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a b s t r a c t

This paper proposes an elevation angle rigidity theory in both 2D and 3D spaces, and applies it to
solve multi-agent formation control with only inter-agent bearing/direction measurements in agents’
local coordinate frames. Motivated by the sensor technology in measuring elevation angle and angular
diameter, we develop elevation angle rigidity by attaching each agent in a multi-agent framework
with a rod in 2D and a ball in 3D, respectively. By defining the elevation angle rigidity matrix,
conditions for infinitesimal elevation angle rigidity are derived. Compared to previously developed
angle rigidity-based and bearing rigidity-based formation control laws, the proposed elevation angle
rigidity-based control law can maintain the gradient-based control property. Compared to distance-
based formation control laws, less sensor measurements are required. The formation maneuvering with
desired translation and rotation is also realized by using only local bearing measurements. Simulation
examples illustrate the advantages and effectiveness of the proposed approach.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Motivated by the applications in mechanical structures, bio-
ogical materials and multi-agent networks (Thorpe & Duxbury,
999), distance rigidity has been a popular and powerful tool in
nalyzing stability and structures of distance-constrained frame-
orks since the 1970s (Asimow & Roth, 1978). By using a set
f distance constraints on the corresponding edges of a graph,
ll the distances in a rigid framework are maintained when its
ertices’ positions are perturbed locally (Anderson, Yu, Fidan,
Hendrickx, 2008). By describing a geometric shape by a set

f distance constraints, distance rigidity has been successfully
tilized as a key tool in formation shape control of multiple
utonomous agents (Anderson et al., 2008; Han, Lin, & Fu, 2015;
lfati-Saber & Murray, 2002; Yang, Cao, Fang, & Chen, 2018). Most
f the formation control laws developed upon distance rigidity
re the gradient of a potential function consisting of distance
rrors (Krick, Broucke, & Francis, 2009). Therefore, each agent’s
easurements in distance rigidity-based formation control laws
re mainly inter-agent relative positions (Dimarogonas & Johans-
on, 2009). Note that these relative positions can be measured in
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Tanner under the direction of Editor Christos G. Cassandras.

∗ Corresponding author.
E-mail addresses: liangming.chen@ntu.edu.sg (L. Chen), z.sun@tue.nl

Z. Sun).
ttps://doi.org/10.1016/j.automatica.2022.110310
005-1098/© 2022 Elsevier Ltd. All rights reserved.
agents’ local coordinate frames since distance constraints remain
the same under different coordinate frames (Ahn, 2020).

Recently, many other types of rigidity concepts are devel-
oped, including bearing rigidity (Zhao & Zelazo, 2016), angle
rigidity (Chen, Cao, & Li, 2021; Jing, Zhang, Lee, & Wang, 2019),
ratio-of-distance rigidity (Cao, Han, Li, & Xie, 2019) and their
mixture with distance rigidity (Kwon, Sun, Anderson, & Ahn,
2019). These novel rigidity theories introduce some new con-
straints to guarantee the uniqueness of multi-agent frameworks,
e.g., bearings, angles and their mixture with distances. From the
application perspective, these rigidity notions also enable novel
design of formation control laws that involve different sensor
measurements to achieve a desired multi-agent formation. For
example, based on the developed bearing rigidity, bearing-only
formation control law is proposed in Zhao and Zelazo (2016)
to almost globally stabilize a target formation. Since an inter-
agent bearing can be measured by monocular cameras, sonars
and passive radars, bearing-only formation control laws have less
stringent requirement on agents’ sensor measurement (Zhao &
Zelazo, 2019) than the distance rigidity-based formation laws.
However, bearing measurement is coordinate-dependent, which
implies that the alignment of all agents’ local coordinate frames
with that of a global coordinate frame is required in implement-
ing the proposed bearing-only formation control law. Different
from bearing constraints, each interior angle constraint formed
by three agents is coordinate-free, which motivates the study of
angle rigidity (Chen et al., 2021; Jing et al., 2019). By choosing the

https://doi.org/10.1016/j.automatica.2022.110310
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osine of angle constraints as the angle function, a gradient-based
ontrol law is proposed in Jing et al. (2019) which requires local
elative position measurements and inter-agent communication
f neighbors’ real-time angle errors. In Chen et al. (2021), signed
ngle constraints are defined and the designed control law only
ses local bearing/direction measurements. The desired angle-
onstrained formation shape in Chen et al. (2021) is constructed
hrough a sequential and directed form, while there does not exist
corresponding potential function whose gradient corresponds

o the designed control law in Chen et al. (2021). However the
radient-based control structure is a favored property in the local
nd the global stability analysis of a general formation.
Recently, the paper Chan, Jayawardhana, and de Marina (2021)

as first proposed to attach each planar agent with a circular disk
o solve the bearing-only formation control problem, in which a
radient-based formation control law is designed using the infor-
ation of the measured bearings. Motivated by recent advances
f sensor technology in measuring elevation angle and angular
iameter, we propose a novel solution in this paper to solve the
earing-only formation problem in both 2D and 3D spaces. First,
e develop an elevation angle rigidity theory by attaching each
gent in the multi-agent framework with a rod in 2D and a ball
n 3D, under which the elevation angle and angular diameter can
e measured by available sensing technologies, e.g., cameras or
ensor arrays. Then, we define the cotangent and cosecant of the
levation angle as the elevation angle function in 2D and 3D, re-
pectively. By defining the elevation angle errors as the potential
unction, we propose a gradient-based bearing-only control law
or stabilizing a target formation. The advantages of this solution
nclude that the bearing-only control law can be implemented
ocally without using the information of the rod’s height or ball’s
adius, that the desired formation can be more general than the
xisting angle-constrained sequential formations, and that the
radient control property is maintained.
The rest of this paper is organized as follows. Section 2 gives

he definition of elevation angle and its rigidity in 2D. Section 3
ntroduces infinitesimal elevation angle rigidity. The application
o gradient-based bearing-only formation control is given in Sec-
ion 4. Then, Section 5 presents the elevation angle rigidity and
ts application in 3D. Simulations are provided in Section 6.

. Elevation angle and its rigidity in 2D

In this section, we introduce the concept of elevation angle
nd define elevation angle rigidity in 2D.

.1. Elevation angle

An undirected graph G(V, E) consists of a node set V =

1, . . . ,N} and an edge set E ⊆ V × V with the number of
elements M = |E|, in which (i, j) ∈ E ⇔ (j, i) ∈ E . The set
f neighbors of node i is denoted as Ni = {j ∈ V|(i, j) ∈ E}.
framework F(G, p) is a combination of an undirected graph
(V, E) and an embedding p with p = [pT1, . . . , p

T
N ]

T, pi ∈ R3, ∀i =

, . . . ,N . When we consider the 2D case, all points are in the XOY
plane, i.e., pi = [xi, yi, zi]T and zi = 0, ∀i ∈ V , under which we
all F(G, p) a planar framework, and p a planar configuration. We
ssume that there are no overlapping points in p, i.e., pi ̸= pj, i ̸=

. The bearing bij ∈ R3 is defined as a unit vector starting from pi
nd pointing towards pj (pi ̸= pj), i.e.,

ij =
pj − pi

∥pj − pi∥
=

pij
lij

(1)

To develop the elevation angle rigidity, we consider that each
node i is attached with a vertical rod with height hi > 0. Then,
the position of the end point i′ of the rod upon node i can be
2

Fig. 1. Three elevation angles ∡i2i′, i = 1, 3, 4 in node 2.

alculated by pi′ = pi + [0, 0, hi]
T. Now, we define the elevation

angle αij ∈ (0, π
2 ) from node i towards node j as

αij := ∡jij′ = arccos(bTijbij′ ) = arctan
(
hj/lij

)
(2)

If all nodes’ rods are with the same height hi = hj = hc, ∀i ∈ V ,
then it follows that

αij = αji = arctan
(
hc/lij

)
(3)

Correspondingly, αij ̸= αji if hi ̸= hj. In this work, we consider
the case that rods’ heights hi = hc > 0 are the same for all nodes
i ∈ V . As shown in Fig. 1, three elevation angles α21, α23, α24 are
efined for node 2.

.2. Elevation angle rigidity

Before giving the definition for elevation angle rigidity, we first
ive the definitions of equivalence and congruence between two
rameworks.

efinition 1. Two frameworks F1(G, p) and F2(G, q) with the
same graph G(V, E) are equivalent if

αij(pi, pj) = αij(qi, qj), ∀(i, j) ∈ E. (4)

hey are congruent if

ij(pi, pj) = αij(qi, qj), ∀i, j ∈ V. (5)

According to the definitions of equivalent and congruent
rameworks, we now define elevation angle rigidity and global
levation angle rigidity in 2D.

efinition 2 (Elevation Angle Rigidity). A planar framework
(G, p) is elevation angle rigid if there exists an ϵ > 0 such
hat every planar framework F ′(G, q) that is equivalent to it and
satisfies ∥q − p∥ < ϵ, is congruent to it.

Definition 3 (Global Elevation Angle Rigidity). A planar framework
F(G, p) is globally elevation angle rigid if every planar framework
that is equivalent to it is also congruent to it.

3. Infinitesimal elevation angle rigidity in 2D

Similar to distance rigidity, elevation angle rigidity matrix
plays an important role in evaluating infinitesimal elevation angle
rigidity. We first introduce the elevation angle function, whose
partial derivative with respect to the position vector defines
elevation angle rigidity matrix.

For a given planar framework F(G, p), we define the elevation
angle function fE(p) : R3N

→ RM by

f (p) := [f , . . . , f ]
⊤, (6)
E 1 M
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here

k := cotαk =
cosαij

sinαij
=

lij
hc

, k = 1, . . . ,M (7)

is the mapping from the position vector [pTi , p
T
j ]

T of the kth edge
(i, j) in E to the cotangent of the elevation angle αij. Note that
αk := αij = αji corresponds to the elevation angle associated with
the kth edge (i, j) that connects nodes i and j. Since αij ∈ (0, π

2 ),
ne has fk ∈ (0, ∞). Using this elevation angle function, one can
efine elevation angle rigidity matrix.

.1. Elevation angle rigidity matrix

We consider the kth edge (i, j) in E and taking the time-
erivative of fk yields
dfk
dt

= h−1
c

dlij
dt

= h−1
c bTij(ṗj − ṗi) =

∂ fk
∂pi

ṗi +
∂ fk
∂pj

ṗj (8)

hich implies ∂ fk
∂pi

= −h−1
c bTij ∈ R1×3 and ∂ fk

∂pj
= h−1

c bTij ∈ R1×3.
ased on this fact, we define an elevation angle rigidity matrix
y taking the partial derivative of elevation angle function fE(p)
ith respect to the position vector p

dfE(p)
dt

=
∂ fE(p)

∂p
ṗ = Re(p)ṗ, (9)

where Re(p) ∈ RM×3N is called the elevation angle rigidity matrix,
hose rows are indexed by the elements of E and columns are

the vertices, i.e.,

Re(p) =
∂ fE(p)

∂p
=

⎡⎢⎢⎢⎣
··· Vertex i ··· Vertex j ···

Edge 1 · · · · · · · · · · · · · · ·

··· · · · · · · · · · · · · · · ·

Edge k of (i,j) 0 −h−1
c bTij 0 h−1

c bTij 0
··· · · · · · · · · · · · · · · ·

Edge M · · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎦ (10)

ote that the nonzero element in the distance rigidity matrix is
he transpose of relative position pij, while in the elevation angle
igidity matrix, the corresponding element is the transpose of
earing bij. Since the framework is in the XOY plane, the Z-axis

component in bij will be zero, which yields a zero column under
each vertex i in (10).

For a planar framework F(G, p), its elevation angle-preserving
motions satisfy ḟE(p) = Re(p)ṗ = 0 which include translation
nd rotation of the framework F(G, p) in the XOY plane. There-
ore, the null space of the elevation angle rigidity matrix Re(p)
ncludes translation and rotation with respect to the framework,
hich can be described by linear subspaces spanned by the
hree vectors ξ1 = 1N ⊗ [1, 0, 0]⊤, ξ2 = 1N ⊗ [0, 1, 0]⊤, ξ3 =

(Q0p1)⊤, (Q0p2)⊤, · · · , (Q0pN )⊤
]⊤

, where Q0 =

[
0 −1 0
1 0 0
0 0 0

]
s a skew-symmetric matrix, ⊗ represents Kronecker product and
N denotes the N × 1 column vector of all ones. Note that ξ1
nd ξ2 correspond to translation motions along the X and Y axes,
espectively, and ξ3 corresponds to a rotation of the framework
n the XOY plane. Then, one has the following lemma.

emma 1 (Rank of Elevation Angle Rigidity Matrix). For an elevation
ngle rigidity matrix Re(p), it always holds that Span{ξ1, ξ2, ξ3} ⊆

ull(Re(p)) and Rank(Re(p)) ≤ 2N − 3.

roof. Because each row sum of Re(p) equals zero, one has
e(p)ξ1 = 0 and Re(p)ξ2 = 0. Taking an arbitrary row in Re(p)
s an example, one has the corresponding row in Re(p)ξ3

h−1bTQ p + h−1bTQ p = h−1l bTQ b = 0 (11)
c ij 0 i c ij 0 j c ij ij 0 ij

3

here we have used the fact that bTijQ0bij = 0 holds for skew-
ymmetric matrix Q0. Therefore, one has Span{ξ1, ξ2, ξ3} ⊆

Null(Re(p)). It is obvious that ξ1, ξ2 are linearly independent.
uppose that ξ3 is linearly dependent to ξ1, ξ2, then ξ3 = aξ1+bξ2

with at least one nonzero a ∈ R or b ∈ R, which implies
pi = pj, ∀i, j ∈ V . Because there are no overlapping points in
p, one has that ξ1, ξ2, ξ3 are linearly independent.

Since there are N columns in Re(p) whose elements are zero
nd at least three linearly independent vectors ξ1, ξ2, ξ3 in the

null space of Re(p), one has Rank(Re(p)) = 3N − Null(Re(p)) ≤

3N − (N + 3) = 2N − 3. □

3.2. Infinitesimal elevation angle rigidity

First, we introduce infinitesimal elevation angle rigid motion.
Consider each pi, ∀i ∈ V of F(G, p) is on a differentiable path.
Define the path p(t) as an infinitesimal elevation angle rigid motion
of F if on the path fE(p) keeps constant, i.e., ḟE(p) = Re(p)ṗ ≡ 0.

e say such an infinitesimal elevation angle rigid motion p(t) is
trivial if it can be given by

pi(t) = Q(t)pi(t0) + W(t), ∀i ∈ V, t ≥ 0, (12)

here Q(t) ∈ R3×3 and W(t) ∈ R3 describe the rotation
atrix and the translation of the framework in the XOY plane,

espectively, and Q(t),W(t) are all differentiable functions.

efinition 4 (Infinitesimal Elevation Angle Rigidity). A planar
ramework F(G, p) is infinitesimally elevation angle rigid if all its
nfinitesimal elevation angle rigid motions p(t) are trivial.

Now, we present the necessary and sufficient condition to
heck infinitesimal elevation angle rigidity.

heorem 1. A planar framework F(G, p) is infinitesimally elevation
ngle rigid if and only if the rank of its elevation angle rigidity matrix
e(p) is 2N − 3.

Now we give the relationship between elevation angle rigidity
nd infinitesimal elevation angle rigidity.

heorem 2. If a planar framework F(G, p) is infinitesimally eleva-
ion angle rigid, then it is elevation angle rigid.

The proof of Theorems 1–2 is straightforward by follow-
ng Chen et al. (2021, Theorems 4, 6).

.3. Relationship between elevation angle rigidity and distance rigid-
ty

Both distance rigidity and elevation angle rigidity are defined
pon the framework F(G, p). The following proposition gives the
elationship between elevation angle rigidity and distance rigidity
or planar configurations.

roposition 1. For a given planar framework F(G, p), it is distance
igid if and only if it is elevation angle rigid.

roof. According to the definition of elevation angle in (2), one
as that for the case hi = hj = hc , αij(pi, pj) = αij(qi, qj) if and
nly if lij(pi, pj) = lij(qi, qj). Therefore, according to the definition
f distance rigidity, one concludes that they are equivalent. □

For infinitesimal rigidity, we also have the corresponding
roposition.

roposition 2. For a given planar framework F(G, p), it is infinites-
mally distance rigid if and only if it is infinitesimally elevation angle
igid.
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roof. Note that the distance rigidity matrix can be described by

d(p) =
∂ fD(p)

∂p
= hcdiag{lij}Re(p) (13)

here fD(p) = [· · · , ∥pi−pj∥2, . . .]T, diag{lij} ∈ RM×M is a diagonal
atrix with the distance of the kth edge as its diagonal element.
ecause there are no overlapping points in position vector p, the
iagonal matrix diag{lij} is a nonsingular matrix with full rank.
herefore, one has that

ank(Rd(p)) = Rank(Re(p)) (14)

ccording to Theorem 1, one has that the rank equality
ank(Re(p)) = 2N − 3 is a necessary and sufficient condition
or infinitesimal elevation angle rigidity. Therefore, one con-
ludes the equivalence between infinitesimal distance rigidity
nd infinitesimal elevation angle rigidity. □

When p is generic (Connelly, Jordán, & Whiteley, 2013) and the
ramework F(G, p) is infinitesimally elevation angle rigid, with a
light abuse of notions, we also say the graph G is infinitesimally
levation angle rigid. When F(G, p) is infinitesimally elevation
ngle rigid and |E| = 2N − 3, we say F(G, p) is infinitesimally
nd minimally elevation angle rigid.

emark 1. If agents have different hi, then αij ̸= αji. In this
ase, lij = lji ̸= hifk because f(i,j) ̸= f(j,i) and fk depends on the
irection between i and j. This reveals the difference between
levation angle function and distance rigidity function. For an
ndirected graph, one always has lij = lji in distance rigidity
unction. However, this is not the case for elevation angle function
ince f(i,j) ̸= f(j,i) when hi are different, which gives more design
reedom and properties than that in the distance rigidity function.

. Bearing-only formation control in 2D

In this section, we employ the developed elevation angle rigid-
ty in 2D to the application of bearing-only formation control. We
ropose a novel bearing-only formation control law by taking the
radient of a properly defined potential function. The objective is
o design control law by using bearing-only information under an
nfinitesimally elevation angle rigid graph G(V, E) such that

lim
→∞

eij(t) = lim
t→∞

(αij(t) − α∗

ij ) = 0 (15)

here α∗

ij ∈ (0, π
2 ) is the desired elevation angle from agent i to

gent j.

.1. Gradient-based formation stabilization

For an agent i moving in the XOY plane, we consider its
ynamics governed by

˙ i = ui, i = 1, . . . ,N, (16)

where pi = [xi, yi, zi]T ∈ R3 denotes agent i’s position, ui =

uxi, uyi, uzi]
T

∈ R3 is the control input to be designed, and N is the
umber of agents in the group. Since all agents lie in XOY plane,
ne always has zi = 0 and uzi = 0. The constraint is that agent i
an only measure bearings bij, bij′ with respect to its neighboring
gent j, j ∈ Ni.
In angle rigidity-based formation control (Jing et al., 2019),

he gradient of a potential function consisting of angle errors is
ot a bearing-only control law. Conversely, there does not exist a
orresponding potential function for the proposed angle rigidity-
ased bearing-only control law (Chen et al., 2021). To obtain
oth favorable properties, we now design an elevation angle
igidity-based bearing-only control law which is the gradient of a
4

potential function. To be specific, we design the potential function
as

Vs =

N∑
i=1

Vsi =
hc

4

N∑
i=1

∑
j∈Ni

(cotαij − cotα∗

ij )
2

=
hc

2
(fE(p) − f ∗

E )
T(fE(p) − f ∗

E ) (17)

here f ∗

E = [cotα∗

1, . . . , cotα
∗

k , . . . , cotα
∗

M ]
T. Taking the gradient

f (17) with respect to pi yields the control law for agent i

i = −(
∂Vs

∂pi
)T

= −hc

∑
j∈Ni

(
∂ cotαij

∂pi
)T(cotαij − cotα∗

ij ) (18)

Combining (8) with (18), one has the control law as

ui =

∑
j∈Ni

bij(cotαij − cotα∗

ij )

=

∑
j∈Ni

bij

⎛⎝ bTijbij′√
1 − (bTijbij′ )2

− cotα∗

ij

⎞⎠ (19)

n which only bearings bij and bij′ are used in the final form of
19). Note that the information of rod’s height hc is not required
n control law (19). Before giving the main result, we introduce
ome important lemmas.

emma 2. If a planar framework F(G, p) is infinitesimally and
inimally elevation angle rigid, then Re(p)RT

e(p) is positive definite.

roof. When F(G, p) is infinitesimally minimally elevation angle
igid, according to Lemma 1, one has Rank(Re(p)) = 2N − 3 and
ull(Re(p)) = N + 3. Therefore, RT

e (p)Re(p) ∈ R3N×3N has (N + 3)
ero eigenvalues. Because RT

e (p)Re(p) is positive semi-definite, the
ther (2N−3) eigenvalues of RT

e (p)Re(p) are all positive. Note that
e(p)RT

e (p) ∈ R(2N−3)×(2N−3) shares the same (2N − 3) eigenvalues
s RT

e (p)Re(p), but RT
e (p)Re(p) has extra 3N − (2N −3) = N +3 zero

igenvalues. Then, it follows that all the eigenvalues of Re(p)RT
e (p)

re all positive, i.e., Re(p)RT
e (p) is positive definite. □

emma 3. For implementing the bearing-only control law (19), each
gent can use its own local coordinate frame to measure the bearings
ij and bij′ , and a global coordinate frame is not required.

The proof of Lemma 3 follows similarly to that in distance-
ased formation control law (e.g., Lemma 2 of Sun, Garcia de
arina, Anderson, & Cao, 2018) and is omitted here. Therefore,
ifferent from the bearing-only formation control law (Zhao &
elazo, 2016), the proposed bearing-only control law (19) does
ot require a common or global coordinate frame for bearing
easurements and control implementation.
Now, we present the first main result on bearing-only forma-

ion stabilization based on elevation angle rigidity.

heorem 3. Consider an N-agent system governed by (16) in the
OY plane. If the graph G is infinitesimally and minimally elevation
ngle rigid, under the control law (19), all agents will locally and
symptotically achieve the desired elevation angles defined in (15).

roof. We first write all agents’ dynamics into a compact form

˙ = u = −

(
∂Vs

∂p

)T

= −

(
∂Vs

∂ fE(p)
∂ fE(p)

∂p

)T

= −
[
hc(fE(p) − f ∗

E )
TRe(p)

]T
T (

∗
)

= −hcRe (p) fE(p) − fE (20)
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hen, it follows that

˙s =
∂Vs

∂p
ṗ = −

(
∂Vs

∂p

)(
∂Vs

∂p

)T

= −h2
c (fE(p) − f ∗

E )
TRe(p)RT

e (p)
(
fE(p) − f ∗

E

)
ccording to Lemma 2, Re(p)RT

e (p) is positive definite when the
rajectory of p lies in a neighborhood set U1 of the desired
quilibrium {p ∈ R3N

|fE(p) = f ∗

E }. Note that U1 exists since V̇s ≤ 0.
herefore, for p ∈ U1, one has V̇s < 0 and

˙s ≤ −h2
cλmin∥fE(p) − f ∗

E ∥
2 (21)

here λmin = min{λmin
(
Re(p)RT

e (p)
)
, ∀p ∈ U1}. Then, one has the

ocal exponential convergence of cotαij − cotα∗

ij , which implies
he asymptotic convergence of eij = αij − α∗

ij . □

emark 2. Compared to Dimarogonas and Johansson (2009), the
roof in Theorem 3 constructs a special form of potential function
s whose gradient (19) only requires local bearing measurements,
n contrast to the relative position measurements needed in Di-
arogonas and Johansson (2009). Note that gradient controller is
favorable property for the formation control system, while sev-
ral popular bearing-only formation controllers (Zhao & Zelazo,
016) are not gradient-based. Instead of focusing on tree or cyclic
ormations, uniquely determined elevation angle rigid formations
re achieved in Theorem 3, where the formation error ∥fE(p)−f ∗

E ∥

onverges to zero exponentially.

Now, we conduct the collision avoidance analysis to obtain
he bound on the inter-agent initial distances, under which the
ontrol law (19) is well-defined during the evolution. Note that

ij(t) =lij(0) +

∫ t

0
l̇ij(τ )dτ = lij(0) +

∫ t

0
bTij(ṗj − ṗi)dτ

=lij(0) +

∫ t

0
bTij(

∑
k∈Nj

bjk(cotαjk − cotα∗

jk)

−

∑
j∈Ni

bij(cotαij − cotα∗

ij ))dτ

≥lij(0) −

∫ t

0
2

M∑
i=1

| cotαi − cotα∗

i |dτ (22)

Using the fact that ∥x∥1 ≤
√
n∥x∥2 for x ∈ Rn, one has

M
i=1 | cotαi − cotα∗

i | ≤
√
M∥fE(p) − f ∗

E ∥. Then it follows that
ij(t) ≥ lij(0)−2

√
M

∫ t
0 ∥fE(p)− f ∗

E ∥dτ . According to (21), one has

˙s ≤ −2hcλminVs (23)

hich implies Vs(t) ≤ V (0)e−2hcλmint . Therefore, one has

fE(p) − f ∗

E ∥ =

√
2Vs/hc ≤

√
2Vs(0)/hce−hcλmint (24)

Hence, one has

lij(t) ≥ lij(0) −
2

hcλmin

√
2MVs(0)

hc
(1 − e−hcλmint ) (25)

inally, we come to the following conclusion.

heorem 4. Consider an N-agent system governed by (16) in the
OY plane is controlled by (19) and the graph G is infinitesimally and

minimally elevation angle rigid. There exists a positive constant κ

uch that if lij(0) > 2
hcκ

√
2MVs(0)

hc
, ∀(i, j) ∈ E , then all the neighboring

agents will not collide with each other for ∀t > 0.

Proof. Since lij(0) > 0, ∃T1 > 0 such that in [0, T1), no collision
happens between agents i and j. Assume that collision may occur
5

Table 1
Comparison between distance-based and elevation angle-based approaches.

Approach

Property Distance-based Elevation angle-based

Shape specifications Distances l∗ij Elevation angles α∗

ij
Sensor measurements Relative positions pi − pj Bearings bij, bij′

between agents i and j in [T1, ∞), then there must exist a time
instant Tc such that lij(Tc) = 0. Since no collision happens
in [T1, T−

c ), the closed-loop system is well-defined in [T1, T−
c ).

Letting κ = λmin and following the calculations in (22)–(25), one
has that lij(T−

c ) ≥ lij(0) −
2

hcλmin

√
2MVs(0)

hc
> 0 which is bounded

away from zero. This contradicts the assumption that collision
happens at Tc . Thus, no collision will occur in [0, ∞). □

Remark 3. By setting hc cotα∗

ij = l∗ij, the potential function
(17) can also be seen as a realization of the potential function
for distance-based formation control (Dimarogonas & Johansson,
2009; Sun, Mou, Anderson, & Cao, 2016). However, in terms of
the formation shape specification and required measurements,
the controller (19) is quite different from the controllers in Di-
marogonas and Johansson (2009) and Sun et al. (2016). Under the
same potential function, our gradient-based elevation angle for-
mation controller only needs local bearing measurements, while
the gradient-based distance rigidity formation controller needs
relative position measurements. This justifies the advantages of
the elevation angle approach. Table 1 summarizes the differ-
ence between distance-based formation approach and elevation
angle-based formation approach.

Remark 4. Based on the measurements bij and bij′ , agent i can de-
rive the scaled distance lij/hc with a common hc . Under this fact,
compared to the distance formation approach, the advantages of
using the elevation angle approach lie in two aspects. The first
is that the control law (19) is independent of hc . The second is
that hi can be different from hj, which offers more flexibility for
distributed formation systems.

4.2. Formation maneuvering

To steer the formation maneuver with desired translation,
rotation and a desired size, we design a bearing-only formation
maneuvering control law as

ui =

∑
j∈Ni

bij(cotαij − γc cotα∗

ij + µij) (26)

=

∑
j∈Ni

bij(cotαij − γc cotα∗

ij ) +

∑
j∈Ni

µijbij

where γc ∈ R+ is used to adjust the size of the formation, µij ∈ R
is used to realize the desired collective translation and rotation.

When γc ̸= 1 and µij = 0, (i, j) ∈ E , we prove that the
desired formation size can be achieved. By using (7), one has
cotαij −γc cotα∗

ij =
lij−rc l∗ij

hc
where l∗ij is the distance corresponding

to the desired angle α∗

ij . By following the proof in Theorem 3, one
has that limt→∞(cotαij(t) − γc cotα∗

ij ) = 0 which implies that
limt→∞(lij(t)−γc l∗ij) = 0. Therefore, by adjusting the parameter γc
n all the agents, the formation size characterized by the distance
c l∗ij between agents can be achieved. Specifically, 0 < γc < 1

corresponds to formation shrinking and γc > 1 corresponds to
ormation enlargement. Since γc is a constant number, all agents
an get it by low-cost communication.
When γc ̸= 0 and µij ̸= 0, (i, j) ∈ E , we illustrate how to de-

ign µ such that translational and rotational maneuvering can be
ij
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ealized. Note that when the desired formation shape is achieved,
ne has limt→∞ ṗi(t) = limt→∞ ui(t) = limt→∞

∑
j∈Ni

µijbij(t).
Therefore, we can properly design µij such that

∑
j∈Ni

µijbij forms
the desired translational velocity and rotational velocity. Let v∗

c =

v∗
cx, v

∗
cy, 0]

T be the translational velocity in the XOY plane, and
∗
c ∈ R be the rotational speed. Consider a reference configura-
ion p∗

= [p∗⊤

1 , . . . , p∗⊤

N ]
⊤ which satisfies all the desired elevation

ngles α∗

ij . Then, we define bearing b∗

ij =
p∗
j −p∗

i
∥p∗

j −p∗
i ∥

and formation

entroid p∗
c =

∑N
i=1 p∗

i
N . Now, we design the parameters µij by∑

∈Ni

µijb∗

ij = v∗

c + ω∗

cQ0(p∗

c − p∗

i ) (27)

riting (37) into a compact form yields

cRT(p∗)µ = 1N ⊗ v∗

c + ω∗

c (Q0 ⊗ IN )(1N ⊗ p∗

c − p∗) (28)

here µ = [µ1, . . . , µM ]
T
⊗ 13. Then, one can calculate

= h−1
c

(
RT(p∗)

)†
[1N ⊗ v∗

c + ω∗

c (Q0 ⊗ IN )(1N ⊗ p∗

c − p∗)]

here
(
RT(p∗)

)† denotes the pseudo-inverse of matrix RT(p∗).
ow, we have the following main result on bearing-only forma-
ion maneuvering.

heorem 5. Consider an N-agent system governed by (16) in the
OY plane. If the graph G is infinitesimally and minimally elevation
ngle rigid and µij are sufficiently small, under the maneuvering
ontrol law (26) with (28), all agents will locally achieve the desired
ormation with desired scale described by γc , and desired motion
ith translation speed ∥v∗

c ∥ and rotation speed ω∗
c .

roof. First, the compact form of all agents’ dynamics is derived
s

˙ = −hcRT
e (p)

(
fE(p) − γc f ∗

E

)
+ hcRT

e (p
∗)µ (29)

aking the time-derivative of (17) yields

˙s =
∂Vs

∂p
ṗ = −

(
∂Vs

∂p

)(
∂Vs

∂p

)T

= − h2
c (fE(p) − γc f ∗

E )
TRe(p)RT

e (p)
(
fE(p) − γc f ∗

E

)
+ h2

c (fE(p) − γc f ∗

E )
TRe(p)RT

e (p
∗)µ

≤ − h2
c (λmin − β)∥fE(p) − γc f ∗

E ∥
2 (30)

where we consider the states confined in the set S = {p ∈

R3N
|∥fE(p) − γc f ∗

E ∥ ≤ ρ}, where Re(p)RT
e (p

∗)µ is locally Lipschitz
with respect to fE(p) − γc f ∗

E , Re(p∗)RT
e (p

∗)µ = 0, λmin is the
minimum positive eigenvalue of Re(p)RT

e (p) in S, and β and ρ are
ositive constants. Since µij and β are sufficiently small, one has
imt→∞

(
fE(p(t)) − γc f ∗

E

)
= 0. Using (26), one has

lim
t→∞

ṗi(t) = lim
t→∞

∑
j∈Ni

µijbij(t)

= lim
t→∞

RT
∗

(
v∗

c + ω∗

cQ0(p∗

c − p∗

i )
)

(31)

here RT
∗

∈ R3×3 describes the rotation from b∗

ij to bij(t) along
the Z-axis. Since ∥RT

∗
v∗
c ∥ = ∥v∗

c ∥ and RT
∗
Q0(p∗

c − p∗

i ) = RT
∗
Q0R∗

t
(pc(t) − pi(t)) = Q0 (pc(t) − pi(t)), (31) implies that the desired
translation speed ∥v∗

c ∥ and rotation speed ω∗
c are achieved. □

5. Extension to 3D case

In this section, we extend the elevation angle rigidity to 3D
case where all agents lie in R3. Since some parts in 3D case are
similar to 2D case, we only introduce the differences.
6

Fig. 2. Three elevation angles ∡j′2j′′, j = 1, 3, 4 in node 2 in 3D.

.1. Elevation angle in 3D

In 3D case, we suppose that each node is auxiliarily attached
ith a (physical or virtual) ball with radius rc > 0. The elevation
ngle ᾱij ∈ (0, π/3) from point i to point j in 3D is defined as

¯ ij := ∡j′ij′′ = arccos(bTij′bij′′ ) = 2∡j′ij = 2 arcsin
rc
lij

where j′ and j′′ are the two points in agent j’s ball, j, j′, j′′, i
are coplanar and bTij′bjj′ = 0, bTij′′bjj′′ = 0. When lij = 2rc ,
i.e., agent i’s ball touches agent j’s ball in its surfaces, one has
ᾱij = 2 arcsin rc

2rc
=

π
3 . Hence, the range of ᾱij belongs to (0, π/3)

if i’s ball does not collide with agent j’s ball (see Fig. 2).
Now, we introduce the elevation angle function in 3D. For

each framework F(G, p), we define the elevation angle function
fE(p) : R3N

→ RM by

f̄E(p) := [f̄1, . . . , f̄M ]
T ,

where

f̄k := csc
ᾱk

2
= csc

ᾱij

2
=

1

sin ᾱij
2

=
lij
rc

, k = 1, . . . ,M (32)

is the mapping from the position vector [pTi , p
T
j ]

T of the kth edge
(i, j) in E to the cosecant of the half of elevation angle ᾱij. Since
ᾱij ∈ (0, π

3 ), fk ∈ (2rc, ∞). Using this elevation angle function,
one can define elevation angle rigidity and infinitesimal elevation
angle rigidity in 3D by following Sections 2 and 3, and details are
omitted here.

5.2. Gradient-based formation stabilization

To develop a gradient-based formation control law, we first
design the potential function as

V̄s =

N∑
i=1

V̄si =
rc
4

N∑
i=1

∑
j∈Ni

(csc ᾱij − csc ᾱ∗

ij )
2

=
rc
2
(f̄E(p) − f̄ ∗

E )
T(f̄E(p) − f̄ ∗

E ) (33)

where f̄ ∗

E = [cot ᾱ∗
1
2 , . . . , cot ᾱ∗

k
2 , . . . , cot ᾱ∗

M
2 ]

T. Taking the gradient
f (33) with respect to pi yields the control law for agent i

i = −

(
∂V̄s

∂pi

)T

(34)

= − rc
∑ (

∂ csc ᾱij

∂pi

)T

(csc
ᾱij

2
− csc

ᾱ∗

ij

2
)

j∈Ni
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ubstituting (32) into (34), the control law can be written as

i =

∑
j∈Ni

bij(csc
ᾱij

2
− csc

ᾱ∗

ij

2
)

=

∑
j∈Ni

bij

⎛⎝ 1√
(1 − bTij′bij′′ )/2

− csc
ᾱ∗

ij

2

⎞⎠ (35)

here only bearing information of bij and bij′ , bij′′ is required, and
we have used the fact that sin2( ᾱij

2 ) =
1−cos ᾱij

2 and sin ᾱij
2 > 0.

Note that the information of the ball’s radius rc is not required
in control law (35). With the gradient-based control law (35), we
present the main result.

Proposition 3. Consider an N-agent system governed by (16) in 3D.
If the graph G is infinitesimally and minimally elevation angle rigid,
under the control law (35), all agents will locally and asymptotically
achieve the desired elevation angles.

Proof. The proof is straightforward by following Lemma 2 and
Theorem 3. □

5.3. Formation maneuvering

To achieve collective motions, we design the bearing-only
formation maneuvering law as

ui =

∑
j∈Ni

bij(csc
ᾱij

2
− γc csc

ᾱ∗

ij

2
+ µij) (36)

=

∑
j∈Ni

bij

⎛⎝ 1√
(1 − bTij′bij′′ )/2

− γc csc
ᾱ∗

ij

2

⎞⎠ +

∑
j∈Ni

µijbij

imilarly, by using the reference formation configuration p∗, the
parameters µij satisfy∑
j∈Ni

µijb∗

ij = v∗

c + ω̄∗

c × (p∗

c − p∗

i ) (37)

here × denotes the cross product operation and ω̄∗
c ∈ R3 is

the desired angular velocity vector of the elevation angle rigid
formation. Writing (37) into a compact form yields

µ = r−1
c

(
RT(p∗)

)†
[1N ⊗ v∗

c + (ω̄∗

c ⊗ IN ) × (1N ⊗ p∗

c − p∗)]

Following (29)–(31), one can obtain similar results about forma-
tion maneuvering in 3D.

Remark 5. Compared with (Chan et al., 2021), the control laws
(19) and (35) are structurally simpler and also do not need the
information of the rod’s height and the ball’s radius. Furthermore,
the required bearing measurements in control laws (19) and
(35) can be obtained from vision-based target locating (Pachter,
Ceccarelli, & Chandler, 2007) or sensor arrays (Nielsen, 1994)
in agents’ local coordinate frames, which facilitates distributed
implementation of angle-constrained formations.

Remark 6. Note that the 2D elevation angle can also be defined
by following the way of defining 3D elevation angle or attaching
each node with a disk as employed in Chan et al. (2021). However,
due to the physical restrictions such as minimum inter-agent
distance to meet collision avoidance and visibility constraint, we
choose the way of attaching each node with a rod to define the
2D elevation angle, which is more practical to facilitate bearing
measurements.
7

Fig. 3. Trajectories in 2D formation stabilization.

Fig. 4. Elevation angle errors in 2D formation stabilization.

6. Simulation

In this section, we use simulation examples in 2D and 3D to
show the effectiveness and advantages of the proposed bearing-
only formation control laws.

We consider a four-agent formation graph with five edges
where hc = rc = 2. The initial states in the 2D case are set
as: p1(0) = [0.51; 2.21; 0], p2(0) = [−1.56; 0.63; 0], p3(0) =

1.74; −0.82; 0], p4(0) = [0.18; −2.82; 0]. The desired elevation
ngles are: α∗

12 = α∗

21 = π/4, α∗

13 = α∗

31 = π/4, α∗

32 = α∗

23 = π/4,
∗

42 = α∗

24 = 0.93, α∗

43 = α∗

34 = 1.11. For the 3D case, the
arameter changes are p4(0) = [0.18; −2.82; 5.21], α∗

43 = α∗

34 =

.80, α∗

41 = α∗

14 = 0.65.
Figs. 3 and 4 show the agents’ trajectories and the change of

levation angle errors, respectively, in the task of 2D formation
tabilization. Figs. 5 and 6 present the agents’ trajectories and
he change of elevation angle errors in 2D, respectively, in the
ask of 2D formation maneuvering when passing through narrow
assages with obstacle avoidance. Figs. 7–8 present the agents’
rajectories and the change of elevation angle errors in 3D, re-
pectively. It can be seen from Figs. 4, 6, and 8 that the elevation
ngle errors converge to zero in the three tasks.

. Conclusion

With the motivation of proposing a scalable bearing-only for-
ation control law, this paper has developed elevation angle

igidity in both 2D and 3D cases. By attaching each node with
rod in 2D and a ball in 3D, a desired formation has been
etermined by a set of elevation angle constraints. Then, the in-
initesimal elevation angle rigidity has been developed by study-
ng a proposed elevation angle rigidity matrix. We have further
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Fig. 5. Trajectories in 2D formation maneuvering.

Fig. 6. Elevation angle errors in 2D formation maneuvering.

Fig. 7. Trajectories in 3D formation stabilization.

Fig. 8. Elevation angle errors in 3D formation stabilization.
8

proposed bearing-only formation stabilization law to achieve the
desired formation, and bearing-only formation maneuvering law
to achieve the desired translation and rotation motions, respec-
tively. The main advantages of the proposed elevation angle-
based formation control law are that it has a gradient property
and only local bearing measurements are needed. Future work
will concentrate on designing globally or almost globally stable
bearing-only multi-agent formation control law based on the
advantage of the gradient property.
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