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   Abstract—Angle  rigid  multi-agent  formations  can  simultane-
ously undergo translational, rotational, and scaling maneuvering,
therefore combining the maneuvering capabilities of both distance
and bearing rigid formations. However, maneuvering angle rigid
formations  in  2D  or  3D  with  global  convergence  guarantees  is
shown to be a challenging problem in the existing literature even
when relative position measurements are available. Motivated by
angle-induced linear equations in 2D triangles and 3D tetrahedra,
this paper aims to solve this challenging problem in both 2D and
3D  under  a  leader-follower  framework.  For  the  2D  case  where
the leaders have constant velocities, by using local relative position
and  velocity  measurements,  a  formation  maneuvering  law  is
designed  for  the  followers  governed  by  double-integrator
dynamics. When the leaders have time-varying velocities, a sliding
mode formation maneuvering law is proposed by using the same
measurements.  For  the  3D  case,  to  establish  an  angle-induced
linear  equation  for  each  tetrahedron,  we  assume  that  all  the
followers’ coordinate frames share a common Z direction. Then,
a  formation  maneuvering  law  is  proposed  for  the  followers  to
globally  maneuver Z-weakly angle  rigid  formations  in  3D.  The
extension to Lagrangian agent dynamics and the construction of
the  desired  rigid  formations  by  using  the  minimum  number  of
angle  constraints  are  also  discussed.  Simulation  examples  are
provided to validate the effectiveness of the proposed algorithms.
    Index Terms—Angle rigid formations, formation control, formation
maneuvering, global convergence, multi-agent systems.
  

I.  Introduction

MULTI-AGENT  formations  have  been  extensively  stu-
died  [1]  to  enable  numerous  impactful  applications,

such  as  target  search  and  rescue  [2],  unknown  environment

exploration  [3],  and  cooperative  surveillance  [4].  In  most  of
these practical applications, the agents are required to have the
capability  of  not  only  achieving  a  specific  formation  shape,
but  also  maneuvering  collectively  as  a  whole  in  translation,
rotation,  scaling,  and  with  even  more  complicated  motion
forms [5]–[12].

To achieve the aforementioned formation maneuvering task,
various control approaches have been proposed, which can be
categorized  into  different  types  according  to  the  constraints
used to specify the desired formation shape [7], [13], [14]. For
relative  position-constrained  formations  [15]–[17],  since  the
inter-agent relative positions are invariant when the associated
agents translate with the same magnitude, translational forma-
tion maneuvering can be  achieved,  assuming that  the  agents’
coordinate frames are aligned. Since inter-agent distances are
invariant  under  the  agents’ translation  and  rotation,  both
translational  and  rotational  formation  maneuvering  are
achieved for distance rigid formations [18]. Also, since inter-
agent bearings are invariant under the agents’ translational and
scaling motions [13], both translational and scaling formation
maneuvering  are  achieved  for  bearing  rigid  formations  [13],
[19], [20], where the results hold for an arbitrary dimensional
space provided that the agents’ coordinate frames are aligned.
Under  a  leader-follower  framework,  the  bearing-constrained
formation  tracking  problem  has  been  investigated  in  [21],
[22],  where  the  translational  formation  maneuvering  is  achi-
eved by using relative position and absolute velocity measure-
ments. Unlike the distance and bearing rigid formations alone,
angle  rigid  formations  can  undergo  simultaneously  transla-
tional,  rotational  and scaling  maneuvering because  any angle
constraints  are  invariant  under  these three types of  formation
maneuvering  motions  [7],  [23],  [24].  With  the  advantage  of
having  more  formation  maneuvering  freedoms,  angle  rigid
formation maneuvering algorithms have been designed in [7]
for  single-integrator  agents,  and  in  [25]  for  double-integrator
agents. However, their convergence to their respective desired
formations  under  the  designed  formation  maneuvering
algorithms [7], [25] is only locally guaranteed. Due to the high
nonlinearity  in  the  angle  rigid  formations’ closed-loop
dynamics,  it  is  challenging to  determine the  attraction region
of the locally convergent formations [1], [26].

Motivated  by  the  aforementioned  drawbacks,  we  aim  to
achieve the  formation maneuvering of  angle  rigid  formations
with global convergence, where the agents can have their own
local coordinate frames, and the maneuvering motions include
translation,  rotation  and  scaling.  Different  from  the  maneu-
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vering approaches in [7], [25], [27], we employ angle-induced
linear  equations  in  2D  triangles  and  3D  tetrahedra  to  design
linear formation  maneuvering  laws  in  2D  and  3D,  respec-
tively.  We  consider  that  the  agents  are  governed  by  double-
integrator  dynamics  and  the  available  sensor  measurements
are  relative  positions  and  velocities.  Compared  with  the
existing  results,  the  main  contributions  of  this  paper  are
summarized as follows:

1)  Compared  with  relative  position-constrained,  distance-
constrained  and  bearing-constrained  formation  maneuvering
approaches, the proposed angle-constrained formation maneu-
vering laws enable the maneuvering motions of simultaneous
translation,  rotation  and  scaling.  Compared  with  relative
position-constrained and bearing-constrained formations whi-
ch  require  agents  to  have  aligned  coordinate  frames,  angle
rigid  formations  allow  agents  to  have  non-aligned  local
coordinate frames.

2)  Compared  with  the  existing  2D  angle-constrained
formation  maneuvering  laws  guaranteeing  local  convergence
[7],  [25]  and  angle-constrained  flocking  law  guaranteeing
almost global convergence [27], both of our proposed 2D and
3D  angle-constrained  formation  maneuvering  laws  have
global convergence guarantees.

3) Although both the angle-displacement [8] and affine [5],
[28],  [29]  formation  maneuvering  approaches  enable  the
maneuvering motions of simultaneous translation, rotation and
scaling,  the  number  of  leaders  required  for  maneuvering
motion control in these works is higher than that of our work
which  only  requires  2  leaders  in  both  2D  and  3D  cases.
Specifically, the number of leaders should be at least 3 for the
algorithms  in  [5],  [29]  in  2D,  while  at  least  4  for  the
algorithms in [5], [8], [29] in 3D.

The  rest  of  the  paper  is  organized  as  follows.  Section  II
presents  the  preliminary  findings.  Sections  III  and  IV
introduce the maneuvering strategies of angle rigid formations
in 2D and 3D, respectively.  Some discussion is  conducted in
Section V. Simulation results are provided in Section VI.  

II.  Preliminaries
  

A.  Notations
N ≥ d+1

Rd d = 2,3
V = {1,2, . . . ,N}

p = [p⊤1 , p
⊤
2 , . . . , p

⊤
N]⊤ ∈ RdN

pi ∈ Rd IN 1N ⊗ λmax
λmin, det() N ×1

R(θ) ∈ S O(2)
θ ∈ [0,2π) Rx(θ) ∈ S O(3),Ry(ϕ) ∈ S O(3) Rz(φ) ∈
S O(3) X,Y

θ ∈ R,ϕ ∈ R φ ∈ R∑
i ∑

g

We  consider  a  multi-agent  system  consisting  of 
mobile agents in  space,  where  represent  the cases
of  2D plane  and 3D space,  respectively.  Let 
be  the  set  of  the  agents  which  are  labeled  from  1  to N .  The
agents’ positions  are  denoted  by ,
where  agent i’ s  position  is .  Let , ,  ,

 be the N-by-N identity matrix,  column vector
of all ones, the Kronecker product, the maximum eigenvalue,
the  minimum  eigenvalue  of  a  real-valued  symmetric  matrix,
and  the  determinant  of  a  square  matrix,  respectively.  Let

 be  the  2D  rotation  matrix  with  rotation  angle
.  Let  and  

 be the 3D rotation matrices along the  and Z  axes
with  rotation  angles  and  ,  respectively.  In
this  paper,  we assume that  each agent  holds an unknown but
fixed  coordinate  frame  to  conduct  relative  measurements
regarding its neighbors. We define  as the global coordinate

Ri
g ∈ S O(2)∑

g
∑

i

frame.  In  2D,  let  be  the  2D  rotation  matrix
describing the rotation from  to .  

B.  Angle Rigid Formations

V = {1,2, . . . ,N}
(i, j,k) ∡i jk−→

ji
−→
jk A⊆V×V×

V = {(i, j,k), i, j,k ∈ V, i , j , k}
∡i jk

∡k ji (i, j,k)
(k, j, i) V

A p ∈ RdN

A(V,A, p) (i, j,k) ∈ A
{ j,k} ∈ Ni, {i,k} ∈ N j, {i, j} ∈ Nk Ni

A(V,A, p)
A′(V,A, p′)

A
V

As introduced in [23], since each interior angle is associated
with three vertices, we use the notion of angularity instead of
a  graph  to  describe  multi-agent  formations  with  angle
constraints. For the vertex set , define a three-
vertex triplet   to  describe  the  angle  constraint 
between  the  rays  and  .  Then,  we  define 

 as an angle set, of which each
element is a triplet. Because constraining  is equivalent to
constraining ,  the  notation  of  the  triplet  is
equivalent to . The combination of the vertex set , the
angle  set  and  the  position  configuration  is  called
an angularity  which we denote by .  If ,
then  where   represents
agent i’ s  neighbor  set.  Two  angularities  and

 are  said  to  be equivalent  if  their  corresponding
angles defined in  have the same magnitude, and said to be
congruent if all possible angles formed by three vertices of 
have  the  same  magnitude  [23].  Then,  angle  rigidity  of
angularities is formally defined as follows.

A(V,A, p)
ϵ > 0 A′(V,A, p′)

A(V,A, p) ∥p′− p∥ < ϵ
A(V,A, p) A

Definition 1 [23]: An angularity  is angle rigid if
there  exists  an  such  that  every  angularity 
that  is  equivalent  to  and  satisfies  is
also congruent to . We say  is globally angle rigid
if every angularity that is equivalent to it is also congruent to
it.

A (i1, j1,k1) ∈
A {( j1,k1, i1), (k1, i1, j1)} ⊆ A

A

We say  is a triangular angle set if for every 
,  there  also  exists  [30 ].  Then,  a

triangular angle set  can be written in the form of
 

A = {. . . , (i1, j1,k1), ( j1,k1, i1), (k1, i1, j1), . . .} (1)
S△i1 j1k1 = {(i1, j1,k1), ( j1,k1, i1), (k1, i1, j1)}

△i1 j1k1 A(V,A, p)
A

A(V,A, p)
n△A ∈ N+ A

A
S△i1 j1k1 ∈ A m ∈ V, m ,

i , j , k S△i1 j1m ∈ A, S△i1k1m ∈ A, S△ j1k1m ∈ A
A

and  is  denoted  by
the  triangular  angle  set  of .  We  say  is  a
triangular  angularity if   is  a  triangular  angle  set.  The
number of  triangles in the triangular  angularity  is
denoted  by .  Then,  we  say  is  a tetrahedral  angle
set if  is a triangular angle set and for every triangular angle
subset ,  there  always  exists  a  vertex 

 such  that .
Then, a tetrahedral angle set  can be written in the form of
 

A = {. . . ,S△i1 j1k1 ,S△i1 j1m,S△i1k1m,S△ j1k1m, . . .} (2)

i1 j1k1m S i1 j1k1m = {S△i1 j1k1 ,S△i1 j1m,S△i1k1m,S△ j1k1m}
A(V,A, p) A

nA ∈ N+
A(V,A, p)

and  we  denote  the  corresponding  tetrahedral  angle  set  of
 as  .

We  say  is  a tetrahedral  angularity if   is  a
tetrahedral  angle  set.  Denote by  the total  number of
tetrahedra in the tetrahedral angularity .

A(V,A, p)
We  say  that  a  multi-agent  formation  is  angle  rigid  if  its

corresponding  angularity  is  angle  rigid.  The
desired  angle  rigid  formation  is  described  by  a  set  of  angle
constraints
 

fA(α∗) := [. . . ,α∗ki j, . . .]
⊤ ∈ R|A|, (k, i, j) ∈ A (3)

α∗ki j k, i, jwhere  represents  the  desired  angle  among  agents .
Note  that  the  description  of  the  desired  formation  is  not
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related  to  the  agents’ positions,  but  only  related  to  the
magnitude of  the desired angles among agents.  In this  paper,
we are interested in the maneuvering of triangular formations
in 2D and tetrahedral formations in 3D, respectively.  

C.  Problem Formulation

N −2

Vl = {1,2},V f = {3, . . . ,N}

p = [pl⊤, p f⊤]⊤ pl =[p⊤1 , p
⊤
2 ]⊤ ∈ R2d

p f = [p⊤3 , . . . , p
⊤
N]⊤ ∈ Rd(N−2)

Consider  an N -agent  formation  consisting  of  two  leaders
which  will  determine  the  whole  formation’s  maneuvering
motions,  and  followers  which  only  have  local  relative
measurements with respect to their neighbors. Without loss of
generality,  we  assume  that  agents  1  and  2  are  leaders,  and
denote  by  the  sets  of  the  leaders
and followers, respectively. Then, the position vector p can be
partitioned by , where  and

.  Then,  the  leaders’ moving
trajectories can be described by
 

pl(t) = s(t)[I2⊗Q(θ(t))]pl(0)+12⊗w(t) (4)
s(t) ∈ R,Q(θ(t)) ∈ S O(d) w(t) ∈ Rd

θ(t) ∈ R d = 2 θ(t) ∈ R3 d = 3

where ,  and  represent  the
scaling,  rotational  and  translational  maneuvering  parameters,
respectively,  when  ,  and  when  .
We  consider  that  the  followers  are  governed  by  double-
integrator dynamics
 

ṗi(t) = vi(t), v̇i(t) = ui(t), ∀i = 3, . . . ,N (5)
vi uiwhere  and  represent agent i’s velocity and control input,

respectively. We also make the following assumptions:
A(V,A, p∗)

A A
p∗ ∈ RdN

fA(α∗)

1)  The  desired  angularity  is  angle  rigid  where
 is  a  triangular  angle set  in the 2D case,  is  a  tetrahedral

angle  set  in  3D  case,  and  is  an  arbitrary  configur-
ation that satisfies all the angle constraints defined in .

2) The two leaders never collide with each other.

Ni

3)  For  the  case  of  constant-velocity  leaders,  no  communi-
cation  is  needed  among  the  followers,  while  for  the  case  of
leaders  with  time-varying  velocities,  inter-agent  communi-
cation  is  needed.  For  both  cases,  each  follower i  measures
relative positions and velocities regarding its neighbors .

fA(α∗)
ui(t)

Given  the  desired  angles  in  and  the  above  three
assumptions, the aim is to design  for (5) such that
 

limt→∞(αi jk(t)−α∗i jk) = 0,∀(i, j,k) ∈ A. (6)

αi jk(t)

Since  the  formation’s  translation,  rotation  and  scale  are
exactly  determined  by  the  two  leaders  and  the  desired
formation is angle rigid, the objective (6) indeed describes the
requirement of the formation maneuvering. Since the methods
of  calculating  the  angles  in  the  2D  and  3D  cases  are
different, we will introduce the maneuvering of 2D formations
and 3D formations in the follow-up sections, separately.  

III.  Maneuvering 2D Angle Rigid Formations

αki j ∈ [0,2π) k, i, j
In  this  2D  case,  we  define  the  signed  interior  angle

 among three non-coincident agents  as
 

αki j :=
{

arccos(b⊤i jbik), if b⊤i jb
⊥
ik ≥ 0

2π− arccos(b⊤i jbik), otherwise (7)

bi j := p j−pi
∥p j−pi∥

b⊥ik := R( π2 )bik = [ 0 −1
1 0

]bik

where  is  the  bearing  from  agent i  to  agent j,
 (see [23] for more details).

  

A.  Angle-Induced Linear Equations in Triangles

pi, p j pk

αki j,αi jk α jki △i jk

Since  an  angle  constraint  (7)  is  highly  nonlinear  with
respect  to  agents’ positions   and  ,  it  is  a  challenging
task to achieve (6) with a global convergence guarantee. Now,
we  introduce  the  transformation  of  the  nonlinear  angle
constraints existing in triangles into linear algebraic equations,
under  which  the  nonlinear  control  objective  (6)  shall  be
transformed  into  a  linear  form.  Taking  three  interior  angles

 and   from  non-degenerate  triangle  as  an
example, according to [30], one has
 

(p j− pi)/∥p j− pi∥ = R(αki j)(pk − pi)/∥pk − pi∥. (8)
∥pk−pi∥
∥p j−pi∥ =

sinαi jk
sinα jki

△i jk
Using  the  law  of  sines  and  (8),  the  angle-

induced linear equation in  can be written as
 

f △i jk
i (α, p) : = A△i jk

i (α)pi+A△i jk
j (α)p j+A△i jk

k (α)pk

= sinα jki(pi− pk)− sinαi jkR⊤(αki j)(pi− p j) = 0
(9)

△i jk
where α  represents  those  interior  angles  that  are  associated
with , p represents the configuration of the agents, and the
coefficient matrices
 

A△i jk
i (α) :=

(
sinα jkiI2− sinαi jkR⊤(αki j)

)
∈ R2×2

A△i jk
j (α) := sinαi jkR⊤(αki j) ∈ R2×2

A△i jk
k (α) := −sinα jkiI2 ∈ R2×2. (10)

p∗

A
A(V,A, p)

A

To avoid collinearity among three neighboring agents which
degrades  (9),  the  desired  configuration  is  assumed  to  be
generic1,  where  none  of  the  triangles  defined  in  are
degenerate.  For  a  triangular  angularity  with
multiple  triangles  in ,  writing  the  corresponding  angle-
induced linear equations (9) from the triangular angularity into
a compact form yields
 

MA(α(p))p = 0 (11)
MA(α) ∈ R2n△A×2Nwhere  can be written in the form of

 

· · · Vertex i · · · Vertex j · · · Vertex k · · ·
1st △
· · ·
△i jk

· · ·
n△Ath △



· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·
0 A△i jk

i 0 A△i jk
j 0 A△i jk

k 0
· · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · ·


(12)

A

MA(α) 2N −4
V Vl

V f MA(α)
MA(α) = [Ml

A(α),M f
A(α)] Ml

A(α) ∈ R2nA△ ×4

M f
A(α) ∈ R2nA△ ×(2N−4)

whose row blocks are indexed by the triangles defined in the
triangular angle set  and column blocks are indexed by the
vertices (more details can be found in [30]). According to [23,
Lemma 2], the maximum rank of  is . According
to  the  partition  of  into  the  leaders’ set   and  the  follo-
wers’ set , the matrix  can be correspondingly parti-
tioned  as  where  
and . Define
 

L(α) := M⊤A(α)MA(α) =
[Lll(α) Ll f (α)
L f l(α) L f f (α)

]
∈ R2N×2N (13)

  
1 This follows the definition in [31, Section 1.2].
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Lll(α) = (Ml
A)⊤Ml

A ∈ R
4×4, Ll f (α) = (Ml

A)⊤M f
A ∈

R4×(2N−4), L f l(α) = (M f
A)⊤Ml

A ∈ R
(2N−4)×4 L f f (α) =

(M f
A)⊤M f

A ∈ R
(2N−4)×(2N−4)

where  
 ,  and 

.  Then,  one  has  the  following
lemma.

A∗(V,A, p∗) L f l(α∗)pl∗+
L f f (α∗)p f ∗ = 0 L f f (α∗)

Lemma  1: If   is  angle  rigid,  then 
, and the matrix  is positive definite.

The proof of Lemma 1 can be straightforwardly obtained by
using [13, Theorem 1], [32, Theorem 4], or [8, Lemma 3].  

B.  Maneuvering Control for the Case of Leaders With Constant
Velocities

p f ∗(t) := −L−1
f f (α∗)L f l(α∗)pl(t)

v f ∗(t) := −L−1
f f (α∗)L f l(α∗) ṗl(t)

p̃ f (t) := p f (t)− p f ∗(t)
ṽ f (t) := v f (t)− v f ∗(t)

Since the desired formation is assumed to be angle rigid, by
Lemma  1,  the  desired  positions  and  velocities  for  the  follo-
wers  can  be  determined  by 
and ,  respectively.  Then,  we
define  the  position  error ,  and  the  velo-
city  error .  Therefore,  the  nonlinear
control objective (6) can be equivalently transformed into the
following linear form:
 

limt→∞ p̃ f (t) = 0, limt→∞ ṽ f (t) = 0. (14)
i ∈ V f

pi pi− p j
j ∈ Ni

Since each follower  has no knowledge of its absolute
position , but can measure the relative position  with
respect to its neighbors , it is still challenging to design a
distributed formation maneuvering algorithm to achieve (14).

Now,  we  design  the  formation  maneuvering  law  for  the
followers in the compact form as
 

u f (t) =− kp
[
L f f (α∗)p f (t)+L f l(α∗)pl(t)

]
− kv
[
L f f (α∗)v f (t)+L f l(α∗)vl(t)

]
(15)

kp > 0,kv > 0
u f (t) = [u⊤3 , . . . ,u

⊤
N]⊤ ∈ R2N−4

where  are  the  position  and  velocity  feedback
gains,  respectively,  and .  Accor-
ding  to  (13),  the  component  form  of  the  formation  maneu-
vering law (15) can be written as
 

ui(t) = − kp

 ∑
(i, j1,k1)∈Ā

(A△i j1k1
i (α∗))⊤ f △i j1k1

i (α∗, p(t))

+
∑

( j2,i,k2)∈Ā
(A△ j2ik2

i (α∗))⊤ f △ j2ik2
i (α∗, p(t))

+
∑

( j3,k3,i)∈Ā
(A△ j3k3i

i (α∗))⊤ f △ j3k3i
i (α∗, p(t))


− kv

 ∑
(i, j1,k1)∈Ā

(A△i j1k1
i (α∗))⊤ f △i j1k1

i (α∗,v(t))

+
∑

( j2,i,k2)∈Ā
(A△ j2ik2

i (α∗))⊤ f △ j2ik2
i (α∗,v(t))

+
∑

( j3,k3,i)∈Ā
(A△ j3k3i

i (α∗))⊤ f △ j3k3i
i (α∗,v(t))

 (16)

f △i j1k1
i (α∗, p(t)) = sinα∗j1k1i(pi(t)− pk1 (t)) − sinα∗i j1k1

R⊤(α∗k1i j1
)(pi(t)− p j1 (t))

(pi− pk1 ) (pi− p j1 ) {k1, j1} ∈ Ni

f △ j2ik2
i (α∗, p(t)) = sinα∗ik2 j2

(p j2 (t) − pk2 (t)) −
sinα∗j2ik2

R⊤(α∗k2 j2i)(p j2 (t)− pi(t)) Ā A

where 
 is  the  weighted  sum  of  the  relative

position  measurements  and  , ,
and  similarly 

, and  is a subset of  satis-

|Ā| = n△A (i, j,k) ∈ Ā ( j,k, i) < Ā, (k, i, j) <
Ā p j2 (t)− pk2 (t)

p j2 (t)− pi(t) pi(t)− pk2 (t)

i ∈ V f pi− p j
vi− v j

j ∈ Ni

fying  such that  then 
.  Note  that  can  be  obtained  by  the

measurements of  and . It can be seen
that  the  maneuvering  control  law  (16)  only  requires  each
follower  to  have  relative  position  and  relative
velocity  measurements  with  respect  to  its  neighbors

. Now, we present the main results.
A∗(V,A, p∗)Theorem 1: If the desired triangular angularity 

is  angle  rigid  and  the  two  leaders  have  constant  velocities,
then  under  control  law  (16),  the  formation  maneuvering
objective (6) is achieved with a global convergence guarantee.

Proof: The designed control law (16) is linear with respect
to the agents’ positions p ,  which is always well-defined even
when an inter-agent  collision occurs.  Substituting the  control
law (15) into (5), one has
 

¨̃p f (t)+ kvL f f (α∗) ˙̃p f (t)+ kpL f f (α∗) p̃ f (t) = 0 (17)

p̈l(t) = 0
L f f (α∗)

where we have used the fact that the two leaders have constant
maneuvering  velocities,  i.e., .  Since  the  coefficient
matrix  in  (17)  is  constant,  the  characteristic  polyno-
mial of the dynamical system (17) can be written as
 

det[λ2I2N−4+ kvL f f (α∗)λ+ kpL f f (α∗)] = 0 (18)
λ ∈ C L f f (α∗)

Q ∈
R(2N−4)×(2N−4) L f f (α∗) = Qdiag[a1, . . . , a2N−4]Q−1

ai > 0 L f f (α∗)

where  represents the solution of (18).  Since  is
positive definite, there must exist a nonsingular real matrix 

 such  that  ,
where  represents  the i th  real  eigenvalue  of .
Then, one has
 

det[λ2I2N−4+ kvL f f (α∗)λ+ kpL f f ] =
2N−4∏
i=1

(λ2+ kvaiλ+ kpai).

kp > 0,kv > 0
p̃(t)

ṽ f (t) = ˙̃p f (t)

Since ,  all  the  solutions  associated  with  the
polynomial  (18)  have negative real  parts.  Therefore,  and

 will globally and exponentially converge to zero.
■

Now,  we  provide  a  toy  example  to  illustrate  the  controller
(16).

Ā = {(1,2,3)}
Example  1: Consider  that  agents  1  and  2  are  the  leaders,

agent  3  is  the  follower,  and .  Following  the
definitions given after (16), the control law for agent 3 can be
written by:
 

u3 =− kpA△123
3 (α∗)(sinα∗231(p1− p3)− sinα∗123R⊤(α∗312)

× (p1− p2))− kvA△123
3 (α∗)

(
sinα∗231(v1− v3)

−sinα∗123R⊤(α∗312)(v1− v2)
)

p1− p2 = (p1− p3)− (p2− p3)
p1− p3 p2− p3 A△123

3 (α∗)
where  can be obtained from the
measurements  of  and  ,  and  follows
the definition given in (10).

Remark  1: Compared  with  the  previous  results  [7],  [25],
[27]  on  maneuvering  angle  rigid  formations  with  local  or
almost global convergence guarantees, the designed maneuve-
ring  law  (15)  can  guarantee  global  convergence.  This  is
mainly  because  of  the  transformation  of  the  nonlinear  angle
constraints  (3)  imposed on each triangle  into  linear  algebraic
equations (11). In addition, although this paper only considers
double-integrator dynamics for the followers, formation man-
euvering laws for single-integrator dynamics can be similarly
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obtained by following [5].
i ∈ V f∑

i

(A△i j1k1
i (α∗))⊤ f △i j1k1

i (α∗, p(t))
f △i j1k1
i (α∗, p(t))∑

i sinα∗j1k1iR
i
g

(
pi(t)− pk1 (t)

)
=

Ri
g f △i j1k1

i (α∗, p(t))∑
i Ri

g(A△i j1k1
i (α∗))⊤ f △i j1k1

i (α∗, p(t))

Remark 2: Suppose that each follower  holds a local
coordinate  frame  to  measure  the  relative  positions  and
velocities  with  respect  to  its  neighbors.  Taking  the  first
component  in  (16)  as  an  exa-
mple, one has that  measured in agent i’s local
coordinate  frame  becomes  

.  It  follows  that  the  first  component  mea-
sured in  becomes .  For the
remaining components  in  (16),  one  can obtain  similar  forms.
By following [23], it can be verified that the control law (16)
can  be  implemented  in  each  agent’s  local  coordinate  frame.
This  is  an  advantage  compared  with  those  displacement-
constrained or bearing rigid formations that requires all agents
to have aligned coordinate frames.  

C.   Maneuvering  Control  for  the  Case  Of  Leaders  With  Time-
Varying Velocities

fA(α∗)Since  the  angle  constraints  in  are  invariant  to  the
formation’s  translation,  rotation  and  scaling,  the  full  maneu-
vering of translation, rotation and scaling can be achieved by
commanding  the  two  leaders  to  move  with  the  correspon-
dingly  translational,  rotational  and  scaling  velocities,  respec-
tively. Specifically,  one can manipulate the parameters in the
two leaders’ moving trajectories (4) to achieve:

ṡ(t) = 0, θ̇(t) = 0, ẇ(t) , 01) Translational Maneuvering: ;
ṡ(t) = 0, θ(t) = ωct, ẇ(t) = 0

ωc

2) Rotational Maneuvering: , wh-
ere  is a constant scalar;

ṡ(t) , 0, θ̇(t) = 0, ẇ(t) = 03) Scaling Maneuvering: .

p̈l(t) , 0

p̈l(t) , 0

However,  if  the  desired  maneuvering  includes  a  rotational
maneuvering, then , which cannot be handled by (16).
Therefore,  we now discuss  the  extension of  the  maneuvering
algorithm  (16)  into  the  case  in  which  the  two  leaders  have
time-varying velocities, i.e., .

p̈l(t)

ṡ(x) = −γ1sign(s(x))−k1s(x)
γ1 k1 s(x)

When  can  be  measured  by  some  followers  (or
measured  by  the  leaders  and  communicated  to  some
followers),  one  can  employ  consensus-based  distributed
estimators to design the formation maneuvering law, see e.g.,
[5],  [13],  [29],  [33].  Instead,  we  discuss  the  case  where  the
leaders’ accelerations are unavailable, and employ the sliding
model  control  approach  to  design  the  maneuvering  control
law.  According  to  [34,  Section  II.B.2],  a  sliding  mode-based
reaching  law can  be  designed  as 
where  and   are  positive  scalars,  and  is  the  sliding
surface. Based on the above sliding mode-based reaching law,
we design the sliding surface as
 

s f (t) = kv
[
L f f (α∗)v f (t)+L f l(α∗)vl(t)

]
+ kpL f f (α∗)

[
L f f (α∗)p f (t)+L f l(α∗)pl(t)

]
(19)

s f = [s⊤3 , . . . , s
⊤
N]⊤ ∈ R2N−4where . Inspired by [29], we design

the sliding mode-based maneuvering law as
 

u f = −γ1sign(s f )− k1s f −
kp

kv
[L f f (α∗)v f +L f l(α∗)vl] (20)

k1where  is a positive scalar.
A∗(V,A, p∗)Theorem 2: If the desired triangular angularity 

γ1

is  angle  rigid,  the  two  leaders  have  bounded  time-varying
velocities,  and  is  sufficiently  large,  then  under  (20),  the
formation maneuvering objective (6) is achieved with a global
convergence guarantee.

Proof: Taking  the  time-derivative  of  (19)  and  using  (20)
yield
 

ṡ f = kv
[
L f f (α∗) p̈ f (t)+L f l(α∗)p̈l(t)

]
+ kpL f f (α∗)

[
L f f (α∗)v f (t)+L f l(α∗)vl(t)

]
= kv
[
L f f (α∗)(−γ1sign(s f )− k1s f )+L f l(α∗) p̈l(t)

]
.

V2 = 0.5(s f )⊤L−1
f f (α∗)s f > 0

V2

Now,  we  prove  the  stability  by  constructing  the  Lyapunov
function  as .  Taking  the  time-
derivative of  yields
 

V̇2 = kv(s f )⊤
[
−γ1sign(s f )− k1s f +L−1

f f (α∗)L f l(α∗)p̈l(t)
]

= −kvγ1∥s f ∥1− k1kvs f⊤s f + kvs f⊤L−1
f f (α∗)L f l(α∗) p̈l(t).

(21)

(s f )⊤L−1
f f (α∗)L f l(α∗) p̈l(t) ≤ ∥s f ∥2∥L−1

f f (α∗)×
L f l(α∗)∥2∥p̈l(t)∥2 ∥s f ∥1 ≥ ∥s f ∥2

Using the facts 
 and  yields

 

V̇2 ≤ − k1kv∥s f ∥2

− kv
(
γ1−∥L−1

f f (α∗)L f l(α∗)∥2∥p̈l(t)∥2
)
∥s f ∥2. (22)

∥L−1
f f (α∗)L f l(α∗)∥2 ∥p̈l(t)∥2

γ1 γ1 >

γ2 := supt≥0 ∥L−1
f f (α∗)L f l(α∗)∥2∥ p̈l(t)∥2 V̇2 ≤ −

2k1kvλmin(L f f )V2 − kv(γ1 − γ2)
√

2λmin(L f f )V
1
2

2
s f

L f f (α∗) > 0 (
L f f (α∗)p f (t)+L f l(α∗)pl(t)

)
→ 0

Since  is  constant  and  is  upper
bounded,  one  can  choose  sufficiently  large  such  that 

,  under  which 
.  It  follows

from [34] that  converges to zero within a finite time. Since
 in (19), using the input-to-state stability theorem

for  (19),  one  has ,  i.e.,  the
desired  formation  maneuvering  is  achieved  with  a  global
convergence guarantee. ■

L f f (α∗),L f l(α∗) ∥p̈l(t)∥2 γ1
s f

At the formation design stage,  one can use the information
of , and  to properly select . Due to
the  second  component  of  in  (19),  the  sliding  mode-based
maneuvering  law  (20)  indeed  needs  the  communication
among  the  neighboring  followers.  However,  the  acceleration
estimation and the leaders’ acceleration measurements are not
needed in (20) [29].  

IV.  Maneuvering 3D Angle Rigid Formations

To globally maneuver 3D angle rigid formations by emplo-
ying angle-induced linear equations, it has been demonstrated
in  [8]  that  the  construction  of  each  angle-induced  linear
equation needs to associate at least five agents. This indicates
that  each  agent  should  have  relative  position  measurements
with respect to at least four neighbors. To reduce the number
of  neighbors  that  each  agent  should  have,  we  propose  to
associate only four agents to construct an angle-induced linear
equation under the following assumption.

Assumption 1: Assume in 3D that all the agents’ coordinate
frames have a common Z direction.

Different  from [35],  [36]  where  an  additional  virtual  coor-
dinate  is  assigned  to  each  agent,  Assumption  1  practically
requires  the  agents  to  have  the  sensing  capability  of  the
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direction  of  the  global Z -axis,  which  can  be  fulfilled  by
equipping  each  agent  with  a  gravity  sensor  or  extracting  a
common  vertical  direction  via  image  processing  [37].  In  the
follow-up  subsections,  we  first  introduce  an  angle-induced
linear  equation  established  on  a  tetrahedron,  then  define  the
desired Z-weakly angle rigid formation, and finally design the
formation maneuvering law for the followers.  

A.  Angle-Induced Linear Equations in Tetrahedra

∑
1−XYZ p1 X,Y,Z

X,Y,Z
∑

g
1234

X1Y

A shown in Fig. 1, we take four agents 1, 2, 3, 4 in a tetrah-
edron as an example to illustrate the process of establishing an
angle-induced  linear  equation  among  them.  Consider  a  coor-
dinate frame  whose origin is  and -axes point
towards  the  same  directions  as  the -axes  of ,
respectively.  For  a  non-coplanar  tetrahedron ,  we
perpendicularly  project  the  three  points  2,  3,  and  4  into  the

 plane,  and  then  get  the  projected  points  2',  3',  and  4',
respectively.
 

. .

2

4' 3

1

.

Y

Z

2'

3'

4

X

 
1234Fig. 1.     Establish an angle-induced linear equation for .

 

△2′14′ △4′13′

According  to  the  planar  angle-induced  linear  equations  (8)
existing  in  2D  triangles,  two  angle-induced  linear  equations
existing in the planar  and  can be written as
 

(p2′ − p1)/∥p2′ − p1∥ = Rz(α4′12′ )(p4′ − p1)/∥p4′ − p1∥ (23)
 

(p3′ − p1)/∥p3′ − p1∥ = Rz(α4′13′ )(p4′ − p1)/∥p4′ − p1∥ (24)

Rz(α4′12′ ) =
[

R(α4′12′ ) 0

0 1

]
∈ S O(3)

α4′12′ ∈ [0,2π),α4′13′ ∈ [0,2π)
pi′ ∈ R3, i = 2,3,4

i′
∑

g
α4′12′ ,α4′13′ αm′1i1 j′1

,αm′1i1k′1
,S i1 j1k1m1

∈
A [0,π]

1,2′,4′ 1,4′,3′

pi′ , i = 2,3,4

where  is  the  rotation  matrix
along  the Z-axis,   are  signed
angles whose definition follows (7), and  are
the  positions  of  in  .  We  consider  in  this  section  that
except for  or generally 

,  all  the  other  angles’ magnitude  is  within .  Assume
that  are not collinear, and that  are not collinear.
According to the law of sines,  satisfy
 

∥p2′ − p1∥
∥p4′ − p1∥

=
sinα2′4′1

sinα4′2′1
,
∥p3′ − p1∥
∥p4′ − p1∥

=
sinα3′4′1

sinα4′3′1
. (25)

pi′ − p1 pi− p1
pi pi′

Since  the  vectors  are  a  projection  of  to  the
X1Y plane, the relation between  and  can be described by
 

pi′ − p1 =

[1 0 0
0 1 0
0 0 0

]
(pi− p1), i = 2,3,4. (26)

Substituting (25) and (26) into (23) yields 

sinα4′2′1(p2xy− p1xy) = sinα2′4′1R(α4′12′ )(p4xy− p1xy) (27)
pixy = [pi(1), pi(2)]⊤ ∈ R2, i = 1,2,3,4 pi( j)

pi

where ,  represents
the j th  element  of  the  vector .  Similarly,  substituting  (25)
and (26) into (24) yields
 

sinα4′3′1(p3xy− p1xy) = sinα3′4′1R(α4′13′ )(p4xy− p1xy). (28)

X1Y
1,2′,4′

1,4′,3′ 1,2′,4′

Note  that  (27)  and  (28)  represent  the  final  angle-induced
linear equations of the nodes 1, 2, 3, and 4 in the  plane,
which  is  valid  under  the  assumption  that  are  not
collinear, and  are not collinear. However, if  are
collinear, then (27) will be degraded into a trivial equation.

X1Y

p2, p3, p4 X1Y

Instead  of  focusing  on  the  plane,  we  now establish Z
directional  constraints  among  the  four  points.  Suppose  that

 are not in the  plane. According to Fig. 1, the Z
directional constraints can be described as
 

sgn(sinα21Z)
p2z− p1z

∥p2z− p1z∥
= sgn(sinα31Z)

p3z− p1z

∥p3z− p1z∥

sgn(sinα21Z)
p2z− p1z

∥p2z− p1z∥
= sgn(sinα41Z)

p4z− p1z

∥p4z− p1z∥
(29)

piz = pi(3), i = 1,2,3,4
(pi)′s

△212′ △313′ △213 sgn(sinα31Z )∥p2z−p1z∥
sgn(sinα21Z )∥p3z−p1z∥ =

cosα21Z sinα231
cosα31Z sinα321

α212′ ,α313′ ,α231,α321

cosα21Z = sinα212′×
sgn(sinα21Z) sgn(sinα31Z )

sgn(sinα21Z ) =
sgn(sinα21Z )
sgn(sinα31Z )

sgn(sinα41Z )∥p2z−p1z∥
sgn(sinα21Z )∥p4z−p1z∥ =

cosα21Z sinα241
cosα41Z sinα421

where ,  and  the  sgn()  function  is  used
to  distinguish  the  different  sign  of  Z  coordinates  with
respect  to  the X1Y  plane.  For  (29),  using  the  law  of sines  in

,  and  ,  one  has 
,  where  are  scalar  angles,

and  we  have  used  the  facts  that 
 and  .  Similarly,  one  also

has . Then, it follows that:
 

cosα31Z sinα321(p2z− p1z) = cosα21Z sinα231(p3z− p1z)

cosα41Z sinα421(p2z− p1z) = cosα21Z sinα241(p4z− p1z) (30)

1234 p2, p3, p4 X1Y
which are the two remaining angle-induced linear constraints
of .  However,  if  are  in  the  plane,  then
(30) will be reduced to trivial equations.

By summarizing (27)−(30), the overall angle-induced linear
equations among agents 1, 2, 3, 4 can be described by
 

f 1234
1 (α, p) = A 1234

1 (α)p1+A 1234
2 (α)p2

+A 1234
3 (α)p3+A 1234

4 (α)p4 = 0 (31)

A 1234
i ∈ R6×3, i = 1, . . . ,4 A 1234

1 =
sinα2′4′1R(α4′12′ ) − sinα4′2′1I2 02×1

01×2 a11 − a12

sinα3′4′1R(α4′13′ ) − sinα4′3′1I2 02×1

01×2 a21−a22

 A 1234
2 =


sinα4′2′1I2 02×1

01×2 a12

02×2 02×1

01×2 a22

 A 1234
3 =


02×2 02×1

01×2 −a11

sinα4′3′1I2 02×1

01×2 01×1

 A 1234
4 =


−sinα2′4′1R(α4′12′ ) 02×1

01×2 01×1

−sinα3′4′1R(α4′13′ ) 02×1

01×2 −a21

 a11 = cosα21Z sinα231 a12 =

cosα31Z sinα321,a21 = cosα21Z sinα241,a22 = cosα41Z sinα421
A 1234

1 (α) + A 1234
2 (α) + A 1234

3 (α) +

where  are  defined  as 

, 

, , 

, , 

.
It  is  obvious  that 
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A 1234
4 (α) = 0 A 1234

i ∈
R6×3, i = 1, . . . ,4

1234 1234

A 1234
i ∈ R6×3, i = 1, . . . ,4 A 1234

i , i =
1, . . . ,4 1234

.  Note  that  the  coefficient  matrices 
 are  only  related  with  the  interior  angles  of

 and the angles formed by the edges of  and the
Z-axis.  Moreover,  according  to  the  definition  of  the  angles
shown  in ,  one  has  that 

 are  invariant  with  respect to ’s  translation,
scaling, and rotation along the Z-axis.

1234
2′,3′,4′ 1,2′,4′ 1,4′,3′

p2, p3, p4

Lemma  2: For  a  tetrahedron  with  projected  points
,  if  are  not  collinear,  and  are  not

collinear, and  are not in the X1Y plane, then
 

Rank[A 1234
1 (α),A 1234

2 (α),A 1234
3 (α),A 1234

4 (α)] = 6.

S 1 ∈ R6×6

[A 1234
1 (α),A 1234

2 (α),A 1234
3 (α),A 1234

4 (α)]
Proof: Construct  a  submatrix  from  the  matrix

 as
 

S 1 =


sinα4′2′1I2 02×2 02×1 02×1

01×2 01×2 −a11 01×1
02×2 sinα4′3′1I2 02×1 02×1
01×2 01×2 01×1 −a21

. (32)

6 ≥ Rank(S ) ≥ Rank(S 1) = 6
One  can  easily  verify  that  under  the  given  assumptions,

, which completes the proof. ■
1234

A(V,A, p)
A

A(V,A, p)

The  above  analysis  takes  as  an  example.  Now,  we
consider  a  tetrahedral  angularity  with  multiple
tetrahedra  defined  in  the  tetrahedral  angle  set .  One  can
write  all  the  angle-induced  linear  equations  from  the
tetrahedral angularity  into a compact form
 

M̄A(α(p))p = 0 (33)

M̄A(α(p)) ∈ R6nA ×3Nwhere  can be written by
 

· · · Vertex i · · · Vertex j · · · Vertex k · · · Vertex m · · ·

1st
· · ·
i jkm

· · ·

nA th



· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 A i jkm

i 0 A i jkm
j 10 A i jkm

k 0 A i jkm
m 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · · · · · · · · · ·


(34)

A
whose row blocks are indexed by the tetrahedra defined in the
tetrahedral angle set  and column blocks are indexed by the
vertices.  

B.   Desired Z-Weakly  Angle  Rigid  Formations  and  Their
Properties

1234
1234

A
1234

Note  that  the  angle-induced  linear  equation  (31)  is
associated with not only the interior angles in , but also
the  angles  formed  by  the  edges  of  and  the Z-axis.
Therefore,  except  for  the  angles  defined  in  the  tetrahedral
angle set , we need to additionally impose angle constraints
formed by the edges of  and the Z-axis such that these
coefficient  matrices  in  (31)  can  be  uniquely  determined.
Towards this end, we first define a set mapping such that these
additional  angle  constraints  can  be  included  in  a  new  angle
set.

A= {S i1 j1k1m1
, . . . ,

S i
nA

j
nA

k
nA

m
nA
} M

Definition 2: For a tetrahedral angle set2 
, define the set mapping  as

 

M :A→ Ā := {S i1 j1k1m1
, ( j1, i1,Z), (k1, i1,Z), (m1, i1,Z), . . . ,

S i
nA

j
nA

k
nA

m
nA
, ( j

nA
, i

nA
,Z), (k

nA
, i

nA
,Z), (m

nA
, i

nA
,Z)}

( j1, i1,Z)−−→
i1 j1

−−→
i1Z

where  describes  the  angle  constraint  formed  by  the
rays  and .

Ā(V,Ā, p)
Ā A M A

Definition  3: A  3D  angularity  where  p  is
generic,  is obtained from  under the mapping , and 
is a tetrahedral angle set, is said to be Z-weakly angle rigid if
 

{p′|α jik(p′) = α jik(p),∀( j, i,k) ∈ Ā}
= {p′|p′ = sc[IN ⊗Rz(θc)]p+1N ⊗wc, sc ∈ R+,

θc ∈ R,wc ∈ R3}
Ā Āi.e., to maintain the given angle constraints in ,  can only

translate, scaling, and rotate along the Z-axis.
Before  presenting  the  results,  we  first  need  to  make  an

assumption.
i jkm

A(V,A, p∗) p∗

i, j′,m′ i,k′,m′

p∗j , p
∗
k, p
∗
m XiY

Assumption  2: For  each  tetrahedron  in  the  desired
3D  tetrahedral  angularity  with  generic ,  we
assume that  are not collinear,  are not collinear,
and  are not in i’s  plane.

Now, we have the following theorem.

Ā(V,Ā, p) Rank(M̄A(α(p))) =
3N −6 Span{p, (IN ⊗Rz(φ))p,1N ⊗ [1,0,0]⊤,1N ⊗ [0,1,0]⊤,
1N ⊗ [0,0,1]⊤} ⊆ Null(M̄A(α(p))) φ ∈ R

Theorem  3: For  a  3D Z -weakly  angle  rigid  angularity
,  if  Assumption  2  holds,  then 

 and 
,  where  is  an arbitrary

number.
M̄A(α(p))

A i jkm
i (α) + A i jkm

j (α) + A i jkm
k (α) + A i jkm

m (α) = 0 {1N⊗
[1,0,0]⊤,1N ⊗ [0,1,0]⊤,1N ⊗ [0,0,1]⊤}
M̄A(α(p))

Proof: We  first  prove  the  null  space  of .  Since
, 

 lie  in  the null  space of
. Then, according to (31) one has

 

f i jkm
i (α, p) = A i jkm

i (α)pi+A i jkm
j (α)p j+A i jkm

k (α)pk

+A i jkm
m (α)pm = 0 (35)

M̄A(α(p))
(IN ⊗Rz(φ))p

M̄A(α(p))

which  implies  that p  lies  in  the  null  space  of .  To
prove  that  also  lies  in  the  null  space  of

, we need to check
 

f i jkm
i (α, (IN ⊗Rz(φ))p) = A i jkm

i (α)Rz(φ)pi

+A i jkm
j (α)Rz(φ)p j+A i jkm

k (α)Rz(φ)pk

+A i jkm
m (α)Rz(φ)pm. (36)

A i jkm
m (α)Rz(φ)Taking  in (36) as an example, one has

 

A i jkm
m (α)Rz(φ)

=


[−sinα j′m′iR(αm′i j′ ) 02×1

01×2 01×1

]
Rz(φ)[−sinαk′m′iR(αm′ik′ ) 02×1

01×2 −cosα jiZ sinα jmi

]
Rz(φ)


=

 Rz(φ)
[−sinα j′m′iR(αm′i j′ ) 02×1

01×2 01×1

]
Rz(φ)

[−sinαk′m′iR(αm′ik′ ) 02×1
01×2 −cosα jiZ sinα jmi

]
=

[
Rz(φ) 0

0 Rz(φ)

]
A i jkm

m (α) = [I2⊗Rz(φ)]A i jkm
m (α) (37)

  
S i1 j1k1m1

∩S i2 j2k2m2 A
2 Although  may be nonempty, this will not affect the
total effective number of angle constraints in .
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Rz(φ) =
R(φ) 02×1

01×2 1

 R(αm′i j′ )R(φ) =

R(φ)R(αm′i j′ )

where  we  used  and  

. Substituting (37) into (36) yields
 

f i jkm
i (α, (IN ⊗Rz(φ))p) = [I2⊗Rz(φ)] f i jkm

i (α, p) = 0

(IN ⊗Rz(φ))p M̄A(α(p))i.e.,  lies in the null space of .
Rank(M̄A(α(p))) = 3N −6

Rz(φ)
Finally,  we  prove  that .  Accor-

ding to the Euler-Rodrigues formula,  can be written as
 

Rz(φ) = cosφI3+ sinφB1+ (1− cosφ)B2 (38)

B1 =


0 −1 0
1 0 0
0 0 0

 ,B2 =


0 0 0
0 0 0
0 0 1


(IN ⊗Rz(φ))p

(cosφ)p
sinφ(IN ⊗B1)p, (1−

cosφ)(IN ⊗B2)p {p,1N ⊗ [1,0,0]⊤,
1N ⊗ [0,1,0]⊤,1N ⊗ [0,0,1]⊤}

M̄A(α(p)) Rank(M̄A(α(p))) ≤ 3N −6
Rank(M̄A(α(p))) < 3N −6

v̄ ∈ R3N M̄A(α(p))v̄ = 0 v̄

M̄A(α(p)) M̄A(α(p))
v̄ Ā

Ā
v̄

M̄A(α(p)) Rank(M̄A(α(p))) =
3N −6

where .  Therefore,  the  vec-

tor  can  be  decomposed  into  three  components,
where the first component  is linearly dependent of p,
and  the  remaining  two  components 

 are linearly independent of 
.  Therefore,  there  are  at  least  six

linearly  independent  vectors  lying  in  the  null  space  of
, i.e., . Now, suppose that

,  i.e.,  there  exists  at  least  one
nonzero  vector  such  that  and   is
linearly  independent  of  the aforementioned six  vectors  in  the
kernel of . According to the structure of ,

 can maintain all the angle constraints given in . However,
this  contradicts  with  the  fact  that  is  Z -weakly  angle  rigid,
i.e.,  must be the combination of p’s translation, scaling and rota-
tion along Z axis (corresponding to the existing six vectors in
the kernel of ). Therefore, one has 

. ■
p = [pl⊤, p f⊤]⊤

pl = [p⊤1 , p
⊤
2 ]⊤ ∈ R6 p f = [p⊤3 , . . . , p

⊤
N]⊤ ∈ R3N−6

M̄A(α∗) M̄A(α∗) =
[M̄l
A(α∗), M̄ f

A(α∗)] M̄l
A(α∗) ∈ R6nA ×6

M̄ f
A(α∗) ∈

R
6nA ×(3N−6)

In  the  3D  case,  we  also  define ,  where
 and  .  The  ma-

trix  can be correspondingly partitioned by 
 where   and  

. Now, we define a new matrix
 

L̄(α) = R̄⊤A(α)M̄A(α) =
[
L̄ll L̄l f
L̄ f l L̄ f f

]
∈ R3N×3N (39)

L̄ll = (M̄l
A)⊤M̄l

A ∈ R
6×6, L̄l f = (M̄l

A)⊤M̄ f
A ∈ R

6×(3N−6),

L̄ f l = (M̄ f
A)⊤M̄l

A ∈ R
(3N−6)×6 L̄ f f = (M̄ f

A)⊤M̄ f
A ∈

R(3N−6)×(3N−6)

where  
,  and 

.
Ā∗(V,Ā, p∗)

L̄ f l(α∗)pl∗+ L̄ f f (α∗)p f ∗ = 0
L̄ f f (α∗)

Lemma 3: If  in 3D is Z-weakly angle rigid and
Assumption  2  holds,  then ,  and
the matrix  is positive definite.

L̄ f l(α∗)pl ∗+L̄ f f (α∗)p f ∗ = 0 L̄ f f (α∗)
Proof: Firstly,  according  to  (33)  and  Theorem 3,  one  dire-

ctly  has .  The  proof  of 
being positive definite can be obtained by following the same
line as the proof of Lemma 1. ■  

C.  Formation Maneuvering Algorithm Design in 3D

Ā(V,Ā, p∗)

p f ∗(t) := −L̄−1
f f (α∗)L̄ f l(α∗)pl(t),

v f ∗(t) := −L̄−1
f f (α∗)L̄ f l(α∗)vl(t)

Consider  that  the  desired  3D  formation  is  specified  by  a
desired Z -weakly  angle  rigid  angularity .  Using
Lemma  3,  the  desired  positions  and  velocities  of  the  follo-
wers  can  be  written  by 

.  Therefore,  the  nonlinear  con-

trol objective (6) in this 3D case can also be transformed into
the linear form (14).

p̈l(t) = 0
For  the  case  that  the  two  leaders  have  the  same  constant

velocity,  i.e., ,  we design the formation maneuvering
formation law for the followers in the compact form as
 

u f (t) = − kp
[
L̄ f f (α∗)p f (t)+ L̄ f l(α∗)pl(t)

]
− kv
[
L̄ f f (α∗)v f (t)+ L̄ f l(α∗)vl(t)

]
(40)

u f (t) = [u⊤3 , . . . ,u
⊤
N]⊤ ∈ R3N−6where .  According  to  (39),  the

component  form  of  the  formation  maneuvering  law  (40)  can
be similarly obtained following (16). Now, we have the main
results.

Ā∗(V,Ā, p∗)
Theorem 4: Suppose Assumption 2 holds. If the desired 3D

angularity  is  Z -weakly  angle  rigid  and  the  two
leaders  have the  same constant  velocity,  then under  (40),  the
maneuvering objective (14) is globally achieved.

Proof: Substituting the control law (40) into (5), one has
 

¨̃p f (t)+ kvL̄ f f (α∗) ˙̃p f (t)+ kpL̄ f f (α∗) p̃ f (t) = 0 (41)
p̈l(t) = 0 L̄ f f

kp > 0,kv > 0 p̃(t) ṽ f (t) = ˙̃p f (t)
where we used . Since (41) is a linear system,  is
positive definite and ,  and  will
globally and exponentially converge to 0. ■

Note that  for  the  case  where  the  leaders  have time-varying
moving  velocities,  one  can  design  a  similar  formation
algorithm  as  (20)  to  achieve  the  desired  maneuvering.  Now,
we provide a simple example to illustrate the controller (40).

S 1234 ∈ A
Example 2: Consider agents 1 and 2 as the leaders, agents 3

and  4  as  the  followers  and .  Following  the
definitions given after (16), the control law for agent 3 can be
written as:
 

u3 = − kp(A 1234
3 (α∗))⊤[A 1234

1 (α∗)(p1− p3)

−A 1234
2 (α∗)(p2− p3)−A 1234

4 (α∗)(p4− p3)]

− kv(A 1234
3 (α∗))⊤[A 1234

1 (α∗)(v1− v3)

−A 1234
2 (α∗)(v2− v3)−A 1234

4 (α∗)(v4− v3)] (42)

A 1234
3 (α∗)where  follows the definition given in (31). ■

p∗

Remark  3: Although  the  angle-displacement  and  affine
formation  maneuvering  approaches  (see  e.g.,  [5],  [8],  [28],
[29])  also  enable  the  maneuvering  motions  of  simultaneous
translation, rotation and scaling, the number of leaders should
be at least 4 in [8], and at least 3 for 2D maneuvering and at
least  4  for  3D  maneuvering  in  [5]  and  [29].  Compared  with
these available maneuvering approaches, both of our proposed
2D and 3D maneuvering laws only need 2 leaders.  Although
the proposed bearing-constrained formation maneuvering law
in  [13]  also  only  needs  at  least  2  leaders,  it  requires  all  the
agents’ coordinate  frames  to  have  the  same  orientation.
Compared  with  [24]  and  [27],  no  inter-agent  communication
is  required  in  (15)  and  (40).  A  requirement  of  the  3D
maneuvering  algorithm  (40)  is  that  the  desired  formation
should satisfy Assumption 2, which holds when .

L f f (α∗) L̄ f f (α∗)
L f f

Remark  4: Due  to  the  existence  of  two  leaders,  both
 in  2D  and  in  3D  are  positive  definite.

However, if there are no leaders or only one leader, then 
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L̄ f f

L(α∗) L̄(α∗)

sinφ(IN ⊗B1)p∗

(1− cosφ)(IN ⊗B2)p∗ L̄(α∗)

and  are  not  positive  definite  and  the  current  control
design  may  not  guarantee  the  convergence  to  the  desired
formation. This is because the null space of  and 
contains some vectors whose corresponding interior angles are
not  equal  to  the  desired  angles,  such  as  and

 in .  

V.  Extension to Lagrangian Dynamics and Minimum
Number of Angle Constraints

  

A.  Formation Maneuvering With Lagrangian Agent Dynamics
In  practice,  many  mechanical  systems  can  be  modeled  by

Lagrangian dynamics, i.e.,
 

Mi(pi) p̈i+Ci(pi, ṗi) ṗi+gi(pi) = τi,∀i ∈ V f (43)
pi ∈ Rd

Mi(pi)
Ci(pi, ṗi) gi(pi)

τi

where i represents the ith agent,  is the state, d denotes
the  degrees  of  freedom,  is  symmetric  and  positive
definite,  is the Coriolis and centrifugal term,  is
the gravitational term, and  is the control input. Inspired by
[38], one can design the following controller:
 

τi =Ci(pi, ṗi) ṗi+gi(pi)+Mi(pi)ui,∀i ∈ V f (44)

p̈i = ui
Mi(pi)

τ f

such  that  the  model  (43)  can  be  transformed  into  a  double-
integrator  dynamical  model ,  where  we  have  used  the
fact that the inertial matrix  is always positive definite.
Therefore,  by  substituting  our  proposed  formation  maneu-
vering laws (16) and (40) into (44), one can directly derive the
formation  maneuvering  control  law  for  the  followers
governed by Lagrangian agent dynamics.  

B.  Construction of Desired Angle Rigid Formations by Minimum
Number of Angle Constraints

S△i1 j1k1 , (i1, j1,k1) ∈ A
2n−4

n−2

n−2

For  the  2D  case,  since  the  sum  of  three  interior  angles  in
each triangle is constant, only two independent triplets exist in
each .  Therefore,  to  construct  the  desi-
red  angle  rigid  formation,  one  can  select  angle
constraints  from  triangles,  which  is  the  minimum
number  of  constraints  to  guarantee  triangular angle  rigidity
[23].  The  combination  form  of  these  triangles  can  be
constructed  by  using  the  Type-I  vertex  addition  (Case  1)  in
[23].

Ā (4∗3+3)∗nA

Ā

3n−6 Ā

For the 3D case, the minimum number of angle constraints
in  is  since each tetrahedron has 4 triangular
faces and three additional angle constraints with respect to the
Z-axis.  However,  many  of  these  angle  constraints  in  are
dependent.  Instead,  we  now  show  how  to  use  the  minimum
number of angle constraints, i.e., , to make  Z-weakly
angle rigid.

α∗312,α
∗
123

α∗(3Z,123)
−→
3Z P123

△123
△123

4, . . . ,N
△123

△1′2′3 α∗(3Z,123)−→
3Z

−→
21×−→23

The first step uses three angle constraints:  and the
angle  between  the  ray  and  the  plane .  As
shown in Fig. 2,  the first  two angle constraints will  make the
interior angles of  unique, and the third angle constraint
will allow  to only translate, scale, and rotate along the Z-
axis.  Subsequently,  we  use  similar  angle  constraints  to  add
agents  sequentially,  see Fig. 2 ,  of  which  each  agent
needs  three  angle  constraints.  Note  that  to  distinguish 
and the reflected , we require that  is the angle

between  and the normal vector of . The same case

3∗ (N −2)

applies to all the remaining vertices from 4 to N. Then, it can
be verified that all the interior angles and the angles between
the  edges  of  those  tetrahedra  and Z -axis  are  uniquely
determined.  Therefore,  only  angle  constraints  are
needed for this construction.
 

1
2

3

Z

1 2

3

Z

4
2'

1'
i−3 i−2

i−1

Z

i

 
Fig. 2.     Construct Z-weakly angle rigid formations by minimum number of
angle constraints.  

VI.  Simulation Examples

This section presents two simulation examples with 4 follo-
wers  to  validate  the  effectiveness  of  the  proposed  formation
maneuvering algorithms in 2D and 3D, respectively.  

A.  Formation Maneuvering in 2D Under Controller (15)

p1(0) = [−1;−3], p2(0) = [1;−3], p3(0) = [0.4;−4.6], p4(0) =
[1.1;−5], p5(0) = [−2;−3.7], p6(0) = [2;−3.5], ṗ1(0) = [0;1],
ṗ2(0) = [0;1], ṗ3(0) = [0.1;−0.1], ṗ4(0) = [0.2;0.1], ṗ5(0) =
[−0.1;−0.1], ṗ6(0) = [0.4;−0.3]

kp = 3,kv = 12

In this simulation, we consider agents 1 and 2 as leaders and
agents  3  to  6  as  followers.  The  agents’ initial  states  are:

  
  

  
.  The  desired  formation  is

shown  in Fig. 3 .  The  control  gains  are .  We
assume  that  the  two  leaders  have  the  capability  of  autonom-
ously maneuvering through a 2D unknown environment with
obstacles,  which can be  achieved by using high-level  motion
planning algorithms.  This  simulation uses a  polynomial  form
to  plan  the  maneuvering  parameters  [29,  Section  V.B].  The
agents’ moving trajectories are shown in Fig. 4, which include
translational,  rotational  and  scaling  maneuvering.  The
evolution  of  angle  errors  is  shown in Fig. 5 ,  which  converge
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Fig. 3.     The desired formations in 2D and 3D.
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Fig. 4.     Formation maneuvering trajectories in 2D under (15).
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to  zero.  The  angle  errors  are  observed  to  be  nonzero  during
the  maneuvering  process  because  the  leaders  have  time-
varying velocity and the followers only execute (16).  

B.   Formation  Maneuvering  in  2D  Under  the  Sliding  Mode
Controller (20)

kp = 6,kv = 1,γ1 = 5,k1 = 10

In this simulation, we use the same initial states and desired
formation  as  those  in  Section  VI-A.  The  control  gains  are

.  The  simulation  results  are  sh-
own  in Figs. 6  and  7 .  Compared  with Figs. 4  and  5,  the
convergence  speed  is  faster  and  the  overshoot  is  larger  in
Figs. 6 and 7.  

C.  Formation Maneuvering in 3D Under Controller (40)

p1(0) = [−4+3
√

3;0;
2.5/
√

3], p2(0) = [−4;2;−2], p3(0) = [−4.4; −2.2; −2.42],
p4(0) = [−4.4;0;6.01],p5(0) = [−5.5;1.65;2.2],p6(0) = [−4.95;
3.3;−0.55], ṗ1(0) = [0;1.1;0], ṗ2(0) = [0;1.05;0], ṗ3(0) =
[0.1;0.2;−0.1], ṗ4(0) = [0.2;−0.1;0.1], ṗ5(0) = [0.2;−0.1;
−0.2], ṗ6(0) = [0.1;0.1;0.1]

1234, 1345, 3456
kp = 16,kv = 6

We consider agents 1 and 2 as leaders and agents 3 to 6 as
followers. The agents’ initial states are: 

  
  

  
  

 . The desired formation consists of
three  tetrahedra ,  which  is  shown  in
Fig. 3.  The control gains are .  The agents’ mo-
ving trajectories  are shown in Fig. 8,  which demonstrates  the
capability of simultaneous translational, rotational and scaling
maneuvering. The evolution of angle errors is shown in Fig. 9.
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Fig. 8.     Formation maneuvering trajectories in 3D under (40).
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Fig. 9.     Evolution of angle errors in 3D under (40).  

VII.  Conclusion
This  paper  has  successfully  achieved  the  maneuvering  of

angle  rigid  multi-agent  formations  in  2D and 3D with  global
convergence  guarantees.  For  the  2D  case,  a  formation
algorithm has been designed to globally maneuver angle rigid
formations  using  only  relative  position  and  velocity
measurements in agents’ local  coordinate frames.  For the 3D
case,  we  have  established  angle-induced  linear  equations  by
assuming that all the agents have a common Z direction. Then,
we  have  proposed  a  formation  algorithm  to  maneuver Z-
weakly  angle  rigid  formations,  where  the  number  of  each
agent’s required neighbors is reduced to three.
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