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Abstract
The stable node-based smoothed particle finite element method (SNS-PFEM)
reduces spatial numerical oscillation from direct nodal integration in NS-PFEM
but leads to a severe volumetric locking effect when modeling nearly incom-
pressible materials-related boundary value problems. This study proposes an
improved locking-free SNS-PFEM to investigate the performance of the bubble
function and selective integration scheme in circumventing volumetric locking.
Three locking-free variants of SNS-PFEM: (1) SNS-PFEM with a cubic bub-
ble function (bSNS-PFEM), (2) SNS-PFEM with a selective integration scheme
(selective SNS-PFEM), and (3) SNS-PFEM with a cubic bubble function and
selective integration scheme (selective bSNS-PFEM)—were gradually developed
for comparison. The performance of these three approaches was first succes-
sively examined using two examples with elastic materials, that is, an infinite
plate with a circular hole and Cook’s membrane. The comparisons show that
the cubic bubble function and selective integration scheme are both necessary as
a locking-free approach for modeling nearly incompressible materials, and the
proposed selective bSNS-PFEM performs best among the three variants in terms
of accuracy and convergence. Two examples of slope stability analysis and foot-
ing penetration on elastoplastic materials were then conducted by SNS-PFEM
and the proposed selective bSNS-PFEM. The results indicate that the pro-
posed selective bSNS-PFEM is stable and accurate, even when accompanied by
significant deformation. All obtained results indicate that the locking-free selec-
tive bSNS-PFEM is a powerful approach for modeling nearly incompressible
materials with both material and geometric nonlinearity.

K E Y W O R D S

bubble function, NS-PFEM, selective integration scheme, stable nodal integration, volumetric
locking

1 INTRODUCTION

Soft clays are usually considered nearly incompressible under undrained analysis, and their behaviors can be approx-
imately simulated using a pure cohesive constitutive model with a Poisson’s ratio approaching 0.5. The engineering
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problems involving nearly incompressible clays, such as the bearing capacity of foundation in soft clay, the progressive
failure of slope in structured soft clay and the pipeline penetrating the soft clay, always show the characteristics of large
deformation. Therefore, to solve such problems, a reliable locking-free numerical method with the ability to simulate
large deformation is required.

The particle finite element method (PFEM), which is based on an updated Lagrangian framework, has been widely
used for large deformation simulation in geotechnical engineering.1–6 In engineering practice, the PFEM with low-order
elements (e.g., 3-node linear triangular element, T3) is advantageous. The numerical implementation is simpler due to
the same shape functions for all variables. It is also flexible in the adaptive re-mesh process using Delaunay triangulation.
However, such methods with low-order elements are susceptible to volumetric locking when modeling a nearly incom-
pressible solid, which is characterized by an “overly-stiff” solution with a spurious checkerboard distribution of stress and
strain.7–10 This issue especially plagues low-order PFEMs with multiple quadrature points, since excessive constraints are
imposed on the deformation of elements, violating the divergence-free condition of interpolated displacement.11–13

The strain smoothing technique is an effective way to improve the performance of PFEM with low-order elements,14

such as the node-based smoothed PFEM (NS-PFEM)15–19 and edge-based smoothed PFEM (ES-PFEM).20,21 S-PFEMs
are famous for their potential to reduce—although not necessarily eliminate—volumetric locking.11,22 Besides, S-PFEMs
are more robust with mesh distortion and achieve better accuracy in strain energy than that of traditional PFEM.11,23,24

NS-PFEM is relatively superior to ES-PFEM in the re-meshing procedure because all the physical quantities are stored
based on nodes, then the variable mapping between nodes and quadrature points is avoided, which used to be a prominent
source of accuracy loss in traditional PFEM or ES-PFEM.21,25,26 However, NS-PFEM with direct nodal integration (NI) has
its defects in detecting “overly-soft” properties27,28 and spatial instability due to the spurious low-energy mode of NI.29,30

To solve the aforementioned problems of NI, several stable nodal integration (SNI) techniques have been proposed and
implemented into NS-PFEM, leading to a novel framework called stable node-based smoothed PFEM (SNS-PFEM).27,31

SNI relies on adding more evaluation points in subdomains using implicit strain gradients or subdomain-smoothed gradi-
ents.22,27,32–35 However, the combination of PFEM with low-order elements with additional quadrature points will likely
further weaken its locking-free ability.7–10

To solve volumetric locking, a variety of techniques have been proposed for traditional FEM S-FEM and meshfree
methods, including u-p two field mixed formulations,13,36 the B-bar and F-Bar methods,7,9,10,37–39 selective reduced inte-
gration,9,12,40 enhanced assumed strain element,41,42 mixed variational methods,43 the bubble function method,11,44,45

and volume-averaged nodal projection techniques.8 However, such approaches have not been adopted to solve the volu-
metric locking problem of SNS-PFEM. Therefore, the performance of such locking-free methods in SNS-PFEM is worth
investigating.

This study aims to propose a locking-free SNS-PFEM for nearly incompressible materials. This article is outlined as
follows. Sections 2.1 and 2.2 detail the FEM formulations for quasi-static solids based on the 3-node triangular mesh.
Section 2.3 presents the framework of node-based smoothed particle FEM with stable nodal integration. Section 2.4
demonstrates the cause of the volumetric locking effect of SNS-PFEM. Section 3 presents several novel treatments of vol-
umetric locking for SNS-PFEM, namely, the cubic bubble function, selective integration scheme, and hybrid strategy. In
Section 4, a wide range of examples concerning nearly incompressible solids are simulated with several numerical formu-
lations based on SNS-PFEM. The performance of these formulations in curing volumetric locking is thoroughly evaluated.
Finally, conclusions are drawn in Section 5.

2 BRIEF INTRODUCTION OF SNS-PFEM

2.1 Governing equations

The equilibrium equation for a continuous solid is expressed as Equation (1). The linear geometric relationship between
strain 𝛆 and displacement u is formulated by the symmetrical gradient operator ∇s in Equation (2). The constitutive
equation could be written as a rate-dependent formulation as shown in Equation (3). The imposed and natural boundary
conditions Γu and Γt, respectively, are presented in Equation (4),

∇ ⋅ 𝛔 + b = 0, (1)

𝛆 = ∇su = 1
2
(
∇u + ∇uT)

, (2)
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WANG et al. 3

d
dt
𝛔 = Dep ∶

d
dt
𝛆, (3)

{
u = u on Γu

n ⋅ 𝛔 = t on Γt
,where Γ = Γu ∪ Γt, Γu ∩ Γt = ∅, (4)

where 𝛔 is the Cauchy stress tensor, b the body force, Dep the fourth-order algorithm modulus tensor, u the given
displacement, and t the imposed traction force.

2.2 Weak form and spatial discretization

The above governing PDEs with boundary conditions could be reformulated as an equivalent weak form in Equation (5)
using the virtual displacement principle and integration by parts. The displacement u and its variation 𝛿u are defined in
adequate trial function space Su and test function spaces Vu separately.

∫Ω ∇
s
𝛿u ∶ 𝛔dΩ = ∫Ω 𝛿u ⋅ bdΩ + ∫Γt

𝛿u ⋅ tdΓ. (5)

Interpolated displacement uh by spatial discretisation takes the form of linear combinations of nodal shape functions,
as shown in Equation (6):

uh = NU, (6)

where N is the global shape function matrix and U the array of nodal displacement. The interpolation with linear
triangulation element (T3) is adopted in this study.

The FEM equation in matrix form is then formulated as the balance of internal force Fint and external force Fext in
Equations (7)–(10). The compatible B matrix in Equation (8) is calculated by the displacement gradient operator Ld.

Fint = Fext
, (7)

Fint = ∫Ω BT𝛔dΩ,B = LdN, (8)

Fext = ∫Γt

NTtdΓ + ∫Ω NTbdΩ, (9)

K = ∫Ω BTDBdΩ. (10)

2.3 NS-PFEM with stable nodal integration (SNS-PFEM)

In NS-PFEM, the compatible strain 𝛆 and gradient matrix B are converted into their smoothed counterparts 𝛆 and B based
on the gradient smoothing operator ∇. The first step is constructing the node-based smoothing domain Ωs

k with subdo-
mainsΩs

k,q in a triangular mesh, as depicted in Figure 1, where the coordinate of node I is marked as xk. The vertices ofΩs
k

are composed of the centroids of adjacent elements and the midpoints of the connected edges. The gradient smoothing
operator ∇ takes the weighted integration of the compatible gradient over the whole domain with a piecewise-constant
and compactly-supported weight function, as shown in Equations (11) and (12). Then the stiffness matrix assem-
bly and internal force calculation are conducted by nodal integration. NS-PFEM utilizes the information propagated
from more adjacent elements, which is anticipated to be more accurate than traditional FEM-T3 in the strain energy
norm.11,23,28 The formulations of calculating smoothed gradient matrix B with numerical integration are exhibited in
Appendix A.

∇N(x)|Ωs
k
= ∫Ωs

k

∇N(x)W (xk − x) dx,where W (xk − x) =

{
1∕As

k, x ∈ Ω
s
k.

0, x ∉ Ω
s
k,

(11)

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7107 by South U
niversity O

f Science, W
iley O

nline L
ibrary on [12/10/2022]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



4 WANG et al.

F I G U R E 1 Schematic of the node-based smoothing domain with T3 mesh and internal bubble node

𝛆(x)|Ωs
k
= 1

As
k
∫Ωs

k

𝛆(x)dΩ. (12)

The integration of a smoothed stiffness matrix might be conducted in direct nodal integration (NI) based on the
smoothing domain, as shown in Equation (13). However, the direct nodal integration used for solving the smoothed
Galerkin weak form could introduce the loss of coercivity in the limit of mesh refinement, and such numerical instabil-
ity will lead to the spurious saw tooth mode.29,34,46 The modified SNI method proposed by Chen et al.29,34,46 could cure
this problem, as it uses the difference between the smoothed B and the subdomain-smoothed B

sub
matrix, as shown in

Equation (14). For linear triangular element, the subdomain-smoothed B
sub

matrix takes the same value of the compati-
ble B matrix. For higher-order interpolation, they are not equal. Noticing that the smoothed B matrix is constant in the
smooth domain, and the subdomain-smoothed B

sub
matrix is also constant in the subdomain. Thus, the integration of

Equations (13) and (14) can be simply performed by the superposition of multiplication of a constant matrix with the area
of subdomain. By implementing SNI into NS-PFEM, a novel framework called SNS-PFEM is achieved.

[
KIJ

]

Ωs
k

= ∫Ωs
k

B
T
I DBJdx, (13)

[
KIJ

]

Ωs
k

= ∫Ωs
k

B
T
I DBJdx +

nk∑

q=1 ∫Ωs
k,q

(
BI − B

sub
I,q

)T
D
(

BJ − B
sub

J,q

)
dx,

with B
sub

I,q
||||Ωs

k,q

= 1
As

k,q
∫Ωs

k,q

BIdΩ. (14)

The SNS-PFEM adopts the re-meshing strategy using Delaunay triangulation and the alpha shape algorithm to con-
duct a large deformation analysis.16,26,27 The nodes are regarded as a moving particle cloud for domain discretisation with
the variables of interest frequently updated as the configuration varies. The node-based smoothing framework is especially
suitable for a particle method because all physical quantities of interest are stored at nodes (i.e., displacements) or updated
by the node-based smoothing domains (i.e., strain, stress, state variables of the soil model) and the variable mapping
between the nodes and quadrature points are no longer needed, resulting in less information loss and higher efficiency.27

Since the total variation of geometry would be decomposed into many small steps, the accuracy of the infinitesimal
strain geometric equation could still be guaranteed, as demonstrated in previous studies.5,6,19 The computational cycle of
SNS-PFEM is exhibited in Appendix B.

2.4 Volumetric locking of SNS-PFEM

When simulating incompressible or nearly incompressible solids, the extra physical constraint of no volumetric
strain must be satisfied. The discretized scheme poses a divergence-free condition to interpolated displacement, as
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WANG et al. 5

shown in Equation (15):

∇ ⋅ uh → 0 as 𝜐→ 0.5, (15)

where 𝜐 is Poisson’s ratio.
When low-order elements with full integration are used, this divergence-free condition is difficult to conform under a

nearly incompressible limit, leading to an overly stiff response with a checkboard distribution of stress. This phenomenon
is called the “volumetric locking effect.” Intuitive insight can be given to the FEM-T3. The gradients of the T3 shape
function have some constants determined by the geometry of each element, so each evaluation of the constitutive model
at a quadrature point introduces a linear correlation constraint to the nodal displacements. Consequently, redundant
constraints will lead to spurious solutions dominated by the element’s geometry, which is characterized by overly small
displacement and an unusual stress distribution. According to References 12,47, the ratio r of the unknown degrees of
freedom (DOF) over incompressible constraints can be used to evaluate the extent of volumetric locking, as shown in
Equation (16):

r =
neq

nc
, (16)

where neq is the total number of unknown nodal displacement equations to be solved, and nc is the total number of
incompressible constraints. According to Hughes,12 r = 2 offers the optimal performance in 2D incompressible prob-
lems, which indicates that the number of equilibrium equations divided by the number of incompressible conditions
equals the dimension of space. As r decreases, the tendency toward lock would appear. When r< 1, there are more
volumetric deformation constraints than displacement degrees of freedom available and severe locking can thus be
anticipated.

In NS-PFEM, each interior node carries 2 unknown displacement components in the 2D problem, while each interior
or boundary node poses 1 constraint from the evaluation of strain and stress. When the mesh is very fine, the number of
fixed DOFs due to the given boundary conditions can be neglected compared to the total number of DOFs, making the
ratio r approach the optimal value 2, which makes NS-PFEM locking-free. For coarse mesh, the ratio r is smaller than 2
and the locking effect becomes prominent, which has been supported by an eigenvalue analysis.47

However, SNS-PFEM recovers the gradient distribution of smoothed strain and introduces additional constraints to
the deformation of the element. The evaluation of the subdomain-smoothed gradient is equal to introducing extra quadra-
ture points in each subdomain, which dramatically increases nc and decreases the ratio r to a value lower than 1. Then
volumetric locking can be anticipated to be much more severe than that of NS-PFEM. In the following sections, this
phenomenon will be highlighted by several numerical examples.

3 VOLUMETRIC-LOCKING-FREE SNS-PFEM

3.1 Interpolation space enriched by cubic bubble function

In this study, several attempts are considered to circumvent the volumetric locking effect of SNS-PFEM. First, injecting
extra flexibility into the interpolated space could achieve some softening effect, which may help when the strain smooth-
ing operator is applied in a displacement-driven framework.11 Here the idea is implemented by equipping each element
with an internal node at the centroid of the element,11,44,45 as exhibited in Figures 1 and 2A. This approach, neq under-
goes a massive increase, but nc shows no change, enhancing the ratio r in Equation (16) and then lowering the tendency
toward element locking. The bubble nodes can be automatically located in a T3 mesh so that no extra division of the
element patch needs to be constructed compared with that of the generalized F-Bar or B-Bar techniques.10,37

The shape function of each internal node, called the bubble function, is compactly supported only by the single ele-
ment where the node is located. The cubic bubble function Nb

B marked by the internal node B equals the product of three
vertex shape functions NI ,NJ ,NM scaled by a factor of 27, as shown in Equation (17), which takes the maximum value 1 at
the centroid and the minimum 0 on three edges, as illustrated in Figure 2B. Unlike the MINI element which requires u-p
FEM formulation,45 here a pure displacement-based framework is preserved. Only the displacement u is interpolated in
the enriched interpolated space, which has been proved effective in ES-FEM.11 Thus, plugging the bubble function into
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6 WANG et al.

F I G U R E 2 (A) 3-node triangular element with a bubble node and (B) image of the cubic bubble function

the original displacement-driven S-PFEM code is straightforward and without any fundamental modifications.

Nb
B(x) = 27NINJNM . (17)

With internal bubble nodes, the whole shape function matrix in Equation (18) can be divided into two distinct groups:
the linear shape function of vertex nodes NTri and the cubic bubble shape function of internal nodes NBub. The nodal
displacement and smoothed gradient matrix are also grouped in the same manner, as shown in Equations (19) and (20). It
is worth emphasizing that this division is only a conceptual expression rather than a record of the real data structure in the
codes. It may be more computationally efficient to number the degrees of freedom element by element when considering
the stiffness matrix bandwidth.

N = [NTri NBub] =
[
N1 … Nnd Nb

1 … Nb
ne

]
, (18)

U =

[
UTri

UBub

]

, (19)

B = LdN =
[
B1 … Bnd B

b
1 … B

b
ne

]
. (20)

The interpolated trial function space Sh
u and test function space V h

u enriched by the cubic bubble function are exhibited
in Equations (21) and (22). The approximated displacement restricted on a single element uh(x)||𝛺e

is expressed as shown
in Equation (23).

Sh
u =

{
uh ∶ Ω→ Rd|uh = NW with W ∈ R(d⋅nd+d⋅ne)×1

,uh = u on Γu

}
, (21)

V h
u =

{
𝛿uh ∶ Ω→ Rd|𝛿uh = NV with V ∈ R(d⋅nd+d⋅ne)×1

, 𝛿uh = 0 on Γu

}
, (22)

uh(x)|||𝛺e
=

∑

i∈{I,J,M}

[
Ni(x) 0

0 Ni(x)

][
Uix

Uiy

]

+

[
Nb

B(x) 0
0 Nb

B(x)

][
Ub

Bx

Ub
By

]

. (23)

Thus, introducing the bubble nodes into the T3 elements, a variant SNS-PFEM aimed at easing the locking with bubble
elements is proposed and marked as “bSNS-PFEM” in this study.

3.2 Selective integration scheme

The selective integration scheme which decomposes the modulus tensor and treats the volumetric and deviatoric
parts separately has been widely adopted in S-FEMs to solve the volumetric locking problem when simulating nearly
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WANG et al. 7

incompressible materials.22,24,40 It is regarded as a simple fix when the locking effect is not extremely severe. The elastic
modulus De is often decomposed into the shearing part D

𝜇
and volumetric part D

𝜆
as formulated in Equation (24), where

𝜇 is the shearing modulus 𝜇 = E∕2(1 + 𝜐) and 𝜆 is the Lame’s parameter 𝜆 = 𝜐E∕(1 + 𝜐)(1 − 2𝜐). The initial elastic stiffness
matrix could also be split into volumetric and shearing components, as shown in Equation (25).

De = 𝜇
⎡
⎢
⎢
⎢
⎣

2 0 0
0 2 0
0 0 1

⎤
⎥
⎥
⎥
⎦

+ 𝜆
⎡
⎢
⎢
⎢
⎣

1 1 0
1 1 0
0 0 0

⎤
⎥
⎥
⎥
⎦

= D
𝜇
+D

𝜆
, (24)

Ke = ∫Ω BTDeBdΩ = ∫Ω BTD
𝜇

BdΩ + ∫Ω BTD
𝜆
BdΩ. (25)

A selective integration scheme with the decomposition of the elastic modulus (selective SNI) in Equation (24) is exhib-
ited here.22 When treating nearly incompressible solids, only the shearing part D

𝜇
is adopted in the stabilization terms,

while the whole D is still preserved in main stiffness integration, as shown in Equation (26). Therefore, the additional
constraint on volumetric deformation from stabilization is excluded, while integration stabilization still plays its role.

[
KIJ

]

Ωs
k

= ∫Ωs
k

B
T
I DBJdx +

nk∑

q=1 ∫Ωs
k,q

(
BI − B

sub
J,q

)T
D
𝜇

(
BJ − B

sub
J,q

)
dx. (26)

Thus, adopting selective integration, the other locking-free variant SNS-PFEM with selective integration is proposed
and marked as “Selective SNS-PFEM” in this study.

Furthermore, the selective integration scheme can also be used in bSNS-PFEM, producing a hybrid locking-free vari-
ant of SNS-PFEM called “Selective bSNS-PFEM”. Three locking-free variants of SNS-PFEM will be examined in the
following sections.

4 NUMERICAL EXAMPLES

In this section, four problems involving nearly incompressible materials are simulated by some of the three locking-free
variants of SNS-PFEM (i.e., bSNS-PFEM, Selective SNS-PFEM and Selective bSNS-PFEM). The same cases are also
simulated using NS-PFEM and SNS-PFEM for comparison. Two homogenous linear elastic cases are simulated first,
namely, an infinite plate with a circular hole and Cook’s membrane. Then the slope stability analysis on both Tresca and
Mohr-Coulomb (MC) soil is conducted. Finally, the example of strip footing on Tresca soil is simulated for both small
and large deformation.

4.1 Infinite plate with a circular hole

To examine the convergence and accuracy of the above numerical formulations in nearly incompressible conditions, an
infinite elastic plate with a circular hole subjected to uniaxial tension in the x-direction is analyzed.24,27 A quarter of the
geometry with a side length of b = 5 m is taken due to symmetry, and roller boundary conditions are imposed, as shown
in Figure 3.

F I G U R E 3 An infinite plate with a circular hole subjected to uniaxial tension
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8 WANG et al.

The hole radius is a= 1 m. The tension on the infinite boundary is 1 N/m. Young’s modulus E= 1 kPa and a sequence of
Poisson’s ratios approaching 0.5 (𝜐 from 0.25 to 0.4999999 in this case) are adopted. Analytical solutions for displacement
and stress are available in Equations (27) and (28), where r and 𝜃 are polar coordinates, and two material parameters
can be acquired by 𝜇 = 𝜖/2(1+ 𝜐) and 𝜅 = 3−4𝜐. The traction boundary conditions are then imposed directly from the
analytical stress distribution. T3 mesh with 881 nodes and 1628 elements is then generated.

⎧
⎪
⎪
⎨
⎪
⎪
⎩

𝜎xx = 1 − a2

r2

[
3
2

cos 2𝜃 + cos 4𝜃
]
+ 3a4

2r4 cos 4𝜃,

𝜎yy = a2

r2

[
1
2

cos 2𝜃 − cos 4𝜃
]
− 3a4

2r4 cos 4𝜃,

𝜏xy = − a2

r2

[
1
2

sin 2𝜃 + sin 4𝜃
]
+ 3a4

2r4 sin 4𝜃,

(27)

⎧
⎪
⎨
⎪
⎩

ux = a
8𝜇

[
r
a
(𝜅 + 1) cos 𝜃 + 2 a

r
((1 + 𝜅) cos 𝜃 + cos 3𝜃) − 2 a3

r3 cos 3𝜃
]
,

uy = a
8𝜇

[
r
a
(𝜅 − 1) sin 𝜃 + 2 a

r
((1 − 𝜅) sin 𝜃 + sin 3𝜃) − 2 a3

r3 sin 3𝜃
]
.

(28)

To evaluate the accuracy of the numerical results, the L2 displacement error norm Ed
11 is defined as in Equation (29):

Ed =
(

∫Ω
(
u − uh)T (u − uh) dΩ

)1∕2

, (29)

where uh is the interpolated displacement in Equation (6), and u is the analytical solution.

F I G U R E 4 Distribution of (A) displacement along the bottom boundary; (B) displacement along the left boundary; (C) normal stress
along the left boundary; (D) normal stress along the bottom boundary, of the infinite plate with a circular hole subjected to uniaxial tension
(𝜐 = 0.4999999)
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WANG et al. 9

Figure 4 presents the displacement and normal stress distribution along the left and bottom edge from numerical
and analytical approaches. It seems that only the SNS-PFEM and bSNS-PFEM generate biased displacement and severely
oscillatory stress along boundaries. From the contour of the vertical normal stress in Figure 5, the global performance
of numerical stability can be observed. The result of SNS-PFEM presents a typical checkboard pattern due to volumetric
locking, which can be slightly eased by the bubble function or selective stable integration, as shown in Figure 5C,D,
but not by much. Conversely, NS-PFEM provides a near non-locking mode, but the contour is saw-toothed because of
the spurious zero-energy mode of direct nodal integration. A globally smooth distribution can be acquired by the hybrid
strategy, as shown in Figure 5E, which combines the bubble function with selective stable integration.

The curves of displacement error norm versus a sequence of Poisson’s ratios approaching 0.5 shown in Figure 6 give
a more accurate evaluation of their locking-free ability. The error of NS-PFEM almost does not vary with Poisson’s ratio
in the incompressible limit, although it is never the lowest due to the accuracy loss from NI. The error of SNS-PFEM
increases significantly when the Poisson’s ratio exceeds 0.49, then tends to be stable from around 0.49999. Adding the

F I G U R E 5 Contour of vertical normal stress with different numerical formulations: (A) SNS-PFEM; (B) NS-PFEM; (C) Selective
SNS-PFEM; (D) bSNS-PFEM; (E) Selective bSNS-PFEM, of the infinite plate with a circular hole subjected to uniaxial tension (𝜐 = 0.4999999)
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10 WANG et al.

F I G U R E 6 Displacement error norm versus Poisson’s ratio of the infinite plate with a circular hole subjected to uniaxial tension

F I G U R E 7 Displacement error of the infinite plate with a circular hole subjected to uniaxial tension (𝜐 = 0.4999999) using different
node densities

bubble function only slightly changes the results. The displacement error of selective SNS-PFEM is even lower than that
of NS, but not the lowest. It seems that either the bubble function or selective integration can reduce but not eliminate
the locking of SNS-PFEM, while the latter is more effective between them. For selective bSNS-PFEM, the displacement
error is stable at the lowest level from 0.49 to the extreme value. The results show that the selective bSNS-PFEM is an
effective treatment for nearly incompressible solids. It can preserve the stable nodal integration and locking-free features
simultaneously. Besides, the order of magnitude of displacement error norm of selective bSNS-PFEM remains the lowest,
between 10−5–10−6, even when the Poisson’s ratio is 0.25. It means that it could also be reliably applied to compressible
conditions. But this choice is not recommended considering the extra computational cost from the bubble nodes.

Figure 7 presents the convergence of the displacement error of different numerical formulations with the refinement
of mesh, where the characteristic size h of discretization is calculated by taking the averaged nodal spacing over all the
element edges, and the convergence rate r takes the slope of the fitted lines. The performances of five formulations at
the incompressible limit are all improved by mesh refinement more or less. The errors of SNS-PFEM and bSNS-PFEM
are close to each other, and the errors of both methods decrease slowly with the convergence rates near 1, even though
the mesh is sufficiently refined. The values of displacement error norm of NS-PFEM, selective SNS-PFEM, and selective
bSNS-PFEM decrease fast with the convergence rate of more than 2, while the differences among them are always pre-
served. The NS-PFEM may get close to the locking-free mode at a very fine mesh with the optimal convergence rate of
2.33 among five methods, but the numerical instability due to direct nodal integration still hinders the enhancement of
its accuracy. The displacement error of the selective bSNS-PFEM keeps the lowest among these formulations, and also it
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WANG et al. 11

preserves a comparative super convergence rate of 2.13 with the NS-PFEM. Overall, it is difficult to reduce the volumetric
locking of SNS-PFEM and bSNS-PFEM by merely using more discretization elements. However, refining the mesh can
improve the overall performance for NS-PFEM, selective SNS-PFEM and selective bSNS-PFEM.

4.2 Cook’s membrane

The Cook’s membrane under combined bending and shear is a well-known benchmark test for volumetric locking8,10,11,37

since the over stiff feature is very prominent in bending-dominated problems. The plane strain geometry and boundary
conditions are described in Figure 8, where the left edge is clamped and the right edge is subjected to a uniformly dis-
tributed shear load with an integrated external force of F = 1 N. Young’s modulus E = 1 Pa and the Poisson’s ratio is
fixed to an extreme value 𝜐 = 0.4999999. For all the results in Figure 9, a relatively coarse T3 mesh of 139 nodes and 224
elements is used.

Figure 9 depicts the contour of horizontal normal stress on Cook’s membrane using different numerical treatments. A
similar pattern to that shown in Figure 5 can be observed. The locking-free effect of selective integration scheme is more
obvious than that of bubble function, although they are both limited. Only the selective bSNS-PFEM can eliminate both
the checkboard locking mode of SNS-PFEM and the spurious oscillatory mode of NS-PFEM to acquire a very smooth
solution.

To examine the computational efficiency of different numerical treatments for volumetric locking, the consumed
CPU time and the total number of degrees of freedom (DOFs) of the Cook’s membrane with a series of mesh densities
are presented in Figure 10. The load is linearly applied in 5 steps, and there is 1 iteration per loading step for the elastic
problem, which could ensure a fair comparison. All simulations are conducted on the same computer with i7-10750H CPU
@ 2.60GHz, 16.0 GB RAM. The PFEM with 6-node quadratic triangular element (T6-PFEM) is also used as a locking-free
reference, as shown in Figure 9F. Compared with SNS-PFEM, the methods with bubble nodes could introduce nearly
triple the number of DOFs as Figure 10B shows, thus the computational cost rises exponentially. Figure 10A indicates that
the difference in CPU time between the SNS-PFEM and selective bSNS-PFEM will be magnified as the mesh is refined.
On the other hand, because the number of elements is much less than the number of element edges for the triangular
mesh, the computational efficiency of the selective bSNS-PFEM is superior to that of PFEM-T6 for the same mesh. Given
the results of Figures 6, 7 and 10, it seems that the selective SNS-PFEM, which does not introduce additional DOF, could
be regarded as a cheap alternative to the selective bSNS-PFEM when the numerical model requires a huge number of
DOFs, as long as some anticipated accuracy loss is permitted.

4.3 Stability of an elastoplastic slope

In this section, slope stability analysis under self-weight is conducted with nearly incompressible Tresca and
Mohr-Coulomb soil. A sketch of the slope geometry is shown in Figure 11.

F I G U R E 8 Cook’s membrane
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12 WANG et al.

F I G U R E 9 Contour of horizontal normal stress with different numerical formulations: (A) SNS-PFEM; (B) NS-PFEM; (C) Selective
SNS-PFEM; (D) bSNS-PFEM; (E) Selective bSNS-PFEM; (F) PFEM-T6 of the Cook’s membrane

Poisson’s ratios between 0.48 to 0.499 are often adopted for undrained saturated soils.4,48–50 In this section, for Tresca
soil: Young’s modulus E = 100 MPa, Poisson’s ratio 𝜐 = 0.499 and initialized cohesion c0 = 25 kPa. For Mohr-Coulomb
soil, Young’s modulus E = 100 MPa, Poisson’s ratio 𝜐 = 0.499, initialized cohesion c0 = 10 kPa, and frictional angle
𝜑0 = 20. The material properties are taken from Zhang et al. and Wang et al.1,18 The horizontal displacement at the
left and right edges and both the horizontal and vertical displacements at the bottom edge are fixed. The soil weight
is applied using 20 uniform load steps. The strength reduction factor (SRF) is defined in Equation (30), where 𝜑0 =
0 for Tresca soil. A binary procedure is applied to search for the factor of safety (FOS), which is the critical SRF
that makes the total number of iterations suddenly increase. Based on the results of the previous two elastic exam-
ples, only the SNS-PFEM and selective bSNS-PFEM are implemented and compared in the subsequent elastoplastic
analysis.
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WANG et al. 13

(A) (B)

F I G U R E 10 Comparison of the (A) computational time and (B) number of degrees of freedom for different locking-free methods with
a series of mesh densities

F I G U R E 11 Geometry of slope

(A) (B)

(C) (D)

(E) (F)

F I G U R E 12 Equivalent deviatoric plastic strain of Tresca slope using SNS-PFEM and selective bSNS-PFEM with different strength
reduction factors (SRF), 𝜐 = 0.499
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14 WANG et al.

⎧
⎪
⎨
⎪
⎩

c = c0
SRF

,

𝜑 = arctan
(

tan𝜑0
SRF

)
.

(30)

Figures 12 and 13 present the equivalent deviatoric plastic strain defined as 𝜀p
eq =

√
2 (ep ∶ ep) ∕3 (ep is the plastic

deviatoric strain tensor) with different SRFs. When the plastic zone just starts to form, the distribution of 𝜀p
eq by SNS-PFEM

is more oscillatory than that of selective bSNS-PFEM, as shown in Figures 12A,B and 13A,B. When SRF becomes larger,
a through slip surface can be acquired with selective bSNS-PFEM, indicating that the FOS has been reached. But this
surface is far from forming with SNS-PFEM at the same value of SRF, as depicted in Figures 12C,D and 13C,D. When the
SRF is large enough, SNS-PFEM could also give an obvious slip surface, although the equivalent deviatoric plastic strain
is lower than that of selective bSNS-PFEM.

The same stability analysis is also conducted with Bishop’s method to get reference FOSs. Table 1 shows that for both
the Tresca and Mohr-Coulomb slope, the results from selective bSNS-PFEM align well with that of Bishop’s method, while
SNS-PFEM always gives significantly higher predictions. From Figure 14, the selective bSNS-PFEM always experiences
larger displacement than SNS-PFEM since some constraints of volumetric deformation have been removed.

(B)(A)

(D)(C)

(F)(E)

F I G U R E 13 Equivalent deviatoric plastic strain of Mohr-Coulomb slope using SNS-PFEM and selective bSNS-PFEM with different
strength reduction factors (SRF), 𝜐 = 0.499
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WANG et al. 15

T A B L E 1 Factor of safety (FOS) for slope stability analysis

FOS SNS-PFEM Selective bSNS-PFEM Bishop’s method

Mohr-Coulomb 1.42 1.38 1.37

Tresca 1.61 1.57 1.57

(A) (B)

F I G U R E 14 Displacement at upper right tip C of slope versus safety reduction factor (SRF) using SNS-PFEM and selective
bSNS-PFEM with (A) Tresca soil and (B) Mohr-Coulomb soil

F I G U R E 15 Geometry and mesh of strip footing
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16 WANG et al.

F I G U R E 16 Contour of the horizontal and vertical stress of footing penetration problem (small deformation) with SNS-PFEM and
Selective bSNS-PFEM, 𝜐 = 0.499

F I G U R E 17 Normalized vertical reaction force versus penetration depth for strip footing under small deformation
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WANG et al. 17

In the stability analysis of elastoplastic slope, the volumetric locking under nearly incompressible conditions will yield
stiffer solutions and an overestimated safety factor, which could bring additional risk to the engineering practice. The
locking of SNS-PFEM can be largely decreased by combing the bubble function and selective integration scheme, leading
to a more accurate evaluation of FOS.

4.4 Penetration of a rigid footing on Tresca soil

Rigid footing penetration is a benchmark test of the numerical methods of large deformation.4,27,48–51 The strong coupling
of material and geometric nonlinearity poses a challenge to the accuracy and convergence of prediction as the plastic strain

F I G U R E 18 Contour of: (A) displacement with SNS-PFEM; (B) displacement with selective bSNS-PFEM; (C) mean stress with
SNS-PFEM; (D) mean stress with selective bSNS-PFEM; (E) equivalent deviatoric plastic strain with SNS-PFEM; (F) equivalent deviatoric
plastic strain with selective bSNS-PFEM; of footing penetration problem (large deformation), 𝜐 = 0.499
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18 WANG et al.

F I G U R E 19 Normalized vertical reaction force versus penetration depth for strip footing under large deformation

accumulates. In some previous simulations, the undrained condition of saturated soft soil is approximated by taking a
Poisson’s ratio of soil near 0.5 to ensure the incremental volumetric strain is small enough.4,49,50 This approximation tends
to introduce volumetric locking in low-order elements, although it may not be so prominent when the Poisson’s ratio is
around 0.47 or lower. In this example, an extreme value of Poisson’s ratio 𝜐 = 0.499 is adopted. Figure 15 presents the
discretized half configuration and mesh with load and boundary conditions, where the half-width of strip footing is set as
B/2 = 1 m. A nonuniform mesh of 3059 nodes and 5942 elements is used. The weightless soft soil is modeled according to
the Tresca model with Young’s modulus E = 100 kPa and cohesion c = 1 kPa. A uniform displacement U is applied at the
nodes of the footing bottom by NS equal steps. For the small deformation analysis, U = −0.05 m and NS = 30. For large
deformation analysis, U = −2 m and NS = 200.

In Figure 16, the horizontal and vertical normal stress distribution in small deformation is plotted. The results of
SNS-PFEM exhibit the typical checkerboard pattern, while their counterparts of selective bSNS-PFEM are fairly smooth.
The normalized vertical reaction force-penetration depth curves are plotted in Figure 17, with Prandtl’s solution as the
reference.52 This solution gives the ultimate capacity (2 + π) cu of a shallow strip foundation placed on the top of Tresca
soil. The curve by selective bSNS-PFEM agrees well with the simulation by PFEM-T6, an element suffering little locking,
and tends to be stable at a level near Prandtl’s solution. Conversely, the vertical reaction force by SNS-PFEM reaches a
significantly higher level due to the overly stiff defect.

Figure 18 presents the contours of total displacement, mean stress and equivalent deviatoric plastic strain when the
penetration depth reaches 2 m. It seems that the contour of displacement of SNS-PFEM is only slightly different from that
of selective bSNS-PFEM. But the mean stress and equivalent deviatoric plastic strain are severely oscillatory, which can be
cured via selective bSNS-PFEM. The normalized vertical reaction force-penetration depth curves are plotted in Figure 19,
with Prandtl’s solution, Meyerhof’s solution and some results from previous studies as references. Meyerhof’s solution
states that the capacity of a strip foundation deeply embedded in Tresca soil is (2+ 2π) cu.

53 During the penetration process,
the vertical reaction force is believed to go up from Prandtl’s solution to Meyerhof’s solution, even exceeding the latter
if the penetration is deep enough.51 The vertical reaction force-displacement curves by ALE,13,49 MPM,48 and PFEM4 all
fall into the band near the result of selective bSNS-PFEM, with some difference due to the variation of soil properties and
features of different numerical methods. However, the vertical reaction force by SNS-PFEM exceeds Meyerhof’s solution
early on, as the penetration is only around 0.3 m, then rapidly increases to an unpredictable level. The constraint of
volumetric deformation of SNS-PFEM seems to be more prominent in large deformation simulations, but this problem
can still be effectively solved by the selective bSNS-PFEM.

5 CONCLUSIONS

This study implemented three novel schemes in the SNS-PFEM: the bubble function to enrich the interpolation space and
inject some softening effect (bSNS-PFEM), the selective integration scheme to remove the volumetric constraint in the
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WANG et al. 19

incompressible limit (selective SNS-PFEM) and a combination of both (selective bSNS-PFEM) that tries to simultaneously
preserve the stable nodal integration and non-locking feature.

The effectiveness and accuracy of the aforementioned schemes were first examined in two elastic examples with a
nearly incompressible limit, namely, infinite plate with a circular hole and Cook’s membrane. The error analysis with
stress contours indicated that introducing the bubble function alone could ease the locking a little, and selective stable
integration alone is even more effective, but the checkboard stress pattern still exists. The selective bSNS-PFEM, how-
ever, could achieve the best accuracy among all schemes and eliminate the spurious stress oscillations from both unstable
nodal integration and volumetric locking. The example of slope stability analysis showed that the selective bSNS-PFEM
works well for incompressible Tresca and Mohr-Coulomb materials, giving similar predictions of FOS in Bishop’s method.
The footing penetration case indicated that volumetric locking would be more severe under large deformation with
SNS-PFEM, whereas the selective bSNS-PFEM still works well.

The most obvious shortcoming of the proposed selective bSNS-PFEM is the prominent increase of computational
cost due to extra degrees of freedom from bubble nodes, as Figure 10 shows, although it is easily implemented into
S-PFEM codes. Therefore, the formulation of selective bSNS-PFEM is best regarded as a specifically designed version for
nearly incompressible problems, and it is also reliable under compressible conditions, as supported by the error analysis
of the infinite plate with a circular hole when the Poisson’s ratio is 0.25. Besides, this study is restricted to the appli-
cations of pure-solid problems with plane-strain SNS-PFEM. Future work will focus on the improvement of selective
bubble-SNS-PFEM in two aspects. One is the 3D extension of the current method. A similar low-order interpolation
scheme using the 4-node linear tetrahedron element (T4) could be adopted. As both the elements are simplices, it can be
anticipated that most of the numerical features in this article can be preserved in the 3D condition. Another aspect is to
investigate the performance of the proposed locking-free methods in more complicated nearly incompressible conditions
in geotechnical practice,54 such as the coupled hydro-mechanical analysis.
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APPENDIX A. SMOOTHED GRADIENT MATRIX

The idea of node-based smoothed gradient comes from the stabilized conforming nodal integration.30 The formulations
of calculating smoothed gradient matrix B is exhibited as follows. The subdomain-smoothed matrix B

sub
can be calculated

in the same way, just replacing the integration domain. By applying the divergence theorem, the smoothing operator can
be transformed into contour integration of shape function along the boundary of smoothing domain as in Equations (A1)
and (A2)

BI(x)
|||Ωs

k

= ∫Ωs
k

BI(x)
⌢W (xk − x) dx

= 1
As

k
∫Ωs

k

LdNI(x)dx

= 1
As

k
∫Γs

k

LnNI(x)dx, (A1)

Ln =
⎡
⎢
⎢
⎢
⎣

nx 0
0 ny

ny nx

⎤
⎥
⎥
⎥
⎦

, (A2)

where nx and ny are two components of the outer normal unit vector n as in Figure 1.
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Noticing that the boundary of smoothing domain is composed of segmented lines, the Gaussian integration of each
term of BI could be conducted using the formulation presented in Equation (A3)

∫Γs
k

NI(x)na(x)dΓ =
M∑

seg=1
na,seglseg

G∑

i=1
NI

(
xGP

seg,i

)
wi, a ∈ {x, y}, (A3)

where M is the number of boundary segments and G is the order of Gaussian integration. G ≥ 2 when the required
integrand order is greater than one, that is, the gradients of cubic bubble function.

APPENDIX B. COMPUTATIONAL CYCLE OF SNS-PFEM

The computational cycle of SNS-PFEM is summarized as follows.

1. Initialize the geometry and all given parameters.
2. Discretize the domain into a cloud of nodes (particles).
3. Form the mesh using Delaunay triangulation, and number the degrees of freedom including bubble nodes if needed.
4. Assemble the smoothed stiffness matrix with selective stable nodal integration and apply all the boundary conditions.
5. Solve the nonlinear S-FEM equations in a single load step using Newton–Raphson or initial stiffness iteration scheme

until the convergence criterion is satisfied.
6. Update the positions of nodes and renew all the physical quantities of interest.
7. Rebuild the mesh (and internal bubble nodes if needed) with Delaunay triangulation and alpha shape method. Then

go back to step 4 until all the calculation steps are finished.
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