
used to change soil engineering properties, such as denitrifi-
cation and other processes involving the use of iron- reducing, 
nitrifying and oligotrophic bacteria as discussed by Chu et al. 
(2009). MICP research in geotechnical engineering has ex-
perienced rapid developments in the past decade. There have 
been several published comprehensive review articles on 
MICP research in the past five years (Chu et al., 2015; He 
et al., 2019; Jiang et al., 2020; Osinubi et al., 2020; Shashank 
et al., 2016; Tang et al., 2020; Terzis & Laloui, 2019; Umar 
et al., 2016; Yu et al., 2020; Zhu & Dittrich, 2016). These 
reviews have focused on various aspects of MICP, ranging 
from fundamental processes, influencing factors, raw materi-
als and multi- scale/multidisciplinary applications in various 
fields. In this review paper, the state of the art of MICP and 
more broadly bio- mediated geotechnics are reviewed based 
primarily on publications from the past five years. In partic-
ular, the following aspects are reviewed to add to the recently 
published review papers in this field. The current research 
frontlines, their challenges and future directions are also dis-
cussed, as follows:

1. A comparison between bio- stimulation and bio- 
augmentation in MICP application;

2. Some innovative raw materials and additives for MICP;
3. Emerging tools and testing methodologies for character-

izing MICP at multi- scale;
4. Applications in emerging and/or unconventional geotech-

nical fields.

2 |  MICP PROCESSES

Microbial- induced calcium carbonate precipitation can be 
achieved through different pathways, both autotrophic and 
heterotrophic, such as urea hydrolysis, sulphate reduction 
and denitrification. This section will provide a critical review 
on both popular (i.e., urea hydrolysis) and alternative MICP 
processes.

2.1 | Ureolysis: bio- augmentation vs. bio- 
stimulation

Since MICP was firstly introduced into geotechnical engi-
neering, most studies have focused on ureolysis (Eq. (1)) be-
cause of its simplicity and high efficiency. Ureolytic bacteria 
can hydrolyse urea into carbon dioxide (CO2) and ammo-
nia (NH3) because of the presence of microbially produced 
urease, where the hydrolysis rate can be 1014 times higher 
than the natural degradation reaction without urease (Estiu 
& Merz, 2004). The production of hydroxide ions (OH−) be-
cause of the dissolution of ammonia in the water increases 
the local pH value. Meanwhile, the alkaline solution envi-
ronment can increase the solubility of aqueous CO3

2−. The 
bacterial cell walls are usually negatively charged and hence 
attract calcium ions in the solution and thus can be used as a 
suitable nuclear site for crystallization. While most research-
ers inject known ureolytic bacteria cultivated in the labora-
tory to complete bio- cementation (i.e. bio- augmentation), 
enriching indigenous ureolytic bacteria to achieve MICP 
(i.e. bio- stimulation) is an alternative approach that can po-
tentially reduce complexity, costs and environmental risks. 
The comparative study between the bio- augmented and 
bio- stimulated MICP for soil stabilization (as illustrated in 
Figure 1) has become one of the frontlines of MICP research.

Bio- augmentation is an approach where the exogenous 
bacteria cultured in the laboratory are added into the soil (Jain 
& Arnepalli, 2019; Mujah et al., 2019; Xiao et al., 2019a). In 
contrast, the bio- stimulation approach modifies the local en-
vironment by injecting nutrient media to enrich indigenous 
ureolytic bacteria capable of continuously producing a large 
quantity of urease to generate bio- cementation. There are 

(1)(NH2)2CO(aq) + H2O → 2NH+
4(aq)

+ CO2−
3
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two ways to achieve bio- stimulation: ex situ and in situ. Ex 
situ bio- stimulation needs to isolate indigenous bacteria from 
soil and then performs isolation and purification to obtain 
pure, enriched ureolytic bacterial strains. The bacteria are 
finally reinjected into the soil to trigger MICP. In situ bio- 
stimulation, instead, can avoid the above- mentioned compli-
cated and lengthy laboratory processes and simply involves 
directly injecting selective enrichment media into the soil 
to stimulate the growth of native ureolytic bacteria and thus 
generate bio- cementation.

Both bio- augmentation and bio- stimulation (include both 
in situ and ex situ ones) have advantages and drawbacks. A 
comparison among the three approaches from various aspects 
is summarized in Table 1 (Choi et al., 2020; Gomez et al., 

2017; Hamed Khodadadi et al., 2017; Jiang, 2020; Kadhim & 
Zheng, 2016; Terzis & Laloui et al., 2019). Generally, while 
bio- augmentation can yield a higher reaction rate and ini-
tial ureolytic activity, the competition with other indigenous 
bacteria may affect the ultimate MICP efficiency (Graddy 
et al., 2018; Jiang, 2020). Consequently, it is required to re-
peatedly inject bacteria suspensions to maintain a sufficient 
amount and activity of urease enzyme within the soil matrix. 
Though bio- stimulation requires more treatment time than 
bio- augmentation to achieve comparable ureolytic activity or 
urea hydrolysis rate, it can significantly reduce costs associ-
ated with cultivating bacteria. The successful achievement 
of bio- stimulation is dependent on whether the ureolytic 
bacterial species are pre- existing in the environment or not. 

F I G U R E  1  Three pathways of MICP ((a) bio- augmentation; (b) ex situ bio- stimulation; (c) in situ bio- stimulation)

Indigenous

Reinjection

Extracting

Treated zone

Treated zone

(a)

(b) (c)

Exogenous ureolytic

bacteria solution

isolation

Indigenous

Proliferation

Treated zone

SoilSoil

Enrichment

Soil

medium
bacteria

purifying

Enric
hing

bacteria

Aspects
Bio- 
augmentation

Ex situ 
bio- stimulation

In situ 
bio- stimulation

Ureolytic activity High High Low

Urease loss High High High

Reaction rate High High Low

Environmental risks High Medium Low

Estimated cost High Medium Low

Required labour works Medium High Low

Technical maturity High High Low

Range of potential application High Low Low

T A B L E  1  Comparison of bio- 
augmentation, ex situ bio- stimulation and in 
situ bio- stimulation
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While bio- augmentation and bio- stimulation are equally ef-
fective with respect to improving soil engineering properties 
(Gomez et al., 2017; Graddy et al., 2018), it does not mean 
that bio- stimulation can totally replace bio- augmentation. 
In specific applications, such as cracks and fracture repair 
or sealing in porous materials (e.g. concrete) under a harsh 
environment that cannot support sufficient indigenous bacte-
ria, bio- augmentation is still a preferred approach (Alazhari 
et al., 2018; Ghosh et al., 2005; Jadhav et al., 2018; Marin 
et al., 2020; Phillips et al., 2016; Xu & Wang, 2018). In ad-
dition, the bio- stimulation might not be suitable for a ster-
ile area, such as desert and cold region. The advantages 
of bio- stimulation over bio- augmentation should not be 
overestimated.

In recent years, the diversification of urease- positive 
bacterial species upon completion of MICP treatment, ei-
ther through bio- augmentation or bio- stimulation, has 
gained more attention. Graddy et al. (2018) compared the 
diversity of Sporosarcina- like bacterial strains during bio- 
augmentation and bio- stimulation treatment in metre- scale 
tank experiments (shown in Figure 2). They found that a va-

riety of urease- positive species was recovered at the end of 
the investigation in both cases, which was attributed to the 
numerous ecological niches created by the non- uniform ce-
mentation solution injections.

Through either bio- augmentation or bio- stimulation, the 
ureolytic MICP process has been demonstrated to be an ef-
fective technique for soil improvement. There have been 
many studies to investigate the feasibility of the ureolysis 
process for MICP from the perspective of microbiologi-
cal behaviours, mechanical properties and microstructural 

characteristics (Graddy et al., 2018; Mujah et al., 2019; 
O’Donnell & Kavazanjian, 2015). However, there are still 
some challenges and research gaps that deserve further inves-
tigation. Below are a few examples:

1. Ammonium removal during ureolytic MICP;
2. Regulatory mechanisms of crystal morphology;
3. Adaptability to complex environments;
4. Bio- augmentation v.s. bio- stimulation in field application;
5. Protocols for up- scaling field applications in diverse or 

varying climatic conditions.

2.2 | Denitrification

The denitrification process (Eq. (2)) involves multiple reac-
tions by denitrifying bacteria. Several enzymes catalyse the 
reduction of nitrate (NO3

−) to nitrogen gas (N2). Using acetate 
(i.e. C2H3O2

−) as the electron donor and nitrate as the electron 
acceptor, carbonate ions (CO3

2−) can be generated. When free 
calcium ions (Ca2+) are available, precipitation can be induced 
spontaneously (O’Donnell et al., 2019; Pham et al., 2016).

In recent years, although the denitrification- induced bio- 
cementation process is relatively slow to form a compara-
ble amount of bio- cementation compared with ureolysis 
(O’Donnell et al., 2017), denitrification has its own advan-
tages. Usually, denitrifying bacteria occur in wet and an-
aerobic soil conditions, which has the potential to improve 
submerged granular soils in deeper locations by forming bio- 
cementation via denitrification process (Kavazanjian et al., 
2015; Pham et al., 2016). Although the peak shear strength 
of lightly bio- cemented sand could not be greatly improved, 

(2)2.6H+
(aq)

+ 1.6NO−
3(aq)

+ CH3COOH−
(aq)

→ 0.8N2(aq) + 2CO2(aq) + 2.8H2O

F I G U R E  2  Strain assignments 
and abundances of isolates collected 
in experimental tanks treated by bio- 
augmentation and bio- stimulation (Graddy 
et al. 2018)

20

(a) (b)

B. hackensackii AY14842

B. lentus NCIMB8773

B. lentus UR41

O. luteolus WM-1
O. luteolus WM-4

O. polygoni SA9

O. contaminans CCUG53201

S. aquimarina FT1

S. aquimarina KUDC1821

S. ginsengisoli Gsoil1433

S. luteola Y1

S. pasteurii ATCC11859

S. pasteurii IARI-J-21

S. pasteurii WJ-5

S. saromensis KUDC1822

S. soil I80

S. soil KNUC401

16

12

N
um

be
r 

of
 Is

ol
at

es
 C

ol
le

ct
ed

8

4

0
Stim|Aug

Day 1
Stim|Aug

Day 3
Stim|Aug

Day 5
Stim|Aug

Days 12/13



   | 5JIANG et Al.

its stiffness and dilatancy, especially under low strain, could 
still be enhanced significantly (Pham et al., 2016). The 
other major advantage of the denitrification process for bio- 
cementation is that there is no ammonia production. On the 
other hand, the N2 generated in this process can desaturate 
sand to increase liquefaction resistance. The partially satu-
rated conditions because of the presence of N2 gas bubbles 
can dampen pore pressure build- up and thus increase the 
undrained shear strength (Hall et al., 2018; He et al., 2013; 
O’Donnell et al., 2017). However, the potential negative ef-
fects of the generated gas bubbles on soil stabilization and the 
flow rate of various injected solutions should be considered 
carefully.

To develop denitrification- induced bio- cementation as a 
feasible and implementable soil improvement technique, fur-
ther studies are needed on the following aspects:

1. Increasing bio- cementation amounts and reaction rates;
2. Developing appropriate substrate recipes to prevent the 

generation of toxic intermediate nitrogen compounds (i.e. 
NO2

−);
3. Expanding applications under aerobic condition (i.e. sur-

face soil);
4. Investigating the effects of regionally variable factors 

such as temperature, physical and chemical properties of 
local soils on the ultimate success of denitrification;

5. Enhancing the durability of bio- cementation by 
denitrification.

2.3 | Sulphate reduction

Sulphate reduction induced bio- cementation under anoxic 
conditions is another alternative MICP approach. Sulphate- 
reducing bacteria have played an important role throughout 
earth's 4.6 billion years history. They are predominantly an-
aerobic heterotrophs without oxygen involved in their meta-
bolic activity (Baumgartner et al., 2006). Sulphate- reducing 
bacteria are able to reduce sulphates to sulphides while oxi-
dizing organic carbon (Eq. 3):

When sufficient calcium is present in the solution, the in-
creased alkalinity will move the equilibrium towards calcium 
carbonate precipitation. However, some obvious disadvan-
tages including the generation of toxic and combustible hy-
drogen sulfide (H2S) gas may threaten the environment and 
human health (Gu et al., 2019). Therefore, challenges such as 
the treatment of toxic by- products should be resolved prior to 
its application in soil improvement. While sulphate- reducing 
bacteria are not preferred for soil improvement, they can bind 

with heavy metals, making sulphate reduction a promising 
method for the immobilization of heavy metal contaminants 
(Hwang & Jho, 2018; Le Pape et al., 2017).

2.4 | Iron reduction

Iron reduction (Eq. (4)), which induces ankerite and other 
mixed mineral precipitation, has also been investigated by 
some researchers as a potential bio- cementation process 
(Weaver et al., 2011). The redox reactions involved have been 
shown to be dominant in the anaerobic subsurface environ-
ment (Lovely, 1991). While iron- based precipitation is much 
cheaper, it is less effective, for example, in reducing the per-
meability of the soil, than calcium- based precipitation (i.e. by 
urea hydrolysis process) (Ivanov et al., 2014). Zeng and Tice 
(2014) found that the mineral composition was unstable and 
was easily affected by the concentration of other ions (e.g. 
Mg2+ and Ca2+) and that cementation commonly occurred 
as the co- precipitation of calcite, siderite and dolomite. The 
studies related to iron reduction are somewhat limited cur-
rently, suggesting that iron reduction may not be a viable so-
lution to induce bio- cementation for soil improvement.

3 |  MATERIALS FOR MICP

Materials involved in the MICP process include bacteria 
strains, nutrients, cementation solutions, auxiliary additives 
and soils. In this section, the recent developments in the re-
search into materials involved in MICP, in particular the ure-
olysis process, are reviewed and discussed.

3.1 | Bacterial strains

The efficiency of bio- cementation is highly associated with 
the performance of either the injected exogenous or the en-
riched native ureolytic bacteria. A widely accepted assump-
tion of the CaCO3 precipitation process during MICP is that 
bacterial cells can serve as the nucleation sites for CaCO3 be-
cause of the negative charge on the cell walls (EI Mountassir 
et al., 2014). Different bacteria have their own preferred en-
vironments, and even a slight variation of external conditions 
may affect their growth. Generally, ureolytic bacteria used 
for MICP should (1) have a reliable and constantly high en-
zymatic activity and (2) be harmless to humans and pose a 
low risk to the local ecosystem.

For the ureolysis process, various ureolytic bacterial 
strains isolated from the soil environment have been identified 
and found to be effective for MICP. These include, but are not 

(3)
SO2−

4(aq)
+ 2[CH2O](aq) + OH−

(aq)
→ HS−

(aq)
+ 2HCO−

3(aq)
+ H2O

(4)
4FE(OH)3 + [CH2O](aq) + 7H+

(aq)
→ 4Fe2+

(aq)
+ HCO−

3(aq)
+ 10H2O
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limited to, Bacillus strains, Sporosarcina strains, Shewanella 
strains, Pararhodobacter strains and Lysinibacillus strains. 
Some most representative species include Sporosarcina pas-
teurii (Gomez et al., 2015; Kannan et al., 2020), Bacillus 
sphaericus (Mujah et al., 2016; Saffari et al., 2017), 
Pararhodobacter sp. (Amarakoon & Kawasaki, 2018) and 
Bacillus megaterium (Jiang et al., 2016). The bacterial strains 
could affect MICP efficiency in terms of (1) ureolysis rate 
(i.e. urease activity) and (2) nucleation and crystallization, 
which will be reviewed in the next two paragraphs.

On the one hand, different bacterial strains may display 
very different ureolysis rate. To assess the ureolysis capabil-
ity of a specific bacterial strain, urease activity is usually used 
as the key indicator. The urease activity values that were at-
tained by various bacteria in previous studies are summarized 
in Table 2. It should be noted that many factors may affect 
urease activity, including bacterial type, biomass density and 
culturing medium conditions (e.g. concentration of substrate 
(urea) and by- product (NH4

+), pH and oxygen availability) 
(Bachmeier et al., 2002; Martin et al., 2012). From Table 2, 
it is clear that the microorganism type can make a significant 
difference to urease activity. Specifically, Sporosarcina pas-
teurii in most previous studies show a higher urease activity 
than other types of ureolytic bacteria, and higher biomass 
density results in higher urease activity.

On the other hand, bacterial cells can promote nucleation 
and crystallization by creating supersaturated alkaline en-
vironments and secreting extracellular polymeric materials 
(i.e. exopolysaccharides (EPS) and capsular polysaccharides 
(CPS) (Sundaram and Thakur 2018; Ercole et al., 2012). The 
extracellular polymeric materials produced by microorgan-
isms might be tightly bound to the cell, loosely adherent to 
cells or existing in the form of free dissolved matter (Ercole 
et al., 2012), which can trap calcium ions at a given pH, con-
trol crystallization and influence the polymorphic develop-
ment of CaCO3 crystals (Dupraz et al., 2009; Bains et al., 
2015). For example, in recent years, Szcześ et al. (2016) in-
vestigated Rhodococcus opacus cultures and found that the 
crystal size and polymorph could be controlled by EPS. EPS 
could stabilize vaterite and this effect is stronger at basic 

pH. Azulay et al. (2018) indicated that the EPS generated 
by Bacillus subtilis strain affected the crystal's nucleation, 
and the proteins (TasA and TapA) induced the aggregation 
of crystallites.

Most of the currently identified ureolytic bacteria are aer-
obes and hence are used for MICP under oxic conditions. The 
aerobic ureolytic bacteria target the surface soil where the 
oxygen is sufficient for the continuous expression of enzy-
matic activity. For instance, although the most widely used 
Sporosarcina pasteurii is a facultative anaerobe, it is unable 
to synthesize urease anaerobically. However, some ureolytic 
bacterial strains are reportedly able to survive and induce ure-
olysis under anoxic conditions. There is a controversy regard-
ing the efficiency of ureolysis process that can be achieved 
in the absence of oxygen. For instance, on the one hand, 
Jiang et al. (2016) and Martin et al. (2012) observed con-
siderable ureolytic activity of B. megaterium (ATCC 14581) 
and Sporosarcina pasteurii under anoxic conditions, which 
was attributed to the aerobic preculture and the urease al-
ready present in the cells. On the other hand, Mortensen et al. 
(2011) observed extensive ureolytic activity of Sporosarcina 
pasteurii under anoxic conditions, suggesting that the anoxic 
environment did not inhibit urease activity. Mitchell et al. 
(2019) investigated the kinetics of ureolysis and CaCO3 pre-
cipitation of Sporosarcina pasteurii in the absence of oxygen. 
The results indicated that Sporosarcina pasteurii was capable 
of ureolysis in anaerobic environments; however, sustained 
growth over time in the absence of oxygen was not possi-
ble. Also, oxygen- free environments did not substantially 
affect the initial rate of ureolysis or CaCO3 precipitation. 
The microorganisms used for other MICP processes includ-
ing denitrification, sulphate reduction and iron reduction 
are ubiquitous in the anoxic subsurface environment. Thus, 
bio- stimulation of indigenous bacteria is preferred in these 
circumstances.

Finally, there are still research gaps in terms of the role 
of ureolytic bacterial strains during the MICP process. For 
example, it was observed that the amount of injected bacte-
ria was diminishing with time and the diversity of bacteria 
was reduced at the end of bio- augmented MICP treatment 

T A B L E  2  Urease activity of representative ureolytic bacteria

Bacteria Urease activity Bacterial concentration References

Sporosarcina pasteurii 1.8 mM urea/min 0.8– 1.2 (OD600) Xiao et al. (2019b)

Sporosarcina pasteurii 1.4– 2.0 mM urea/min 107 cells/ml Xiao et al. (2019a)

Sporosarcina pasteurii 4– 5 mM urea/min - Hoang et al. (2019)

Sporosarcina pasteurii 2.08 mM urea/min/OD 0.22 (OD600) Jiang et al. (2017)

Lysinibacillus sphaericus 0.4 μM urea/72 hr 250 mL sporulating bacterial spore solution Kang et al. (2016b)

Bacillus sphaericus 10 μM urea/min 2– 2.5 (OD600) Mujah et al. (2016)

Bacillus sp. 20 ± 1 μM urea/min 4.2 ± 0.2 (OD600) Cheng et al. (2019)

Bacillus sp. 15 μM urea/min 3– 3.15 (OD600) Hao et al. (2018)
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(Graddy et al., 2018). In addition, the function of EPS to 
facilitate bio- cementation is still unclear for most ureolytic 
strains. Therefore, further research is needed on the following 
aspects:

1. Maintaining the dominance of injected ureolytic bacteria 
during bio- augmented MICP.

2. Understanding the microbiological and biochemical inter-
actions between the exogenous and native bacterial spe-
cies during the MICP process.

3. Illustrating the function of EPS to facilitate bio- 
cementation during the MICP process.

3.2 | Bacterial culture and enrichment media

Nutrients as the energy sources are crucial to the MICP 
process, in which bacteria utilize nutrients to sustain their 
metabolic and enzymatic activity. For the bio- augmentation 
approach, bacteria are cultivated using specific culture 
media in the laboratory to the desired concentration (i.e. 
bacterial culture medium). Table 3 shows some representa-
tive culture media for ureolytic bacteria that are found to 
be able to induce high urease activity with the presence of 
enzyme- substrate (i.e. urea or ammonium) (Jiang & Soga, 
2017; Liu et al., 2020b; Zamani et al., 2018), suggesting 
that urea is not necessarily the only substrate that can in-
duce high urease activity, and ammonium- rich media also 
have a comparable capability to produce similar urease 
activity.

For bio- stimulation, the enrichment media play a similar 
role to the culture media for bio- augmentation, which enriches 
the indigenous ureolytic bacteria and sustains the enzymatic 
activity (Wang et al., 2020a). Unlike bio- augmentation, the 
indigenous bacteria cannot reach the desired ureolytic rate 
immediately after injection. The primary principle for de-
veloping an effective enrichment medium is (1) to maximize 
the urease activity and (2) to minimize the enrichment time. 
Various carbon (C) sources including molasses, glucose and 
sodium acetate have been used to stimulate native hetero-
trophic ureolytic bacteria (Amini Kiasari et al., 2018), and 
urea is commonly added as the nitrogen source (Nassar et al., 
2018). However, recent studies have shown that using carbo-
hydrates as the only main C source could not induce suffi-
cient urase activity. For instance, Amini Kiasari et al. (2019) 
investigated the effects of various C and nitrate sources, in-
cluding yeast extract, sugarcane molasses, sodium acetate 
and glucose, on enriching the indigenous ureolytic bacteria 
for MICP. The results showed that the protein- based media 
such as yeast extract could yield a higher microbial urease 
activity, which was consistent with the findings of Cheng 
and Cord- Ruwisch (2013). Yeast extract is a complex nutri-
ent that can provide vitamins, minerals, nucleic acid, amino 

acids, as well as growth factors that can increase the growth 
rate of microorganisms (Gat et al., 2016).

While appropriately designed sterilized culture or enrich-
ment media have been adopted to grow ureolytic bacteria, 
non- sterilized conditions have also been found to be feasible. 
Yang et al. (2020) enriched urease- producing bacteria from 
activated sludge under non- sterilized conditions for MICP. 
Although the urease activity of the non- sterile enriched cul-
ture started to decrease after 3 days from the initial value of 
15 to 7 U/ml at 10 days, it was still adequate for MICP for bio- 
cementation. The non- sterile enrichment method can reduce 
the total energy consumption and production cost by 30% 
(Yang, Chu, et al., 2020). A similar non- sterile method was 
also performed by Cheng and Cord- Ruwisch (2013). Sharaky 
et al. (2018) compared the bio- cementation content precipi-
tated in sand achieved by using sterilized and non- sterilized 
media. It was observed that the amount of precipitation of 
CaCO3 treated by the non- sterilized media method was equal 
to that of the sterilized media method.

Finally, for future large- scale field applications, the ef-
fectiveness of the culture and enrichment and the cost and 
environmental risks should be considered carefully. Some al-
ternative inexpensive industrial substrates such as corn steep 
liquor, vegemite, torula, lactose mother liquor and food- grade 
yeast extract that can produce a considerable urease activity 
have been reported to replace the expensive laboratory- grade 
yeast extract (Achal et al., 2009; Chaparro- Acuña et al., 2018; 
Joshi et al., 2018; Omoregie et al., 2019; Babakhani et al., 
2020). Moreover, some industrial wastes can also be used as 
the nutrients such as chicken manure effluent (Yoosathaporn 
et al., 2016). In these studies, the urease activity induced 
by the traditional laboratory- grade nutrients did not show a 
significant superiority over the industrial substrates. For in-
stance, urease activity in “NB (nutrient broth)- urea medium” 
and “YE (yeast extract)- urea medium” was only 0.17-  and 
0.04- fold higher than that in LML (lactose mother liquor)- 
urea medium (Achal et al., 2009).

The current research gap relating to the bacterial culture 
and enrichment media lies in reducing the dosage, cost and 
environmental risk as much as possible to achieve the re-
quirements for MICP.

3.3 | Cementation solution

For the bio- augmented ureolytic MICP process, most re-
searchers commonly adopt a two- stage treatment strategy, 
in which cementation solution is injected following the 
cultivated bacteria suspension. Urea- calcium composite 
chemicals are usually adopted as the main ingredients of 
cementation solutions, sometimes with trace nutrients. 
For the urea source, researchers have not only used the 
traditional pure chemical, but have tried natural resources 
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such as pig and human urine (Chen et al., 2019; Lambert 
& Randall, 2019). For the calcium (Ca) source, common 
chemicals such as calcium chloride (CaCl2), calcium acetate 
(Ca(CH3COO)2) and calcium nitrate (Ca(NO3)2) have been 
used. These Ca sources are chemically stable and relatively 
inexpensive for large- scale applications. Among them, 
CaCl2 is the most common. However, it is worth noting 
that, to obtain sufficient cementation content, the amount 
of CaCl2 required is commonly excessive and may be harm-
ful to the environment. Also, to further minimize the envi-
ronmental risk, alternative Ca sources are being developed. 
Choi et al. (2016b) compared CaCl2 and Ca from eggshells 
dissolved by culinary vinegar. The results showed that the 
Ca produced from eggshells was as good as using CaCl2. 
Moreover, Liu et al. (2018) utilized the soluble Ca dissolved 
from calcareous sand by acetic acid to improve the strength 
and permeability of MICP- treated calcareous sand. Choi 
et al. (2017a) and Casas et al. (2019) released and reused Ca 
from quarry limestone and Ca- rich silicate quarry, respec-
tively, to apply to MICP.

Previous studies have suggested that the cementation 
solution plays a role in forming variable morphologies and 
sizes of CaCO3 crystals. It has been reported that the type of 
cementation solution (i.e. Ca2+ source) and the time interval 
between cementation solution injections could largely affect 
the mineralogy and morphology of CaCO3. The crystal types 
of CaCO3 through MICP process usually include calcite, 
vaterite and aragonite, among which the calcite is the most 
common and stable. Zhang et al. (2014) found that the sam-
ples treated with CaCl2 and Ca(NO3)2 were more likely to 
form calcite, whereas the samples treated with Ca(CH3COO)2 
were composed of 88% aragonite and 12% calcite. Burdalski 
and Gomez (2020) investigated the effect of different Ca2+ 
concentrations of cementation solution on the morphology 
of CaCO3. When the concentration was 500 mM, the sam-
ple showed a dominant calcite phase (96%) with negligible 
amounts (around 2%) of vaterite and aragonite. If the con-
centration increased to 1250 mM, calcite was still the domi-
nant phase (75%), and the quantities of vaterite significantly 
increased to 23%. Wang et al. (2019b) conducted a microchip 
experiment and found that the size of CaCO3 crystals was 
highly dependent on the time interval between cementation 
solution injections. The average size of CaCO3 crystals was 
considerably larger when the injection interval was 23– 25 hr 
than 3– 5 hr.

In short, cementation solution is critical to achieving 
satisfactory MICP treatment. However, the potential sec-
ondary pollution from injecting large amounts of solution 
into soil remains unexplored. In addition, further reducing 
the cost by selecting alternative Ca and urea sources is also 
necessary. Future work is needed to further reduce the cost 
and environmental risks associated with the cementation 
solution.

3.4 | Auxiliary additives

In order to improve bacterial growth, urease activity and 
bio- cementation content, researchers have developed sev-
eral auxiliary additives to supplement the culture/enrichment 
media and cementation solution, or to add directly into the 
soil matrix.

For the auxiliary additives added into the culture/enrich-
ment media, apart from the common necessary elements (C, 
N, P, H, O), nickel dichloride (NiCl2) has been used by many 
researchers, usually in very small amounts (Amini Kiasari 
et al., 2018, 2019; Fang et al., 2020; Gat et al., 2016; Xu et al., 
2020). MICP is highly associated with the metabolic and en-
zymatic activity of the specific ureolytic bacteria. As a key 
part of the urease enzyme structure, the nickel ion has been 
shown to be an essential trace element for maintaining suf-
ficiently high ureolytic activity of urease- producing bacteria 
(Svane et al., 2020). In addition, Shashank et al. (2018) inves-
tigated the effect of buffer solution added with the bacterial 
suspension on regulating the ureolysis procedure. Adding a 
buffer solution was found to prevent the instantaneous in-
crease of pH which might lead to a rapid clogging near the 
injection port during the MICP process.

For the auxiliary additives in the cementation solution, 
Xu et al. (2020) proposed magnesium ions to modify car-
bonate crystal polymorphs. The results showed that the 
incorporation of 0.01– 0.5 M magnesium ions with the ce-
mentation solution composed of Ca(CH3COO)2 and urea 
could promote the formation of acicular aragonite and in-
hibit the growth of rhombohedral calcite, which resulted 
in a 40%- 200% increase in the unconfined compression 
strength. Nawarathna et al. (2018) used various concentra-
tions of poly- Lys ranging from 0 to 50 mM as the additive 
to the cementation solution (CaCl2+urea). The findings 
indicated that the addition of poly- Lys created stronger 

Media
Batch 
condition pH Main ingredients

NH4
+- YE medium Aerobic 9 20 g/L Yeast extract, 10 g/L (NH4)2SO4

Urea- YE medium Aerobic 7.5 20 g/L Yeast extract, 170 mM urea

Urea- rich NH4
+- YE medium Aerobic - 20 g/L Yeast extract, 10 g/L (NH4)2SO4, 

0.5 M urea

T A B L E  3  Representative media for the 
culture of Sporosarcina pasteurii
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cemented sand specimens than those obtained by the con-
ventional method without poly- Lys. Wang et al. (2018) 
modified the cementation solution by adding polyvinyl al-
cohol (PVA) to successfully improve the erodibility of the 
treated sand.

For the auxiliary additives directly added into the soil 
matrix, randomly distributed fibres have been used to in-
crease the ductility of sandy soil and to prevent the loss 
of post- peak strength. Different types of fibres including 
natural plant- based and synthetic polymers have been used 
(Choi et al., 2016a; Imran et al., 2020; Li et al., 2016; Zhao 
et al., 2020). The optimum fibre content was usually be-
tween 0.2% and 0.3% by weight (Qiu et al., 2019; Li et al., 
2016; Fang et al., 2020). Li et al. (2016) used homopolymer 
polypropylene multifilament fibres as the additive in sand 
and found the unconfined compression strength gradually 
increased when the fibre content was between 0.2% and 
0.3%, which is the optimum fibre content. Fang et al. (2020) 
added modified- polyester fibres to improve the engineering 
properties of MICP- treated coral sand. The results showed 
that the permeability reduced by 2– 3 orders of magnitude 
and UCS increased from 2.78 to 21.65 MPa. Besides ran-
domly distributed fibres, researchers have also added clay 
particles as an auxiliary additive. Won et al. (2020) added 
kaolinite into sand as the extra nucleation sites for the cal-
cite precipitation. The results indicated that the kaolinite 
particles could function as nucleation sites and facilitate 
the heterogeneous nucleation of calcite. Ma et al. (2020) 
introduced bentonite into coarse sand and found that the 
unconfined compressive strength (UCS) was substantially 
improved with an optimal bentonite concentration of 20 
g/L. Higher bentonite concentrations (40 and 80 g/L in this 
study) might have a negative effect on UCS.

3.5 | Soil

Microbial- induced calcium carbonate precipitation has been 
widely investigated for its applicability in different types of 
soils. Table 4 shows a few examples reported in the past five 
years. Typically, the size of bacteria for MICP is between 0.5 
and 3 μm, making it suitable for a broad range of soil types.

For granular soils, MICP has already been intensively 
studied to modify the physical (density, gradation, poros-
ity, saturation), mechanical properties (strength, stiffness, 
shear behaviour, compressibility) and hydraulic properties 
through bio- cementation. The relatively larger pore space in 
coarse- grained soils allows microbes to move freely within 
the soil matrix. Thus, it is much easier to conduct MICP 
treatment in granular soils. It is also necessary to consider 
the effect of relative density, one of the most important 
parameters for coarse- grained soils, on strength improve-
ment. The biggest difference between bio- cemented and 

chemically cemented soil was that soil structure remains in-
tact by using MICP, thus the initial packing of soil governs 
the formation of cementation within the soil matrix (Terzis 
& Laloui, 2019). Rowshanbakht et al. (2016) found that in-
creasing the initial relative density resulted in the reduction 
in cementation content, which was because of the decreas-
ing pore volumes for the nucleation sites of calcite and the 
decreasing amounts of microbes and nutrients that could be 
absorbed.

In recent years, more and more studies have focused on 
MICP applications in soils that were traditionally regarded 
as unsuitable for MICP treatment (i.e. clay soil and loess). 
For clay soils, percolation may be difficult because of their 
low permeability and surface charge on the particles. Thus, 
premixing the bacterial solution with clay soil is one of 
the primary sample preparation methods (Kannan et al., 
2020). Cardoso et al. (2018) suggested that MICP appli-
cation in clay soils is much more challenging than in sand 
because of the complex chemical interactions between clay 
minerals and the injected solutions. For example, Sharma 
and Ramkrishnan (2016) conducted bio- augmented MICP 
in clay. A noticeable improvement (1.5– 2.9 times higher 
than the untreated samples) in the unconfined compres-
sive strength was observed. Saffari et al. (2017) found that 
MICP treatment could increase the cohesion, friction angle 
and shear strength in low plasticity clay. For collapsed loess, 
Atashgahi et al. (2020) reported that MICP could reduce 
the collapse potential between 24 and 54.8% by enhancing 
particle- particle contacts between the soil particles. Sun 
et al. (2020) suggested that the collapsibility of loess soils 
was significantly decreased at an optimum cementation 
solution concentration of 0.75– 1 M.

Soil is a rather complex mixture consisting of organic 
matter, minerals, gases, liquids and organisms (i.e. solid, air, 
liquid and organisms). The effects of soil environment on 
bacterial growth and precipitation formation remain unclear. 
In future research, it is important to assess whether environ-
mental conditions including pH, oxygen availability, tem-
perature and humidity within the soil matrix can support the 
activity of injected microbes before application. Moreover, 
the sustainability and durability of induced precipitation in 
various soil environments after MICP treatment also need to 
be examined.

4 |  CHARACTERIZATION OF MICP 
PROCESSES

As a multidisciplinary research field in the intersection of 
geotechnics, microbiology, biochemistry, environmental 
engineering and material science, the MICP process needs 
to be characterized using observational and experimental 
tools from multi- disciplines and at multi- scales (Figure 3). 
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This section will review the characterization techniques 
for the MICP process at nano, micro, meso, element, pilot 
and field scales.

4.1 | Nano- scale

Nano- scale material characterization techniques are used to 
show the interactions between bacteria and substrate (soil 
particles) during the MICP process, which can illustrate fun-
damental mechanisms between microorganisms and their 
nucleation surface. Atomic force microscopy (AFM) devel-
oped in 1986 is an ideal tool which can be applied to acquire 
the surface topography and texture information with dem-
onstrated resolution on the nanometre scale. Shashank et al. 
(2020) used AFM to investigate the capability of the biosorp-
tion of bacteria on the surface of soil particles. They found 
that the extent of bacterial adhesion on soils depends on the 
available hydrophobic binding sites, and bacteria could be 
entrapped in the pores of formed crystals based on the surface 
texture parameters during the MICP treatment.

4.2 | Micro-  and meso- scale

The characteristics of calcite crystals and their interactions 
with soil particles can affect the mechanical properties of 
bio- cemented soil. Various characterization micro- scale 
techniques including, but not limited to, scanning electron 
microscope (SEM) with energy- dispersive X- ray spectros-
copy (EDS), X- ray diffraction (XRD), Fourier- transform 
infrared spectroscopy (FTIR), thermogravimetric analysis 
(TGA), X- ray CT and mercury intrusion porosimetry test 
(MIP), and meso- scale techniques, such as microfluidic chip, 
have been used to provide insight into the evaluation of the 
crystal shape, size, content, distribution pattern, structure, 
contact and surface fractures of bio- cemented soils.

The size of the precipitated crystals can be detected clearly 
using SEM images. For instance, Mujah et al. (2019) found 
that different size, distribution pattern and shape were ob-
served by comparing SEM images at different concentrations 
of cementation solution. It showed that the lower cementa-
tion solution concentration (0.25 M) resulted in larger crys-
tal size than the higher cementation solution concentration 

T A B L E  4  MICP in different types of soils in laboratory studies

Soil type Problems Improvement mechanism References

Sandy soil Very loose; low strength and 
stiffness

Strengthen particle bonds via 
bio- cementation

Whitaker et al. (2018); Cui et al. 
(2017)

Sandy soil Low cohesion; low wind or 
water erosion resistance

Stabilize the surface layer of 
soil via bio- cementation

Maleki et al. (2016);
Shanahan and Montoya (2016); 

Wang et al. (2018); Fattahi 
et al. (2020)

Mixed soil (gravel- sand/
sand- clay)

Internal erosion as the core 
materials in embankment 
dams and levees

Mitigate internal erosion and 
improve hydraulic condition 
via bio- cementation and 
bio- clogging

Jiang and Soga (2017, 2019); 
Jiang et al. (2017)

Liquefiable sand Loose; saturated; insufficient 
cyclic shear strength

Reduce the degree of saturation 
via generating biogas 
(denitrification); Solidify 
and densify soil via calcite 
precipitation (ureolysis)

Hall et al. (2018)

Clayed soil Formation of desiccation 
cracks lead to an increase in 
hydraulic conductivity

Remediate the desiccation 
cracks via bio- cementation

Liu et al. (2020a)

Marine clay Low bearing capacity; high 
natural water content 
(close to the liquid limit); 
be susceptible to large 
consolidation settlements

Reduce liquid limit and 
increase strength via 
bio- cementation; 
increase strength via 
bioencapsulation

Kannan et al. (2020); Li, Li, et al. 
(2016); Ivanov et al. (2015); 
Li, Li, et al. (2016)

Loess soil Potential collapsibility; 
insignificant adhesion; very 
unstable

Improve the strength and 
hydraulic features via 
bio- cementation and 
bio- clogging

Atashgahi et al. (2020)

Heavy metal contaminated soil High environmental and 
ecological risks

Coprecipitate and then remove 
the heavy metals with calcite

Cheng & Shahin, (2017); Jalilvand 
et al. (2020); Zhu et al., 
(2016); Zhao et al., (2017)
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(1 M). Choi et al. (2020) and Fang et al. (2020) suggested that 
bonding at the particle- particle contacts as a bridge and coat-
ing on the particle surface are the two primary functions of 
precipitated crystals within bio- cemented soil. It is found that 
coating and bridging as the actual distribution pattern usually 
coexist after MICP treatment under unsaturated conditions 
(as shown in Figure 4).

The variation in porosity of MICP- treated soils can be 
determined by conducting MIP test and X- ray CT scanning. 
Amarakoon and Kawasaki (2018) found that the porosity 
of treated sand samples decreased with depth by analysing 

the X- CT images at the top, middle and bottom parts. Gao 
et al. (2019) conducted MIP test to identify the changes in the 
pore size distribution of bio- cemented quartz sand. The re-
sults also showed that the porosity of the treated sample was 
significantly reduced from 0.428 to 0.28– 0.33 in the surface 
layer by forming a hard crust and 0.37– 0.39 below the crust.

By using EDS, XRD and FTIR, the crystal morphology 
can be determined. The rhombohedral, hexahedral, orthor-
hombic, acicular, spherical and ellipsoidal crystals commonly 
appear in the form of calcite, aragonite and vaterite under dif-
ferent environmental conditions (temperature, cementation 

F I G U R E  3  The characterization of MICP at multi- scales ((a) SEM images of precipitation (Xu et al., 2020); (b) AFM peak- force error 
images of substrates with bacteria cell adhesion (Shashank et al., 2020); (c) the particle- scale behaviour of calcite precipitation from a microfluidic 
chip (Wang et al., 2019a); (d) the XRD patterns of CaCO3 crystals (Wen et al., 2020); (e) shear response of bio- cemented sand by undrained 
triaxial test (Nafisi et al., 2019); (f) the unconfined compress (UCS) test (Fang et al., 2020); (g) one- dimensional compression test (Xiao, Chen, 
et al., 2020a); (h) predicted volume fractions of final calcite by numerical modelling (Hommel et al., 2020); (i) seismic shear- wave data of 100- 
m3 large- scale bio- grouting test (Van Paassen et al., 2010a; Van Paassen et al., 2010b); (j) dynamic cone penetration (DCP) data of field- scale test 
measuring 2.4 m × 4.9 m on loose sand (Gomez et al., 2015); (k) Five- Spot treatment model (Dejong et al., 2014))
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F I G U R E  4  The precipitated crystal 
distribution pattern within pore space of soil 
matrix [modified after Dejong et al. (2010) 
and Cheng et al. (2013)]
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solution, pH, etc.). For instance, by analysing the data from 
XRD and EDS, Xu et al. (2020) found that cementation solu-
tion types had an effect on the crystal morphology. The main 
crystal form was aragonite when Ca(CH3COO)2 was used as 
the Ca source. After adding 0.5  M magnesium ions to the 
cementation solution, a small amount of calcite converts into 
low- magnesium calcite; however, the growth of aragonite is 
not inhibited. Wen et al. (2020) conducted XRD tests and 
found that the concentration of bacteria or urease did not 
have an apparent effect on the morphology of CaCO3 crys-
tals. Moreover, results from FTIR suggested that vaterite was 
the major form of CaCO3 crystals within 72 hr with calcite 
increasing over time during the MICP process.

At the meso- scale, Wang et al. (2019a, 2019b) developed 
a microfluidic chip, a 2- D representation of porous media, 
to observe the MICP process and the behaviour of bacteria 
and growth of precipitated crystals under saturated condition 
(as shown in Figure 3c). It contains an inlet, upstream flow 
distribution channels, a porous medium, downstream flow 
distribution channels and an outlet (Wang et al., 2019a). A 
computer- controlled microscope is used for image collec-
tion. The observations showed that bacteria were distributed 
evenly after the bacterial suspension injection and CaCO3 
crystallized at narrow pore throats or open- pore bodies. The 
precipitated CaCO3 crystal transformed from irregularly 
shaped amorphous CaCO3 precipitates to spherical vater-
ite and then to rhombohedral calcite (Wang et al., 2019b). 
Marzin et al. (2020) also used a microfluidic cell to investi-
gate the influence of the injection time and the ionic strength 
on the adhesion rate of Sporosarcina pasteurii bacteria on 
sandstone grains and crystals formation during MICP. The 
results indicated a rise of adhesion rate from 0.005 per min-
ute to 0.03 per minute with an increase of NaCl concentration 
in solution from 3 to 20 g/L.

4.3 | Element- scale

A series of element- scale characterization techniques have 
been applied in the laboratory to assess the improvement of 
engineering properties including, but not limited to, perme-
ability, unconfined compressive strength, shear behaviour, 
particle breakage and compressibility behaviour, cementa-
tion content, thermal conductivity and durability.

The formed bio- cementation, which serves as a clogging 
material between particle contacts, can reduce the size of 
pore throats and resist water permeation. In the laboratory, 
both constant head and falling head tests can be applied to a 
variety of bio- cemented soils. Bio- grouting using bio- slurry 
containing preformed urease active calcium carbonate crys-
tals is an emerging technique for soil improvement by reduc-
ing the coefficient of permeability. Various types of soils 
have been studied, which widens the practical applications 

in terms of the bio- grouting technique in different soil con-
ditions. For example, Peng et al. (2020) reported that the 
coefficient of permeability of MICP- treated fractured rock 
was reduced to 3– 5 × 10– 5 m/s by four orders of magnitude 
using bio- grouting method. Lian et al. (2019) conducted bio- 
grouting on hydraulic fill fine sands for reclamation. The 
permeability coefficient was reduced by approximately three 
orders of magnitude using the constant head approach. Wu 
and Chu (2020) used bio- grouting to treat granite aggregates 
and found a reduction of permeability in both saturated and 
unsaturated cases. A larger reduction was observed in the 
unsaturated condition. Pan et al. (2020) successfully applied 
bio- grouting on sands with grain sizes ranging from 0.30 to 
2.36 mm to significantly reduce the coefficient of permeabil-
ity. Compared with the conventional chemically treated soil, 
the reduction in permeability via the MICP process is much 
less. The minor reduction in permeability can, on the one 
hand, create a good drainage passage which ensures the un-
hindered penetration of bacterial solution (Chu et al., 2014) 
and, on the other hand, can avoid the development of excess 
pore water pressure during loading (Mujah et al., 2017).

The unconfined compression test is another popular char-
acterization method at element- scale, which could assess the 
strength of bio- cemented soils (Amini Kiasari et al., 2019; 
Hoang et al., 2019; Rowshanbakht et al., 2016; Terzis et al., 
2018). Existing studies have primarily focused on the effect 
of cementation level on unconfined compression strength 
(UCS), and an empirical correlation between UCS and ce-
mentation content was proposed. Specifically, the UCS was 
found to be positively correlated with the cementation con-
tent. The UCS values could fluctuate between 50– 100 kPa 
and 10  MPa with the cementation content varying sub-
stantially from less than 2% to 25%– 30% (Amarakoon & 
Kawasaki, 2018). Usually, the UCS values were reported 
when the CaCO3 content is over 3%, at which the bio- 
cemented samples could maintain their integrity and stand 
alone. However, Terzis and Laloui (2019) pointed out that 
the lower cementation content (<2%) could still offer the de-
sired improvement if considering the role of confinement. 
Choi et al. (2020) gave an empirical correlation between 
UCS and cementation content (CC, in percentage) based on 
the compiled data as follows, where αUCS and βUCS are two 
empirical fitting parameters.

Researchers have conducted various types of tests to eval-
uate the shear strength of bio- cemented soils, among which 
the triaxial compression test and direct shear test are the 
most common methods. More attention has been placed on 
the stress– strain relationship and stress– dilatancy behaviour 
of bio- cemented samples. The evolution of cohesion, effec-
tive friction angle and failure envelope with the variation of 

(5)UCS[kPa] = αUCS ⋅ CCβUCS , when CC < 30%
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cementation level was the major concerns. Generally, the re-
sults suggested that the shear strength performance improves 
significantly compared with uncemented soils. For instance, 
Cui et al. (2017) conducted triaxial undrained tests on sand. 
It was found that the effective cohesion and effective friction 
angle increased with cementation level with a linear and ex-
ponential relationship, respectively. The increase in effective 
cohesion with cementation level has also been observed in 
the other study (Wu et al., 2021). However, Wu et al. (2021) 
found that the effective friction angle did not change when 
the cementation content exceeded 5%. The major effect of ce-
mentation is to increase the cohesion. Thus, the effect of ce-
mentation on the friction angle of bio- cemented soils should 
not be overestimated. Amini Kiasari et al. (2018) performed 
direct shear tests on bio- cemented sand treated using the 
bio- stimulation approach. The results showed an increase of 
190% in cohesion and 16.79% in the friction angle compared 
with the uncemented sand. The bonding effect enhancing the 
interparticle contacts is commonly considered as the main 
governing role for bio- cemented soils. The cementations de-
posited on the surface of particles were regarded as ineffec-
tive and made little contribution to the enhanced peak shear 
strength of bio- cemented soils (Cui et al., 2017; Dejong et al., 
2010). However, interestingly, O’Donnell and Kavazanjian 
(2015) reported a significant improvement in stiffness and 
dilatancy on bio- treated Ottawa 20– 30 sand with very little 
cementation under isotropically undrained triaxial compres-
sion (CIUC) tests. They hypothesized that such improvement 
was possibly from particle roughening because of the coating 
effect of CaCO3 on the particle surface. Current investiga-
tions also show variations of shear parameters at critical or 
residual state. For instance, in triaxial tests, Feng & Montoya 
(2016) indicated that the residual cohesion is assumed to be 
zero. The residual friction angle decreased with the increase 
of confining pressure but was larger at all levels of confine-
ment in heavily and moderately cemented sand. In contrast, 
the residual friction angle of lightly cemented sand is close to 
that of untreated soil.

Regarding the compression and particle breakage be-
haviours, while many researchers have investigated them for 
uncemented soils, very limited studies have been conducted 
to explore those of bio- cemented sand treated using MICP. 
The particle breakage and compressibility behaviour of 
MICP- treated sands have been investigated mostly by oedo-
metric compression tests. The extent of particle breakage is 
usually quantified by the difference in particle size distribu-
tion (PSDs) before and after loading. Generally, MICP treat-
ment can effectively reduce the magnitude of grain crushing 
and compressibility. For example, Lin et al. (2016) conducted 
confined compression tests and found the MICP- treated 
specimens were less compressible than untreated specimens. 
The compressibility decreased with the increase of CaCO3 
content. For a given vertical effective stress or input work, 

specimens with a larger bio- cementation content exhibited 
smaller particle breakage and vertical strain. The formed 
bio- cementation serves to restrain particle breakage and 
compressibility mainly via three mechanisms: (1) increase 
the effective diameter of soil particles; (2) dissipate energy 
during loading; and (3) remain in the void and reduce the 
magnitude of particle contact forces through a cushioning ef-
fect (Xiao et al., 2020a; Xiao et al., 2020b).

Cementation content is another essential parameter that 
is characterized at the element- scale, which has a strong cor-
relation with the engineering performance of bio- cemented 
soils. In previous studies, cementation content measure-
ment was measured mainly using the destructive method. 
Dissolving samples in hydrochloric acid (HCl) is a conven-
tional destructive method, in which HCl is added to dissolve 
the formed cementation and then the weight difference of 
samples or the pressure difference because of the generation 
of CO2 is calculated before and after washing by acid (Feng 
& Montoya, 2015; Xu et al., 2020). Although acid washing is 
rather convenient, the accuracy of this method is not inferior 
to any other methods as compared by Choi et al., (2017b) 
because of the non- uniformity of treatment. In recent years, 
new non- destructive methods have been applied to charac-
terize bio- cementation content. For instance, the bender 
element test has been conducted to obtain bio- cementation 
by correlating it with measured shear- wave velocity (Nafisi 
et al., 2018, 2020).

The thermal conductivity of MICP- treated soil has also 
been studied in recent years. The effect of bio- cementation 
within the soil matrix is an influential factor on the thermal 
conductivity. Venuleo et al. (2016) compared the thermal 
conductivity between MICP- treated and untreated soils. The 
results showed that the thermal conductivity of MICP- treated 
soils was increased by 250%. The induced CaCO3 acting as 
“thermal bridges” among sand grains offered more effective 
heat transfer paths by increasing the surface contact area. 
Wang et al. (2020b) found that the thermal conductivity was 
linearly correlated with dry density, treatment cycles and 
CaCO3 content in bio- cemented sands. Martinez et al. (2019) 
investigated the relationship between the degree of saturation 
and soil thermal conductivity for a poorly graded quartz sand, 
and results indicated that thermal conductivity increased with 
the degree of saturation especially at low saturation levels. In 
the future, the performance of MICP in practical applications 
related to thermal conductivity properties, such as energy 
piles and ground source heat pumps, could be assessed.

The efficacy of the engineering performance of MICP is 
another concern. There are many environmental conditions 
that could reduce durability, such as wet– dry cycles, freeze– 
thaw cycles and acid rain infiltration. Element- scale experi-
ments have been conducted to characterize the durability of 
MICP- treated soils. For instance, Liu et al. (2019) conducted 
a series of unconfined compression tests to investigate the 
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durability of bio- cemented sandy soils under various artifi-
cial environmental conditions. The results showed that nearly 
80% UCS reduction after one wet– dry cycle, 58% UCS re-
duction after 15 freeze– thaw cycles and 83% UCS reduction 
after 15  days immersed in acid rain solution with a pH of 
3.5. Gowthaman et al. (2020) investigated the influence of 
freeze– thaw cycles on slope soil treated by MICP. The re-
sults indicated that the erosion induced by freeze– thaw cycles 
was dependent on the cementation content. Liu et al. (2019) 
found that fibre- reinforced samples could reduce the strength 
reduction after wet– dry and freeze– thaw cycles, though their 
resistance to acid rain attack remained weak.

4.4 | Pilot-  and field- scale

Several pilot and field trials have been conducted in recent 
years to treat sandy soils using MICP, in which different 
characterization tools were adopted. Normally, pilot- scale 
tests are carried out to validate the MICP concept, which are 
smaller in dimensions and cheaper than the field- scale ones. 
In addition, although the experimental conditions at pilot- 
scale are easier to control, the representation of experimen-
tal results is not as relevant as those from field- scale tests. 
Gomez et al. (2015) conducted a pilot- scale test on loose 
sand deposits measuring 2.4 m by 4.9 m to improve the surfi-
cial erosion resistance. Dynamic cone penetrometer (DCP) 
measurement was applied to the three bio- treated test plots to 
evaluate variations in the penetration resistance. The results 
showed the improvement could reach to around 28 cm depth. 
San Pablo et al. (2020) developed 3.7- m- long horizontal col-
umns to investigate the spatial uniformity of bio- cementation 
and the removal of posttreatment ammonium by- product. 
The results indicated that using bio- stimulated approaches 
with a low ureolytic rate could reach a farther treatment dis-
tance. Do et al. (2020) developed a double wall pile delivery 
system in a soil box (measuring 0.91 m × 0.91 m × 0.91 m) 
to improve the submerged sand adjacent to a pile founda-
tion system using MICP treatment. This system involved the 
cementation of the general area adjacent to the pile in an el-
lipsoidal shape with few plugging issues.

For the field- scale tests, Dejong et al. (2014) adopted a 
scaled repeated five- spot treatment model to monitor the 
efficiency of MICP during treatment. Bender elements 
were installed to capture the spatial and temporal changes 
in mechanical properties using shear- wave velocity, which 
is a good proxy for the distribution of calcite precipitation. 
Phillips et al. (2018) applied MICP in enhancing wellbore 
cement integrity with a diameter of 24.4 cm (9.625 inches). 
The treated region was identified using an ultrasonic imaging 
tool (USIT), providing a continuous image of the quality of 
the cement bond at the cement- casing interface. Meng et al. 
(2020) used the MICP technique to control the wind erosion 

of surface desert soil (with a depth of ~10  cm). Surface 
penetration tests (penetration depth ~2  cm) by a digital 
micro- penetrometer were conducted to evaluate soil- bearing 
capacity. Saneiyan et al. (2019) adopted induced polarization 
(IP), a geophysical method in mineral exploration, to monitor 
the status of soil strengthening via MICP in the field spatially 
and temporally. Terzis et al. (2020) applied field- scale bio- 
grouting to mitigate landslide risk through MICP within the 
targeted slip zone hit by extreme rainfall in Switzerland. The 
data collected by drone surveillance indicated a slower move-
ment within the MICP- treated zone after treatment compared 
with other zones without MICP treatment.

Although some pilot-  and field- scale experiments have 
been conducted, more attention has been placed on the short- 
term treatment efficiency. There are rather limited large- 
scale research studies focusing on the long- term durable 
behaviours. Further work is needed to conduct long- term 
verification of MICP treatment in the field.

4.5 | Numerical modelling

Numerical modelling is a useful tool to virtually assess 
the performance of MICP where the complex coupled bio- 
geochemical processes are involved. Numerical prediction 
can be conducted from different aspects, namely biology, 
chemistry, hydraulics and mechanics as illustrated in Figure 
5. MICP is the collective result of water flow, solute trans-
port, chemical reactions and microorganism mobilization/
immobilization/growth/decay/dynamic metabolic potential 
(Nassar et al., 2018). Recently, much of the numerical mod-
elling of MICP has focused on small- scale experiments in 
porous media (mostly sand) whereas large- scale modelling 
is rather limited.

On the biochemical aspect, the developed models nor-
mally consider both solid and aqueous phases and take vari-
ous coupling mechanisms into account including the flow of 
the aqueous phase, and the transport of the chemical and bac-
terial components (i.e. advection, diffusion, dispersion, sorp-
tion, bacterial decay) in these two phases (Matsubara et al., 
2020; Wang & Nackenhorst, 2020). Researchers may have 
different assumptions for the phase adsorption of diverse spe-
cies and chemical components, which could either simplify 
or complicate models. For instance, Wang and Nackenhorst 
(2020) assumed that both the urea and ammonium were in the 
liquid phase, while Fauriel and Laloui (2012) divided them 
into two parts: solute ammonium/urea in the liquid phase and 
absorbed ammonium/urea in the solid phase. Furthermore, 
based on the different assumptions of distribution of vari-
ous aqueous chemicals and reactants, two types of models 
have been applied in previous studies: macroscopic contin-
uum and pore- scale models (Wang & Nackenhorst, 2020). 
Macroscopic continuum models are based on homogenization 
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techniques and have been shown to have advantages in large- 
scale MICP applications (Cunningham et al., 2018; Fauriel & 
Laloui, 2012; Hommel et al., 2015). The aqueous biochem-
ical components are assumed to be mixed completely, and 
the impacts of the local incomplete mixing of reactants at the 
pore throat are not covered. Pore- scale models focus more on 
the local heterogeneity; thus, the variations in porosity and 
permeability could be considered (Qin et al., 2016; Wang & 
Nackenhorst, 2020).

Various methods have been established on the mechanical 
aspect to predict the element- scale or pilot- scale properties 
such as the distribution of calcite precipitation, permeabil-
ity and porosity in the solid phase. Zamani and Montoya 

(2016) conducted simulations in a Seep/W program based 
on the finite- element method to detect the effect of cemen-
tation level change on permeability. Feng et al. (2017) con-
ducted three- dimensional DEM simulations using PFC3D. 
The stiffnesses, shear behaviours, bond breakage and aver-
age void ratio were analysed. Yang et al. (2017) developed 
a five- parameter DEM model to simulate the behaviour of 
MICP- treated sands. The peak and residual friction angles 
predicted by the simulations were very comparable to the ex-
perimental results. So far, large- scale numerical modelling is 
still limited.

In general, numerical modelling is a complex system. 
Future work is still needed to obtain: (1) a better understating 

F I G U R E  5  The bio- chemo- hydro- 
mechanical (BCHM) mechanisms and their 
couplings (modified after Fauriel & Laloui, 
2012)
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F I G U R E  6  The potential applications 
of MICP in various fields
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of interactions among coupled bio- chemo- hydro- mechanical 
processes especially during the bio- stimulation treatment 
method; (2) the unified rational assumptions regardless of 
MICP treatment procedures; (3) the more accurate inputs of 
various modelling parameters for numerical prediction.

In summary, the development of reliable and convenient 
characterization techniques at various scales is critical for 
the understanding and implementing of the MICP process. 
The nano- , micro-  and meso- scale assays help to understand 
the fundamental mechanisms of MICP. Element- scale tests 
can provide available methodologies for the mechanical be-
haviours in the laboratory. In order to apply MICP at a large 
scale, pilot-  and field- scale characterizations are indispens-
able. Moreover, reliable numerical models are beneficial for 
understanding fundamental mechanisms and the prediction 
of engineering behaviour of bio- cemented soils. Currently, 
most characterization techniques at nano- , micro- , element- 
scales are carried out in the laboratory. However, with fur-
ther scaling up, there are more challenges during different 
stages including test setup and preparation, fluid injection, 
bio- grouting monitoring and efficiency assessment.

5 |  PROMISING APPLICATIONS 
OF MICP

Since the MICP process was firstly explored for its applica-
tions in geotechnical engineering, researchers keep exploring 
new fields that can utilize MICP. While substantial effort is 
still put into applications in geotechnical engineering such as 
ground improvement and liquefaction control, there are an 
increasing number of studies now focusing on other fields, 
particularly material modification, disaster alleviation, en-
vironmental protection and energy production/storage (as 
presented in Figure 6). In this section, recent developments 
in MICP applications in both geotechnical engineering and 
other fields are reviewed. The existing studies are crucial to 
provide some insights on this promising technique and poten-
tially help broaden the horizon of MICP applications.

5.1 | Emerging applications in geotechnical 
engineering

In recent years, the application of MICP in geotechnical en-
gineering has expanded out of traditional areas such as soil 
improvement. One such promising application is bio- grouting 
for soil or rock joints. Studies on the use of bio- grouting for 
soil and rock joints have been carried out by Chu (2012). The 
results have shown that bio- grouting effectively reduces the 
seepage in soil and rock joints and increases the shear strength 
of sand (Pan et al., 2020; Wu & Chu, 2020; Wu et al., 2019). 
However, bio- grouting using the conventional MICP method 

does have one disadvantage. When the method is used for 
coarse sand or rock joints with relatively big openings, the 
number of treatments required to generate sufficient CaCO3 to 
occupy the pores in order to reduce the permeability is exces-
sive. An innovative way to overcome this problem was the use 
of bio- grouting containing bio- slurry (Cheng et al., 2019). By 
adjusting the solid content in the bio- slurry, this so- called uni-
fied bio- grouting method (Pan et al., 2020) can be used for fine 
to coarse sand or rock joints of different sizes of the opening.

Another promising application is repairing drying- induced 
cracks in the soil. Drying- induced desiccation cracking of 
soils is a common natural phenomenon, considerably degrad-
ing soil mechanical and hydraulic properties. In recent years, 
Liu, Zhu, et al. (2020a) applied MICP to remediate desicca-
tion cracking in clayey soils. They found that soils treated with 
MICP present the highest resistance to cracking (Figure 7). 
Geometrical parameters featuring the crack pattern such as 
surface crack ratio, average crack width, total crack length, 
crack width distribution range and the most probable value of 
crack width decrease significantly with the increasing MICP 
treatment cycles. Guo et al. (2018) conducted MICP treatment 
to repair desiccation cracks that occurred in bentonite. It was 
found that the MICP- treated samples had larger polygons and 
smoother surface than the untreated ones after they were totally 
dried. Liu et al. (2020a) investigated the crack repair in tabia 
(a traditional artificial Chinese soil which mainly consists of 
clay, sand and lime) by MICP. The results indicated that the 
peak recovery rate of flexural and shear strength reached up to 
79.92% and 88.54% when the crack width was 5 mm. Wider 
cracks could lead to a decrease in repair efficiency.

5.2 | Material modification

While soils, especially coarse- grained ones, are the primary 
targets of MICP treatment, more and more efforts are being 
put on the application of MICP on a variety of other materi-
als. The concept of self- healing of materials using MICP has 
become popular recently. Harbottle et al. (2014) demonstrated 
the potential of self- healing of sand by MICP to respond to 
damage by vane shearing the specimens. The results showed 
a substantial strength increase of 300%– 400% after the initial 
healing stage. Botusharova et al. (2020) used a spore- forming 
strain (Sporosarcina ureae) for the self- healing procedures in 
sand. A conceptual process of utilizing sporulated bacteria in 
porous media was proposed (shown in Figure 8). Self- healing 
via the ureolysis- based MICP process has also been applied in 
concrete (Alazhari et al., 2018; Jongvivatsakul et al., 2019; Xu 
& Wang, 2018; Zhang et al., 2019), which can help reduce the 
high maintenance costs of concrete in a relatively eco- friendly 
way. Although most ureolytic bacteria are alkali- tolerant spe-
cies, which can, to a certain extent, maintain the enzymatic 
activity in a harsh environment in concrete (pH up to 12– 13), 
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encapsulation technique is necessary to further increase the sur-
vival of bacteria. Nevertheless, Lee et al. (2019) pointed out that 
ensuring the survival of bacteria is still the biggest challenge of 
self- healing concrete. Furthermore, the released by- product am-
monia along with ureolysis process is highly undesirable for the 
people who live in the buildings with such self- healing concrete.

5.3 | Disaster mitigation

Microbial- induced calcium carbonate precipitation techniques 
have also been applied to mitigate the impacts of natural dis-
asters such as coastal erosion, wind erosion in desert areas and 
landslides (Chu, 2013; Chu et al., 2015). Coastal erosion is 

F I G U R E  7  The spatiotemporal 
evolutions of soil crack patterns after 
different treatment cycles. W— treated with 
deionized water; B— treated with bacteria 
solution; C— treated with cementation 
solution; BC— treated with both bacteria 
and cementation solutions (Liu et al., 
2020a)
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F I G U R E  8  Concept of bacterial self- healing in porous media: (a) sporulating bacteria capable of biomineralization present in the pore space; 
(b) bacteria produce mineral products, entombing themselves with spores surviving; (c) deterioration of the mineral exposes spores; (d) germination 
of new cells form spores; and (e) further mineral formation caused by new cells, entombing themselves in the process once more (Botusharova 
et al., 2020)
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mostly caused by storm wave attacks and long- term sea- level 
rise, which lead to the loss of beach sand dunes and the ero-
sion process related to coastal sediments. The traditional hard 
structures are expensive and not eco- friendly. MICP- based 
foreshore sandy slope stabilization is a type of soft structural 
protection method which has gained increasing interest. Both 
bio- augmentation and bio- stimulation have been investigated 
in the laboratory for sandy slope stabilization (Gowthaman 
et al., 2019; Imran et al., 2019; Kou et al., 2020; Liu et al., 
2020b; Salifu et al., 2016; Shahin et al., 2020). However, 
considering that human activities are sometimes intensive in 
the beach zones, the issues such as by- product treatment and 
durability should be addressed carefully before application in 
beaches. Alternatively, the creation of artificial beachrocks 
using natural materials (e.g. microbes, sand, shell, pieces of 
coral and seaweed) within a short time by MICP method was 
a milder approach (Daryono et al., 2020; Imran et al., 2019).

Wind erosion is a common problem occurring in arid re-
gions. Fattahi et al. (2020) developed an element- scale cube 
sand box with a dimension of 10 × 10 × 10 cm. A uniform 
crust was formed and able to provide considerable protec-
tion for aeolian sand against erosion by airflow at different 
velocities. Meng et al. (2021) performed a field- scale test to 
investigate the efficiency of reducing wind erosion via MICP. 
Under the optimal condition, the thickness of the soil crust 
reached up to 12.5  mm and the bearing capacity exceeded 
300 kPa. So far, the high cost is the major challenge for the 
use of MICP in desert areas mainly because of logistics and 
harsh environments (Meng et al., 2021).

Microbial- induced calcium carbonate precipitation also 
shows potential for slope stabilization. In order to prevent 
landslides, it is important to immobilize the ureolytic bacteria 
within the target surface zones. However, Gowthaman et al. 
(2019) suggested that well- immobilized bacteria could only 
exist within the surface zone based on their experimental ob-
servations. Factors such as the particle size distribution may 
limit the treatment in deeper locations. Therefore, it is recom-
mended that the MICP technique is used to enhance the sur-
face cover condition or prevent the instability of surface slopes 
based on the current knowledge and implementation method.

5.4 | Environmental protection

Heavy metal contamination in soil and groundwater has been 
a threat to the ecosystem and human health because of (1) the 
long- term accumulation in many phases (i.e. air, solid, fluid) 
and (2) pollution from industrial activities (Jiang et al., 2019; 
Xia et al., 2019). In recent years, with the development and 
increasing knowledge of MICP techniques, ureolysis- based 
MICP has been proven to be an effective approach to stabi-
lize soils contaminated with heavy metals.

Various heavy metals including lead (Pb), cadmium (Cd), 
zinc (Zn), copper (Cu), mercury (Hg), cobalt (Co), stron-
tium (Sr), barium (Ba), iron (Fe) and nickel (Ni) have been 
investigated for immobilization efficiency by either bio- 
stimulated or bio- augmented MICP processes. For example, 
Kang et al. (2016a) found that treatment by four isolated 
bacterial co- mixtures was more effective in removing mix-
tures of Pb, Cd and Cu in soil. Chen et al. (2019) observed 
that various bio- stimulated ureolytic bacteria could facil-
itate Cu immobilization by accelerating MICP process. It 
was proved that the immobilized Cu was mainly in the form 
of Cu carbonates. Jiang et al. (2019) applied bio- augmented 
MICP to immobilize Pb in aqueous conditions. The results 
showed that S. pasteurii exhibited compatible resistance to 
Pb toxicity. The immobilization of Pb might follow a spe-
cific sequence, and a hypothesized multi- layer precipitation 
structure was proposed. In order to investigate the mech-
anism of ureolytic bacteria in immobilizing heavy metals, 
Kang and So (2016) isolated six ureolytic bacteria from an 
abandoned mine. The maximum tolerance concentrations of 
isolated strains were tested for various heavy metals (Co, 
Cu, Fe, Cd, Ba, Pb, Sr and Zn). It was found that the heavy 
metal resistance of these isolates was closely associated 
with their resistance to antibiotics. Zhao et al. (2017) uti-
lized Bacillus sp. isolated from a mine soil to immobilize 
Cd. Both the efficiency of biosorption and MICP were ana-
lysed. The results indicated that MICP had a greater poten-
tial to remove Cd than biosorption process under different 
factors (initial pH, Cd concentration, contact time). Based 
on existing studies, the main mechanism of the immobiliza-
tion process via MICP lies in the co- precipitation of heavy 
metals in CaCO3 or entering the interstice or defect of the 
crystal. The heavy metal ions are adsorbed to the bacterial 
cell wall as a result of its negative charge, thus resulting in 
the formation of crystals on the surface of the bacterial cell. 
Meanwhile, adsorption and redox reactions usually accom-
pany co- precipitation.

It is worth mentioning that co- contaminants often com-
plicate bacterial reactions. While many bacteria possess the 
potential for biotreatment of various contaminants in labora-
tory conditions, their survival and enzymatic activity under 
a real natural environment are vital for field implementation 
(Rahman et al., 2020). Thus, further research on the impacts 
of various inhibiting and promoting physio- chemical factors 
on the capacity and capability of MICP for heavy metal im-
mobilization is needed. Moreover, though the strong absorp-
tion of heavy metals on the surface and inside the lattice of 
calcite occurs, they may possibly suffer under unexpected 
adverse environmental conditions such as the sudden vari-
ation of temperature, pH or microbial population. Thus, the 
durability of the formed co- precipitation needs to be further 
studied.
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5.5 | Energy production and storage

Recently, the MICP technique has been developed to assist 
energy resources production procedures. During the pro-
duction and extraction of some energy resources such as pe-
troleum and methane hydrate, the disturbance and strength 
loss of ambient soils or facilities such as wellbores may 
significantly affect the efficiency of energy production. 
MICP, as an environmental- friendly approach, can be ap-
plied to stabilize the weak soil in these areas. For instance, 
Phillips et al. (2018) applied MICP in enhancing wellbore 
cement integrity in the field. The reduced injectivity, re-
duced pressure fall- off and increased solids showed a suc-
cessful sealing effect of MICP. Hata et al. (2020) evaluated 
the feasibility of MICP for ground improvement in the deep 
ocean using native bacteria. The urease- producing bacteria 
(i.e. Sporosarcina newyorkensis) were isolated from the 
depressurized core sample in the methane hydrate- bearing 
zone. It was found that deep- ocean microbes can still sur-
vive in the methane hydrate stable area. The bonding and 
clogging effects of induced bio- cementation had the poten-
tial in preventing sand and water production. In addition, 
Okyay and Rodrigues (2015) and Okyay et al. (2016) in-
vestigated the potential of MICP in CO2  sequestration to 
reduce atmospheric CO2  levels. The results confirm that 
CO2 can be removed from the atmosphere through two pos-
sible mechanisms: (a) sequestration by MICP biotically and 
(2) sequestration by increasing the environment pH (i.e. 
CO2 solubility) abiotically.

6 |  SUMMARY

Bio- mediated geotechnics is viewed as the “next big thing” 
in geotechnical engineering and has great potential to ad-
vance current soil improvement practices. In this paper, re-
cent developments in the understanding of MICP processes, 
materials involved, characterization methods and emerging 
applications were comprehensively reviewed. The key points 
are summarized as follow:

1. Urea hydrolysis is the most popular MICP approach 
because of the simplicity of the process. It has the best 
efficiency towards the formation of bio- cementation. Bio- 
augmentation and bio- stimulation are the two approaches 
used for MICP. Bio- augmentation yields higher reaction 
rates and initial ureolytic activity than bio- stimulation, 
while bio- stimulation can overcome drawbacks of bio- 
augmentation including higher cost, unpredicted envi-
ronmental risks and laborious work.

2. The materials involved in the MICP process, namely bac-
terial strains, culture and cementation solutions, auxiliary 
additives and soils, are the factors that define the success of 

MICP treatment. Among them, bacterial strains promote 
the nucleation and crystallization by creating supersatu-
rated alkaline environments and secreting extracellular 
polymeric materials. For the bacterial culture and enrich-
ment media, urea is not necessarily the only substrate 
that can induce high urease activity. In order to reduce 
the cost, alternative industrial by- products or wastes and 
non- sterilized media can be used. Cementation solution 
plays an important role in forming variable morphologies 
and sizes of CaCO3 crystals. Several inexpensive Ca/urea 
sources have been proposed as alternatives for cementa-
tion solution. The auxiliary additives added either in the 
culture/enrichment/cementation solutions or directly into 
soil help to improve bacterial growth, urease activity and 
bio- cementation content. More and more successful at-
tempts have been made to implement MICP in soils that 
traditionally are regarded unsuitable for MICP treatment 
(i.e. clayey soil and loess).

3. The MICP process needs to be characterized using obser-
vational and experimental tools from multiple disciplines 
and at multiple scales. Nano- , micro-  and meso- level ap-
paratus can evaluate the crystal shape, size, morphology, 
distribution pattern, structure, contact and surface frac-
tures of bio- cemented soils. Element- scale characteriza-
tion techniques are used to assess the improvement of 
engineering properties, such as permeability, unconfined 
compressive strength, shear behaviour, particle breakage 
and compressibility behaviour, cementation content, ther-
mal conductivity and durability. With scaling up to pilot-  
and field- scale, there are more challenges during different 
stages including test setup and preparation, fluid injection, 
bio- grouting monitoring and effectiveness assessment. 
Numerical modelling is a useful tool to virtually assess the 
performance of MICP where complex coupled bio- geo- 
chemical processes are involved.

4. The application of MICP in geotechnical engineering has 
been greatly expanded in recent years. Bio- grouting for 
soil or rock joints and repairing drying- induced cracks in 
soil are two emerging applications in geotechnical engi-
neering. In addition, MICP has also been trialled in new 
areas, such as material modification (self- healing of ma-
terials), disaster alleviation (coastal erosion, wind ero-
sion and landslide mitigation), environmental protection 
(contaminant immobilization), and energy production and 
storage (maintaining wellbore integrity).

5. In a word, with the recent development of MICP tech-
nique, there are numerous innovations in methods and 
its applications, which provides us an alternative way to 
deal with various soil problems. While MICP has already 
shown its great potential in weak soil improvement and 
contaminated soil remediation, its interdisciplinary na-
ture will definitely offer more possibilities in the field of 
biogeotechnology.
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