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Stabilizing Angle Rigid Formations With
Prescribed Orientation and Scale

Liangming Chen , Member, IEEE, Qingkai Yang , Member, IEEE, Mingming Shi , Yanan Li,
and Mir Feroskhan

Abstract—Angle rigid formations have the advantage
of requiring only local bearing/direction measurements in
their implementation. However, the capability of controlling
the orientation and scale of these formations has not been
explored. This undetermined orientation and scale can de-
grade the robustness of the formation against measure-
ment noise. To maintain both advantages of requiring less
sensor measurements and sustaining robustness against
measurement noise, this article aims to achieve a desired
angle rigid formation while simultaneously controlling its
orientation and scale. In this article, we first design a forma-
tion algorithm for the first three agents to achieve a desired
triangular formation with prescribed orientation and scale.
Using the control gain design technique, we then design
formation control algorithms for the remaining agents such
that the overall desired formation can be achieved under a
vertex addition operation. We present the role of generic
property from angle rigidity for the formation’s stability
analysis. We also highlight that with one additional relative
position measurement or two additional communication
channels, the local convergence to the corresponding de-
sired formation can be improved to a global convergence.
Experiments are conducted to validate the theoretical re-
sults and the advantages are highlighted in comparison
with other two formation control laws.

Index Terms—Bearing/direction measurement, formation
control, multiagent systems, prescribed orientation and
scale, angle rigidity.

I. INTRODUCTION

MULTIAGENT formation control has been extensively
studied recently due to its broad applications in robotic
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transportation in smart factories [1], drone light shows [2], and
satellite formation flying for Earth observation [3], to name a
few. The aim of multiagent formations is to control a group of
agents to form a desired geometric shape, which can be described
by absolute positions, relative positions, distances, bearings, or
angles [4]. When the absolute position can be measured via
a global positioning system (GPS), the position-based control
algorithm can globally stabilize the formation. Since precise
global positioning is expensive and unavailable in a GPS-denied
environment, the local sensing-based formation approaches are
more favored [4]–[9], which mainly include relative position-
based approach, distance-based approach, bearing-based ap-
proach, and angle-based approach.

When the orientations of all the agents’ coordinate frames
are the same, the relative position-based formation control al-
gorithms can also globally stabilize a formation. However, it
is relatively difficult to precisely align all agents’ coordinate
frames due to the existence of sensing noise and disturbances.
When a small misalignment on agents’ coordinate frames exists,
the formation will be distorted and an additional translational
motion will emerge [10], which is undesirable in engineering
practices [8]. To increase the robustness against the misalign-
ment of agents’ coordinate frames, a distance-based formation
approach [11]–[13] can be employed using the theoretical tool
of distance rigidity [12], [14], which allows each agent to have
its own local coordinate frame to measure relative positions.
Although the sensors for the alignment of agents’ coordinate
frames, such as compasses, are not required in the distance-
based formation approach, most of the distance-based formation
control algorithms can only stabilize the formation locally.

To further reduce the sensor equipment, the bearing forma-
tion approach has been studied based on the bearing rigidity
theory [6]. Instead of using relative position measurements, the
developed formation algorithms in [6] and [15] only require
bearing measurements, which can be acquired from cameras,
sonars, and sensors array [16]. Since bearing is a vector whose
description relies on a coordinate frame, the bearing formation
algorithms also require the alignment of all agents’ coordinate
frames. Unlike the bearing formation approach, angle formation
approach that is based on angle rigidity requires only bearing
measurements but allows all agents to have their own coordinate
frames to measure their respective bearings independently. This
is because the spanned angles among agents are invariant to
the orientations of the agents’ coordinate frames. However,
the orientation and scale of the angle rigid formations are
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undetermined [7], [17], which degrades the formation’s robust-
ness against noise and hampers the execution of some practical
tasks, such as obstacle avoidance during multirobot search and
rescue. To acquire both advantages of angle rigid formations
and robustness against noise, one can enforce constraints on
orientation and scale into the angle rigid formations.

Motivated by the aforementioned works, we aim to achieve
a desired angle rigid formation with prescribed orientation and
scale and simultaneously minimize the sensor measurements
to reduce the system cost. First, to reduce the requirement on
sensor equipment, we describe the desired formation by using
interior angles, which allow agents to have their own local
coordinate frames. To guarantee that the achieved formation is
unique, the angle-described formation is required to be angle
rigid, which can be constructed by first determining a triangular
formation for the first three agents. Subsequently, the remaining
agents are sequentially added into the desired formation using
a vertex addition operation, in which two new angle constraints
associated with the added agent will be specified. Therefore, the
orientation and scale of the whole formation can be controlled
by the first three agents’ triangular formation. Compared to the
previous results, the key contributions of this work lie in three
aspects.

1) By imposing relative position constraints to the first tri-
angular formation, the angle rigid formation is stabilized
with prescribed orientation and scale, which provides the
formation with more robustness against noise than the
angle rigid formations in [7] and [17].

2) By using a control gain design technique, a more general
angle formation algorithm is designed. We show that
the generic property of the agents’ desired formation
configuration plays an important role in the control gain
selection of the formation law. As compared to the earlier
work [17], the designed control law can stabilize all the
generic formations.

3) As compared to [7], [15], and [17], we also show that with
one additional relative position measurement on the first
three agents or two additional communication channels
on each of the other agents, the local convergence to their
corresponding desired formation can be improved to a
global convergence. Moreover, most of the agents can
implement their control laws in their own local coordinate
frames.

The rest of this article is organized as follows. Section II
presents the preliminaries and problem formulation. Section III
introduces the control of the first three agents. In Section IV, the
extension to the remaining agents is investigated.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Agents’ Dynamics

Consider a group of N(N ≥ 4) agents in the plane labeled
from 1 to N . Each agent i is governed by the single-integrator
dynamics

ṗi = ui, i = 1, . . . , N (1)

where pi ∈ R2 denotes agent i’s position described in a fixed
global coordinate frame

∑
g and ui ∈ R2 is the control input.

Fig. 1. Formation construction starting from a triangular shape.

B. Construction of the Desired Angle Rigid Formations

Define bearing bij :=
pj−pi

‖pj−pi‖ as the unit vector starting from
pi and pointing towardpj ,pi �= pj . The interior angleαkij can be
computed as αkij := �kij = arccos(bT

ijbik) ∈ [0, π] which is
independent of the orientation of the agent i’s coordinate frame.
We describe the desired formation by a set of interior angles. To
guarantee the achieved formation unique, we aim to control those
multiagent formations that are angle rigid. A planar formation
that consists of a set of agents and angle constraints among
them is said to be angle rigid if under appropriately chosen
angle constraints, the formation can only translate, rotate, or
scale as a whole when one or more of their positions are per-
turbed locally. An angle rigid formation with the configuration
p = [pT1 , . . . , p

T
N ]T ∈ R2N being generic, that is, no three agents

are collinear and no four agents are on a circle, is said to be
generically angle rigid. For more details about angle rigidity,
readers can refer to [17].

To construct a generically angle rigid N -agent formation
as shown in Fig. 1, according to the Type-I vertex addition
operation in [17], one can grow the formation by the following
N − 2 steps.

Step 1: One constructs the first triangular forma-
tion �123 using three angle constraints:
�123,�231, and �312.

Step 2: One adds agent 4 under the two angle constraints:
�214 and �124 (in this case 1, agent 4 has two
neighbors 1, 2), or �142 and �243 (in this case
2, agent 4 has three neighbors 1, 2, 3).
...

Step k-2: One adds agent k under the two angle constraints:
�j1kj2 and �j2kj3, j1, j2, j3 ∈ {1, . . ., k − 1},
or �j1j2k and �j2j1k.
...

Step N-2: One adds agentN under the two angle constraints:
�i1Ni2 and �i2Ni3, or �i1i2N and �i2i1N .

To guarantee the uniqueness of each agent’s position in step
2 to step N − 2 under the given two angle constraints, the
following assumption is needed.

Assumption 1: In the aforementioned step k, k = 2, . . . , N −
2 with the corresponding newly added agent i and its angle
constraints �j1ij2 and �j2ij3, we assume that the positions
of {i, j1, j2, j3} are generic.
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Remark 1: In Assumption 1, if {i, j1, j2, j3} are not generic,
agent i cannot be uniquely added because, for example, when
pi, pj1 , pj2 , pj3 are cocircle, pi and �ij1j2 are not unique under
the given two angle constraints. The formation’s orientation and
scale are important in many missions, such as multiagent search
and rescue. However, the agents are also required to equip other
payloads to achieve the corresponding tasks and, thus, have
limited space for equipping bulky sensors to achieve the desired
formation. Therefore, we will only apply further constraints to
the first triangle such that the prescribed orientation and scale of
the whole formation can be achieved by the first three agents, and
the remaining agents only need to equip light bearing sensors to
achieve their desired formation.

C. Control Objective

Based on the construction steps given in Section II-B, we first
aim at achieving the desired triangular shape and then adding
the remaining agents one at a time to the existing formation.
Specifically, for agents 1–3, the aim is to achieve

limt→∞ e1(t) = limt→∞(p1(t)− p2(t)− δ21) = 0, (2)

limt→∞ e2(t) = limt→∞(p2(t)− p3(t)− δ32) = 0, (3)

limt→∞ e3(t) = limt→∞(p3(t)− p1(t)− δ13) = 0 (4)

where δij ∈ R2 is the desired relative position of agent j
with respect to agent i, which determines not only the ori-
entation and scale of the triangle but also the interior an-

gles since α∗
jik = arccos

(
δ
ij
‖δij‖

δik
‖δik‖

)
, i, j, k ∈ {1, 2, 3}. Note

that δ21, δ32, and δ13 are redundant to describe a triangle with
prescribed orientation and scale since δ21 = −δ32 − δ13 and
α∗
312 + α∗

123 + α∗
231 = π. Therefore, it is unnecessary for agents

1–3 to have relative position measurements at the same time
to achieve (2)–(4). For agents 4–N , if each of them has three
neighbors (case 2), the aim is to achieve

limt→∞ ei1(t) = limt→∞(αj1ij2(t)− α∗
j1ij2

) = 0, (5)

limt→∞ ei2(t) = limt→∞(αj2ij3(t)− α∗
j2ij3

) = 0 (6)

where i = 4, . . . , N , j1 < i, j2 < i, j3 < i, and α∗
j1ij2

∈
(0, π), α∗

j2ij3
∈ (0, π) denote agent i’s two desired angles

formed with three neighboring agents j1, j2, j3 ∈ {1, 2, . . ., i−
1}, j1 �= j2 �= j3. If each of the agents 4–N has two neighbors
(case 1), the aim is to achieve

limt→∞ ēi1(t) = limt→∞(αj1j2i(t)− α∗
j1j2i

) = 0, (7)

limt→∞ ēi2(t) = limt→∞(αj2j1i(t)− α∗
j2j1i

) = 0 (8)

where α∗
j1j2i

∈ (0, π), α∗
j2j1i

∈ (0, π).
To show the control objectives we will achieve in the

follow-up sections, we summarize them as the flow graph
in Fig. 2.

III. FORMATION CONTROL FOR THE FIRST THREE AGENTS

To achieve (2)–(4), we first design a locally stable formation
law using the minimum number of relative position measure-
ment. To improve the convergence capability to the desired

Fig. 2. Overall structure of the follow-up sections and their relationship.

formation, we then design a globally stable formation law, in
which one more relative position measurement is needed.

A. Local Stabilization Using One Relative Position
Measurement

Different from the proposed algorithm in [17] where the orien-
tation and scale of the triangular formation is undetermined, we
now aim at achieving the triangular formation with prescribed
orientation and scale using one relative position measurement
for agent 1 and bearing measurements for agents 2 and 3. We
design the control laws for agents 1–3 as

u1 = −k1(p1 − p2 − δ21) = −k1e1, (9)

u2 = −k2(α2 − α∗
2)b21 = −k2ē2b21, (10)

u3 = −k3(α3 − α∗
3)b32 = −k3ē3b32 (11)

where ki, i ∈ {1, 2, 3} are positive scalars, ēj = αj − α∗
j , j =

2, 3, and αi represents α[i−1]i[i+1], [4] = 1, [0] = 3, [i] = i, i =
1, 2, 3 for conciseness. The control laws (9)–(11) represent that
agent 1 will maintain the desired relative position δ21 with
respect to agent 2, and agents 2 and 3 will maintain the desired
angles α∗

2 and α∗
3, respectively. Correspondingly, agent 1 will

measure relative position p1 − p2 using, e.g., radar, and agents
2 and 3 measure bearings using, e.g., camera. Note that the ori-
entation of the triangular formation is determined by δ21/‖δ21‖
and the scale is determined by ‖δ21‖.

Theorem 1: For a three-agent formation (1) governed by (9)–
(11), if the initial errors ‖pi(0)− pj(0)− δji‖, i, j = 1, 2, 3 are
small, the formation objective (2)–(4) can be achieved and the
formation errors ei(t) asymptotically converge to zero.

Proof: To obtain the convergence of ei, we first need to derive
their dynamics. First, one has

ė1 = ṗ1 − ṗ2 = −k1e1 + k2ē2b21. (12)

To derive the dynamics of ė2, we consider two different ways to
describe its time-derivative

d cosαijk

dt
= (− sinαijk)α̇ijk = ḃT

jibjk + bT
jiḃjk

=

[
Pbji

lji
(ṗi − ṗj)

]T

bjk + bT
ji

Pbjk

ljk
(ṗk − ṗj)

(13)
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where ljk = ‖pj − pk‖, Pbji = I2 − bjib
T
ji. It follows that

α̇ijk = −
[

Pbji

lji sinαijk
(ṗi − ṗj)

]T

bjk

− bT
ji

Pbjk

ljk sinαijk
(ṗk − ṗj). (14)

For the cases of ijk = 123 and ijk = 231, substituting (9)–(11)
into (14) yields

˙̄e2 = −
[

Pb23

l23 sinα2
(ṗ3 − ṗ2)

]T

b21 − bT
23

Pb21

l21 sinα2
(ṗ1 − ṗ2)

= k1
b
23Pb21

l21 sinα2
e1 − k2

sinα2

l23
ē2 (15)

˙̄e3 = −
[

Pb32

l32 sinα3
(ṗ2 − ṗ3)

]T

b31 − bT
32

Pb31

l31 sinα3
(ṗ1 − ṗ3)

= −k3
sinα3

l31
ē3 + k1

b
32Pb31

l31 sinα3
e1 + k2

sinα2

l32
ē2. (16)

Letting ef = [e
1 , ē2, ē3]

 and then summarizing (12)–(16), one

has the overall dynamics

ėf =

⎡
⎢⎣−k1I2 k2b21 0

k1g321 −k2f23 0

k1g231 k2f23 −k3f31

⎤
⎥⎦
⎡
⎢⎣e1ē2
ē3

⎤
⎥⎦ = A1(ef )ef (17)

where gijk =
b
jiPbjk

ljk sinαj
∈ R1×2, fij =

sinαi

lij
∈ R, A1(ef ) ∈

R4×4. Note that the dynamics (17) is highly nonlinear due
to the state-dependent matrix A1(ef ). Thus, the global
stability analysis of (17) is quite challenging. Now, we
conduct the local stability analysis for dynamics (17) using
the linearization technique. Around the desired equilibrium
{e1 = 0, ē2 = 0, ē3 = 0}, we check the Jacobian of (17).
Taking e1 as an example, one has

ė1 =

(
∂(−k1e1 + k2ē2b21)

∂e1
|ef=0

)
e1

+

(
∂(−k1e1 + k2ē2b21)

∂ē2
|ef=0

)
ē2

=

((
−k1I2 + k2ē2

∂b21
∂e1

)
|ef=0

)
e1 +

(
k2b21|ef=0

)
ē2.

(18)

Now we calculate ∂b21
∂e1

in (18). Note that

∂b21
∂e1

=
∂ e1+δ21

‖e1+δ21‖
∂e1

=
I2‖e1 + δ21‖ − (e1 + δ21)

(e1+δ21)



‖e1+δ21‖
‖e1 + δ21‖2

which implies that (∂b21∂e1
)|ef=0 =

‖δ21‖2I2−δ21δ


21

‖δ21‖3 and

(ē2
∂b21
∂e1

)|ef=0 = 0. Then, (18) can be written as

ė1 = −k1e1 + k2b
∗
21ē2 (19)

where b∗21 = b21|ef=0. Using the same steps for ē2 and ē3 as
(18) and (19), one has the overall linearized dynamics of (17)

ėf =
(
A1(ef )|ef=0

)
ef = A∗

1ef . (20)

Since the last column of matrix A∗
1 has three zero elements,

A∗
1 must have one negative eigenvalue −k3f

∗
31 < 0. Then, we

check the remaining three eigenvalues ofA∗
1 which obviously are

the eigenvalues of A∗
2 =

[−k1I2 k2b
∗
21

k1g
∗
321 −k2f

∗
23

]
. The characteristic

polynomial of A∗
2 is

|λI3 −A∗
2| =

∣∣∣∣∣∣
λ + k1 0 −k2b

∗
21(1)

0 λ + k1 −k2b
∗
21(2)

−k1g
∗
321(1) −k1g

∗
321(2) λ + k2f

∗
23

∣∣∣∣∣∣
= (λ + k1)

2(λ + k2f
∗
23)− (λ + k1)k1k2b

∗
21(1)g

∗
321(1)

− (λ + k1)k1k2b
∗
21(2)g

∗
321(2)

= (λ + k1)[(λ + k1)(λ + k2f
∗
23)

− k1k2(b
∗
21(1)g

∗
321(1) + b∗21(2)g

∗
321(2))]. (21)

Note that b∗21(1)g
∗
321(1) + b∗21(2)g

∗
321(2) = g∗321b

∗
21 =

b∗T23Pb∗
21

b∗21
l∗21 sinα∗

2
= 0. Hence, the three eigenvalues of A∗

2 are
−k1,−k1,−k2f

∗
23, respectively, which are all negative.

Therefore, one has that all the eigenvalues of A∗
1 are negative,

which implies that the dynamics (17) is locally and exponentially
stable. Note that

e2 = (l32/l21)R(π − ē2 − α∗
2)(e1 + δ21)− δ32 (22)

where R(θ) =

[
cos θ − sin θ
sin θ cos θ

]
is the rotation matrix in 2-D.

When e1(t) → 0, ē2(t) → 0, ē3(t) → 0 as t → ∞, one has
that e2(t) → 0 because l32(t)

l21(t)
→ ‖δ32‖

‖δ21‖ and ( l32l21
R(π − α∗

2)δ21 −
δ32) →

[
‖δ32‖
‖δ21‖R(π − α∗

2)δ21 − δ32

]
= 0 or because of trian-

gle’s AAS theorem. Similarly, one also has e3(t) → 0.
The dynamics (17) are not globally stable because when the

three agents’ initial positions are collinear, p1(t), p2(t), p3(t)
will always be collinear. In this case, (17) will not converge
to the desired equilibrium ef = 0. In the next subsection, we
investigate the global stabilization of the first three agents’
triangular formation.

B. Global Stabilization Using Two Relative Position
Measurements

Different from (9)–(11) where agent 1 measures relative po-
sition and agents 2 and 3 measure bearings, we now let two
agents be able to measure the relative positions such that (2)–(4)
is globally achievable. Toward this end, we design the formation
control laws as

u1 = 0, (23)

u2 = −k2(p2 − p1 − δ12) = −k2e2, (24)

u3 = −k3(p3 − p1 − δ13) = −k3e3. (25)

Theorem 2: For a three-agent formation (1) governed by the
control laws (23)–(25), the formation objective (2)–(4) can be
achieved and the formation errors ei(t), i = 1, 2, 3 exponentially
and globally converge to zero.
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Proof: The error dynamics ė2, ė3 can be written as[
ė2

ė3

]
=

[
−k2I2 0

0 −k3I2

][
e2

e3

]
= A3

[
e2

e3

]
.

Obviously, A3 ∈ R4×4 is negative definite, which implies the
global and exponential convergence of e2, e3. It follows that
e1 = −e2 − e3 also globally converges to zero.

Remark 2: In (11), agent 3 only measures bearings which
guarantees a locally stable formation. Compared to (11), agent
3 measures relative position in (25) which guarantees a globally
stable formation. Therefore, if more measurements are available,
the convergence property of the formation becomes better.

IV. FORMATION CONTROL FOR THE REMAINING AGENTS

In this section, to achieve (5) and (6), we first design a locally
stable formation algorithm using only bearing measurements. To
improve the convergence performance, we then design a glob-
ally stable formation algorithm by using extra communication
channels.

A. Local Stabilization Using Only Bearing
Measurements

We add agents 4–N into the existing formation step by step
through the Type-I vertex addition operation (case 2) introduced
in Section II-B. Note that in [17], the control algorithm designed
for agents i = 4, . . ., N is

ui = − (αj1ij2 − α∗
j1ij2

)(bij1 + bij2)

− (αj2ij3 − α∗
j2ij3

)(bij2 + bij3) (26)

where α∗
j1ij2

∈ (0, π) and α∗
j2ij3

∈ (0, π), j1 < i, j2 < i, j3 <
i, j1 �= j2 �= j3 are the two desired angles to be maintained by
agent i. To guarantee the local stability for agents 4–N , the
following three conditions

α∗
j3ij1

= α∗
j2ij1

+ α∗
j3ij2

, sinα∗
j1j2i

> sinα∗
ij1j2

,

sinα∗
ij2j3

> sinα∗
j2j3i

(27)

are required in [17]. In this article, we aim at removing these
three conditions by properly assigning control gains for the angle
errors ei1, ei2 in (26). To be specific, we modify (26) into

ui = − (αj1ij2 − α∗
j1ij2

)(ki1bij1 + ki2bij3)

− (αj2ij3 − α∗
j2ij3

)(ki3bij1 + ki4bij3), i = 4, . . ., N

(28)

where j1 �= j2 �= j3 < i, and the scalars ki1, ki2, ki3, ki4 are
constant gains. Since αj1ij2 = arccos(b
ij1bij2), (28) only needs
the bearing measurements bij1 , bij2 , bij3 .

To show the N -agent formation’s stability under the control
of (28), we first analyze the case of agent 4, and the cases for the
other agents will be similarly obtained. Thus, when i = 4 and
α∗
241 + α∗

342 = α∗
143, (28) can be specified as

u4 = − (α241 − α∗
241)(k41b41 + k42b43)

− (α342 − α∗
342)(k43b41 + k44b43). (29)

Fig. 3. Different subregions for p∗4.

Note that the relationship of the three desired angles
α∗
241, α

∗
342, α

∗
143 depends on the region that p∗4 lies at. Hence,

we first divide the whole 2-D plane along the lines 12, 23, and
31 into seven open subregions which are shown in Fig. 3. When
p∗4 lies in I, one has α∗

143 = α∗
142 + α∗

243; while in II, one has
α∗
243 = α∗

142 + α∗
143.

Note that the case of point p∗4 lying in I (respectively II) has
common properties as the case of p∗4 lying in IV (respectively
V). Therefore, we first analyze the angle error dynamics under
the controller (29) and discuss the cases that point p∗4 lies in I or
IV, respectively.

1) Angle Error Dynamics: To obtain (5) and (6), we first
derive the dynamics of e41, e42. Using (13) and (14), one has

ė41 = α̇241 = − ḃT
41b42 + bT

41ḃ42
sinα241

=

(
b
42Pb41

l41
+

b
41Pb42

l42

)
u4 + k1

b
42Pb41
e1

l41
+ k2

b
41Pb42
b23

l42
ē2

sinα241

(30)

where we used the case that agents 1–3 are governed by (9)–(11).
Then, we calculate the part in (30)(

b
42Pb41

l41
+

b
41Pb42

l42

)
u4

sinα241
= a11e41 + a12e42 (31)

where

a11 = −
[
k42 sinα341

l41
+

k41 sinα241 − k42 sinα342

l42

]
,

a12 = −
[
k44 sinα341

l41
+

k43 sinα241 − k44 sinα342

l42

]
and we usedα143 = α142 + α243 since p4 is in I or IV. Similarly,
for e42 = α342 − α∗

342, one has

ė42 = α̇342 = − (ḃ42)
Tb43 + (b42)

Tḃ43
sinα342

=

(
b
43Pb42

l42
+

b
42Pb43

l43

)
u4+

k3b


42Pb43

b31
l43

ē3+k2
b
43Pb42

b23
l42

ē2

sinα342
.

(32)

Then, the first part in (32) can be calculated as(
b
43Pb42

l42
+

b
42Pb43

l43

)
u4

sinα342
= a21e41 + a22e42 (33)
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where

a21 = −
[−k41 sinα241 + k42 sinα342

l42
+

k41 sinα341

l43

]
,

a22 = −
[−k43 sinα241 + k44 sinα342

l42
+

k43 sinα341

l43

]
.

Summarizing (30)–(33), one has the overall angle error
dynamics

ė4 =

[
ė41

ė42

]
=

[
a11 a12

a21 a22

][
e41

e42

]
+

[
c11 c12 c13

c21 c22 c23

]⎡⎢⎣e1ē2
ē3

⎤
⎥⎦

= A4(ef , e4)e4 + C1(ef , e4)ef (34)

where c11 = k1
b
42Pb41

l41 sinα241
, c12 = k2

b
41Pb42
b23

l42 sinα241
, c13 = 0, c21 =

0, c22 = k2
b
43Pb42

b23
l42 sinα342

, c23 =
k3b



42Pb43

b31
l43 sinα342

. The global stability
of (34) is challenging; thus, we analyze the local stability of
(34). Following (18)–(20), the linearized dynamics of (34) are

ė4 =
(
A4(ef , e4)|ef=0,e4=0

)
e4 +

(
C1(ef , e4)|ef=0,e4=0

)
ef

= A∗
4e4 + C∗

1ef . (35)

Since limt→∞ ef (t) = 0, the stability of (35) depends on the
eigenvalues ofA∗

4 ∈ R2×2 which are determined by det(A∗
4) and

tr(A∗
4). In other words, (35) is stable if and only ifA∗

4 is Hurwitz,
which holds if det(A∗

4) > 0, tr(A∗
4) < 0. Therefore, we calculate

tr(A∗
4) = (a11 + a22)|ef=0,e4=0

= − k42 sinα
∗
341

l∗41
− k43 sinα

∗
341

l∗43

− (k41 − k43) sinα
∗
241 + (k44 − k42) sinα

∗
342

l∗42
(36)

det(A∗
4) = (a11a22 − a21a12)|ef=0,e4=0

=
[k41k44 − k43k42] sinα

∗
241 sinα

∗
341

l∗41l
∗
42

+
[k41k44 − k43k42] sinα

∗
341 sinα

∗
342

l∗42l
∗
43

− [k41k44 − k43k42] sinα
∗2
341

l∗41l
∗
43

=
[k41k44 − k43k42] sinα

∗
341

l∗41l
∗
42l

∗
43

φ4 (37)

where φ4 = l∗41 sinα
∗
342 + l∗43 sinα

∗
241 − l∗42 sinα

∗
341. To ob-

tain det(A∗
4) > 0, (37) implies that φ4 plays an important role.

In the following, we analyze the sign of φ4 for the cases of p∗4
lying in region I or region IV, respectively.

2) p∗4 Lies in the Region I: We first present the result about
φ4 when p∗4 lies in region I.

Lemma 1: If p∗4 is in region I, then φ4 > 0.
The proof of this lemma can be found in Appendix A. Then,

we discuss the other case that p∗4 lies in region IV.

Fig. 4. Splitting region IV into IV-1, IV-2, and C123.

3) p∗4 Lies in Region IV: It is more complicated when p∗4
lies in region IV since the sign of φ4 depends on the place p∗4
lies at. Denote by Cijk the circle spanned by p∗i , p

∗
j , p

∗
k and split

region IV into three parts, IV-1, C123, and IV-2, which are shown
in Fig. 4(a).

Lemma 2: If p∗4 ∈ IV-1, then φ4 > 0; if p∗4 ∈ C123 ∩ IV, then
φ4 = 0; if p∗4 ∈ IV-2, then φ4 < 0.

Proof: 1) The case p∗4 ∈ C123 ∩ IV: In this case, p∗4 must be
in arc 13 which does not include p∗2. Since p∗1, p

∗
2, p

∗
3, and p∗4

are cocircle, one has α∗
213 = α∗

243, α∗
142 = α∗

132, α∗
143 = π −

α∗
123, and l∗42l

∗
13 = l∗12l

∗
43 + l∗14l

∗
23 according to the Ptolemy’s

theorem [18]. It follows that l∗42 = l∗43
l∗12
l∗13

+ l∗14
l∗23
l∗13

. Using the

law of sines, one has sinα∗
231

l∗12
=

sinα∗
213

l∗23
=

sinα∗
123

l∗13
. Hence, one

has

l∗42 = l∗41
sinα∗

213

sinα∗
123

+ l∗43
sinα∗

132

sinα∗
123

which implies φ4 = 0.
2) The case p∗4 ∈ IV-1: To prove φ4 > 0, we first construct

the circle C143. As shown in Fig. 4(b), denote by R′ the radius
of the circle C143 and denote by 2’ the intersection of C143 and
the ray

−→
42. Then, one has

2R′φ4 = l∗41(2R
′ sinα∗

342) + l∗43(2R
′ sinα∗

241)

− l∗42(2R
′ sinα∗

341)

= l∗41l
∗
32′ + l∗43l

∗
12′ − l∗42l

∗
31 = (l∗42′ − l∗42)l

∗
31. (38)

Since p∗4 lies in IV-1, one has that l∗42′ > l∗42 which implies that
2R′φ4 > 0 and φ4 > 0.

3) The case p∗4 ∈ IV-2: For this case, one can also construct
a circle C134. Denote by R′′ the radius of the circle C134 and
denote by 2” the intersection of C134 and the segment 24. Then,
one has

2R′′φ4 = l∗41(2R
′′ sinα∗

342) + l∗43(2R
′′ sinα∗

241)

− l∗42(2R
′′ sinα∗

341)

= l∗41l
∗
32′′ + l∗43l

∗
12′′ − l∗42l

∗
31 = (l∗42′′ − l∗42)l

∗
31 (39)

which implies that φ4 < 0 because l∗42′′ < l∗42.
After obtaining the relationship between the sign of φ4 and

the place p∗4 lies at in Lemmas 1 and 2, we are ready to tune the
gains k41, k42, k43, k44 in (29) such that A∗

4 is Hurwitz.
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Theorem 3: When Assumption 1 holds and p∗4 lies in region
I or IV, if one selects k42 > 0, k43 > 0 and{

k41 > k43, k44 > k42, if φ4 > 0

(k41k44 − k42k43) < 0, if φ4 < 0
(40)

then A∗
4 is Hurwitz and the angle error dynamics (34) is locally

and exponentially stable.
Proof.
Note that when Assumption 1 holds, φ4 �= 0. Therefore, we

only need to prove that the selected gains in (40) can guarantee
tr(A∗

4) < 0 and det(A∗
4) > 0.

1) The case φ4 > 0: By selecting k41 > k43 > 0, k44 >
k42 > 0 in (40), one has k41k44 − k43k42 > 0. According to
(36) and (37), tr(A∗

4) < 0, det(A∗
4) > 0 which implies that A∗

4

is Hurwitz.
2) The case φ4 < 0: Using the gain selection in (40), one

has k41k44 − k43k42 < 0 which implies det(A∗
4) > 0. We then

prove tr(A∗
4) < 0. Multiplying tr(A∗

4) by l∗41l
∗
42l

∗
43 in (36) yields

l∗41l
∗
42l

∗
43tr(A∗

4) = −(k42l
∗
43 + k43l

∗
41)l

∗
42 sinα

∗
341

− l∗41l
∗
43[(k41 − k43) sinα

∗
241 + (k44 − k42) sinα

∗
342]. (41)

Since k42 > 0, k43 > 0, one has k42l∗43 + k43l
∗
21 > 0. Using the

fact φ4 < 0, one has

(k42l
∗
43 + k43l

∗
41)l

∗
42 sinα

∗
341 > (k42l

∗
43 + k43l

∗
41)

× (l∗41 sinα
∗
342 + l∗43 sinα

∗
241)

= l∗41l
∗
43

(
k42 sinα

∗
342 + k43 sinα

∗
241

+
k42l

∗
43

l∗41
sinα∗

241 +
k43l

∗
41

l∗43
sinα∗

342

)
.

Thus, (41) can be further written as

l∗41l
∗
42l

∗
43tr(A∗

4) < −l∗41l
∗
43

(
k42 sinα

∗
342 + k43 sinα

∗
241

+
k42l43
l∗41

sinα∗
241 +

k43l
∗
41

l∗43
sinα∗

342

)

− l∗41l
∗
43[(k41 − k43) sinα

∗
241 + (k44 − k42) sinα

∗
342]

= −l∗41l
∗
43

[
k42l

∗
43

l∗41
sinα∗

241 +
k43l

∗
41

l∗43
sinα∗

342

+ k41 sinα
∗
241 + k44 sinα

∗
342

]
< 0 (42)

which implies tr(A∗
4) < 0. Combining the above two cases, one

has that A∗
4 is Hurwitz under (40).

Note that the cases of p∗4 lying in region I or IV are dis-
cussed in Theorem 3. When p∗4 lies in region II, III, V, VI,
or VII, one can always adjust the order of the agents such
that the designed control laws still work. More specifically,
if p∗4 ∈ V ∪ II or α∗

241 + α∗
143 = α∗

243, (28) can be specified
as j1 = 2, j2 = 1, j3 = 3. Moreover, if p∗4 ∈ VII, then the first
triangular shape becomes �142 and the next two desired angles

to be achieved become α∗
134, α

∗
432. To further illustrate the gain

design technique employed to guarantee the stability of the
four-agent formation, we summarize the gain design procedure
provided in this subsection as Algorithm 1.

Now, we extend the results to theN -agent formation case. For
an arbitrary agent i, 4 ≤ i ≤ N , the control gains in (28) can be
selected as{

ki1 > ki3 > 0, ki4 > ki2 > 0, if φi > 0

(ki1ki4 − ki2ki3) < 0, ki2 > 0, ki3 > 0, if φi < 0
(43)

where φi = l∗ij1 sinα
∗
j3ij2

+ l∗ij3 sinα
∗
j2ij1

− l∗ij2 sinα
∗
j3ij1

.
Proposition 1: Consider an N -agent formation with the first

three agents governed by (9)–(11) and the remaining agents
governed by (28). If Assumption 1 holds and the control gains are
selected as (43), then the desired N -agent formation is achieved
with prescribed orientation δ21

‖δ21‖ and scale ‖δ21‖ and the errors
in (2)–(6) locally converge to zero.

The proof of Proposition 1 follows the induction since the
N -agent formation is constructed in a cascading way. Based
on [17], [19], the local stability of the N -agent formation can
be obtained. Also, the gain design procedure for agent i, with
5 < i ≤ N , can be similarly obtained following Algorithm 1.
Instead of local stability, the next subsection globally stabilizes
the formation using additional communication.

Remark 3: The structure of the proposed controller (28) is dif-
ferent from the controller (26) proposed in [17]. The inequalities
(27) cannot be avoided if one applies the gain design technique
directly into the controller (26). Although the design of the
control gains given in Algorithm 1 and the formation design
in Fig. 1 is centralized, the execution of the formation controller
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Fig. 5. Four wheeled robots.

is distributed since all the agents move simultaneously using the
measurements with respect to only their neighbors.

B. Global Stabilization Using Bearing Measurements
and Interagent Communication

Since the first three agents’ formation is globally and exponen-
tially stable under (23)-(25), we now aim at designing globally
stable control law for agents 4–N based on Type-I (case 1) vertex
addition operation.

Specifically, we design the control law as

ui = (αij1j2 − α∗
ij1j2

)bij2 + (αij2j1 − α∗
ij2j1

)bij1 . (44)

For agent 4, the controller (44) can be specified as

u4 = (α412 − α∗
412)b42 + (α421 − α∗

421)b41=ē41b42 + ē42b41
(45)

where α412 = arccos(b
14b12) can be obtained by agent 1
through bearing measurements and can be sent to agent 4 via
wireless communication. We discuss the case for agent 4 and
the remaining agents’ cases can be similarly obtained.

Theorem 4: If agents 1 and 2 are fixed, agent 4 is governed
by (45), and p4(0), p1(0), p2(0) are noncollinear, then the angle
errors ē41, ē42 globally converge to zero.

The proof of this theorem can be found in Appendix B.
Remark 4: In Theorem 4, agents 1 and 2 are assumed to

be static, without which the global convergence cannot be
guaranteed. Several proposed formation controllers use bear-
ing measurements which require the interagent collision-free
property. Theoretically, the property can be obtained by fol-
lowing the analysis on local convergent formation’s interagent
distance change in [17]. Physically, the collision avoidance can
be fulfilled due to agents’ practical dimensions or by equipping
low-level proximity sensor.

V. EXPERIMENTS

In this section, we validate the results of Theorems 1-4 using
four wheeled robots to achieve a desired rectangular formation.

The size of each robot in Fig. 5 is 60 cm in length, 46 cm in
width, and 46 cm in height. Each robot has four wheels and is
controlled by an on-board computer. Since wheeled robots are
unicycles, we apply feedback linearization [20], [21] toward a
reference point that is inside of the robot to obtain the single-
integrator dynamics (1). The measurements of relative positions

Fig. 6. Formation trajectories.

Fig. 7. Evolution of formation errors.

Fig. 8. Formation trajectories of the robots.

or bearings among robots are captured by the NOKOV Mocap
system sampling at the rate of 120 Hz. Each robot will calculate
the control input along its X-axis and Y-axis according to the
designed controllers and then apply it to the robots.

A. Formation Experiment With Local Stabilization

This experiment validates the results of Theorems 1
and 3 where the formation is proved to be locally
stable. The desired formation in this experiment is de-
scribed by δ21 = [1.14;−1.04], α∗

2 = π/2, α∗
3 = π/4, α∗

241 =
0.4, α∗

342 = 0.3, α∗
241 = α∗

342 + α∗
341, and the control gains are

selected according to Algorithm 1 as k4i = i, i = 1, . . ., 4. Un-
der the controllers (9)–(11) and (28), the formation trajectories
and angle errors are shown in Figs. 6 and 7, respectively, from
which one has that the formation errors almost converge to zero,
and the desired formation is achieved within 75 s.

B. Formation Experiment With Global Stabilization

We validate the results of Theorems 2 and 4 in this
experiment. The desired formation is described by δ12 =
[−0.54; 1.84], δ13 = [−2.34; 0.32], α∗

412 = 0.4, α∗
421 = 0.3.

Under the controllers (23)–(25) and (45), the formation
trajectories and angle errors are shown in Figs. 8 and 9,
respectively. According to Figs. 8 and 9, the desired formation
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Fig. 9. Evolution of formation errors.

Fig. 10. Formation trajectories of the robots.

Fig. 11. Evolution of formation errors.

is achieved and the formation errors almost converge to zero
within 45 s, which is faster than the experiment with local
stabilization. The small convergent error in Figs. 7 and 9 is due
to the existence of minimum commanding threshold applicable
to the robots.

C. Comparison With Other Formation Control Strategies

To further verify the advantages of the control gain design
technique and the robustness against misalignment of agents’
coordinate frames in our proposed controller, we conduct com-
parative experiments by comparing our controller with the other
two most related formation control strategies proposed in [15,
(2)] and [17, (45)], respectively.

For the first case in [17, (45)], we initialize all the agents the
same positions as those given in the experiment of Section V-A.
Then, the formation results in Figs. 10 and 11 show that the
desired formation is not achieved and the formation errors asso-
ciated with agent 4 do not converge to zero due to the violation
of the required assumptions (27). However, under our proposed
control gain design technique, the desired formation is achieved
in Figs. 6 and 7.

For the second case, we initialize the first three agents as
stationary as required in [15, (2)]. Note that in [15], all agents’
coordinate frames should have the same orientation. Now, we

Fig. 12. Formation trajectories of the robots.

Fig. 13. Evolution of formation errors.

TABLE I
COMPARISON OF DIFFERENT FORMATION STRATEGIES

In the table, O refers to the orientation and scale of the formation, R the robustness against
misalignment of agents’ coordinate frames, and D the desired formations that can be
stabilized.

add 10◦ misalignment in agent 4’s coordinate frame. The forma-
tion results in Figs. 12 and 13 show that the desired formation
described by desired bearings is not achieved and the formation
errors do not converge to zero. However, adding the same
misalignment into the experiment of Section V-A, the formation
trajectories and the evolution of angle errors keep the same.

The conclusion obtained from these comparison cases are
summarized in Table I.

VI. CONCLUSION

In this article, formation control algorithms were proposed to
stabilize angle rigid formations with prescribed orientation and
scale, where both advantages of requiring less sensor measure-
ments and sustaining robustness against noise were obtained.
First, we used the relative position and bearing measurements
for the first three agents to achieve a desired triangular formation
with prescribed orientation and scale. Then, by using a control
gain design technique, a general control algorithm was proposed
for the remaining agents. The role of generic property was
used for the stability analysis. Experiment results validated the
effectiveness and advantages of the proposed formation algo-
rithms. Future work will concentrate on the double-integrator
formations.
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APPENDIX A
PROOF OF LEMMA 1

When p∗4 lies in the region I, p∗2 will always be inside of the
�413. Then, p∗2 can be written as a unique convex combination
of the three points p∗1, p

∗
4, p

∗
3, i.e., ∃ε1, ε2, ε3 ∈ (0, 1) and ε1 +

ε2 + ε3 = 1 such that p∗2 = ε1p
∗
1 + ε2p

∗
4 + ε3p

∗
3. It follows that

p∗2 − p∗4 = p∗42 = ε1(p
∗
1 − p∗4) + ε3(p

∗
3 − p∗4) = ε1p

∗
41 + ε3p

∗
43

where ε1, ε3 ∈ (0, 1) and 0 < ε1 + ε3 < 1. On the one hand,
one has

l∗242 = ‖ε1p∗41 + ε3p
∗
43‖2

= ε21l
∗2
41 + ε23l

∗2
43 + 2ε1ε3l

∗
41l

∗
43 cosα

∗
143 (46)

where pij = pj − pi. Using the fact (46), one has

cosα∗
142 =

p∗
42p
∗
41

l∗42l
∗
41

=
ε1l

∗
41 + ε3l

∗
43 cosα

∗
143

l∗42
. (47)

Since 0 < sinα∗
142 < 1, it follows from (47) and (46) that

sinα∗
142 =

√
1− cos2 α∗

142 = ε3l
∗
43 sinα

∗
143/l

∗
42. (48)

By using similar steps from (47) and (48), one also has

sinα∗
342 = (ε1l

∗
41 sinα

∗
143)/l

∗
42. (49)

On the other hand, since 0 < ε1 + ε3 = 1− ε2 < 1 and 0 <
cos2 α∗

143 < 1, one has 1− ε1 − ε3 + ε1ε3(1− cos2 α∗
143) > 0

which implies that

(1− ε1)(1− ε3)− ε1ε3 cos
2 α∗

143 > 0. (50)

It follows from (50) that

2
√

ε1ε3(1− ε1)(1− ε3)l
∗
41l

∗
43 > 2ε1ε3l

∗
41l

∗
43 cosα

∗
143 (51)

where we used the fact that εi ∈ (0, 1), i = 1, 2, 3. Based on
(51), one has

(
√
ε1(1− ε1)l

∗
41 −

√
ε3(1− ε3)l

∗
43)

2

+ 2
√

ε1ε3(1− ε1)(1−ε3)l∗41l∗43 − 2ε1ε3l
∗
41l

∗
43 cosα

∗
143 > 0

which implies that

ε1(1− ε1)l
∗2
41 + ε3(1− ε3)l

∗2
43 − 2ε1ε3l

∗
41l

∗
43 cosα

∗
143 > 0.

(52)
It follows from (52) and (46) that

ε1l
∗2
41 + ε3l

∗2
43 > ε21l

∗2
41 + ε3l

∗2
43 + 2ε1ε3l

∗
41l

∗
43 cosα

∗
143 = l∗242.

(53)
Substituting (48) and (49) into (53), one has φ4 > 0. �

APPENDIX B
PROOF OF THEOREM 4

Substituting the controller (45) into the calculation equation
of angle error dynamics (14) yields

˙̄e41 = −(ḃT
14b12 + bT

14ḃ12)/sinα412 = −(sinα142/l14)ē41.
(54)

Similarly, one also has

˙̄e42 = −(ḃT
24b21 + bT

24ḃ21)/sinα421 = −(sinα142/l24)ē42.
(55)

First, we prove that p4(t), p1, p2 will not be collinear or overlap-
ping ∀t > 0. Suppose, on the contrary, that p4(t), p1(t), p2(t)
are collinear at t → T−

1 > 0. Without loss of generality,
we consider the collinearity as α142(T

−
1 ) → π, α124(T

−
1 ) →

0, α214(T
−
1 ) → 0. Then it follows that ē41(T−

1 ) < 0, ē42(T
−
1 ) <

0. Using (54) and (55), one has ˙̄e41(T
−
1 ) > 0, ˙̄e42(T

−
1 ) > 0

which implies that α124(t), α214(t) will increase. However,
the hypothesis of collinearity implies that α124(t), α214(t)
will decrease when t → T−

1 . This contradiction implies that
no collinearity will occur for ∀t > 0. Using similar steps,
one can also obtain that agents 1, 2, and 4 will not collide
∀t > 0.

Then, we prove that sinα142(t), l41(t), l42(t) will be up-
per and lower bounded. Since no collinearity and colli-
sion will happen among agents 1, 2, and 4, the dynamics
(54) imply that ē41 will decrease monotonously. Therefore,
one has

0 < min{α412(0), α
∗
412}

≤ α412(t) ≤ max{α412(0), α
∗
412} < π.

The same case applies for α421(t), i.e.,

0 < min{α421(0), α
∗
421}

≤ α421(t) ≤ max{α421(0), α
∗
421} < π.

It follows that

0 < π −max{α412(0), α
∗
412}

−max{α421(0), α
∗
421} ≤ α142(t)

≤ π −min{α412(0), α
∗
412} −min{α421(0), α

∗
421} < π.

Therefore, the angles α412(t), α421(t), and α142(t) are all
bounded away from zero and π. Then, we analyze the bounds
of l41(t) and l42(t). Using the law of sines, one has

0 <
l12 sinα

lower
421

sinαupper
142

≤ l41(t) =
l12 sinα421(t)

sinα142(t)
≤ l12 sinα

upper
421

sinαlower
142

where sinαlower
421 = min{sinα421(0), sinα

∗
421}, sinαupper

421 =
max{sinα421(0), sinα

∗
421, 1}, sinαupper

142 = max{sinα142(0),
sinα∗

142, 1}, sinαlower
142 = min{sinα142(0), sinα

∗
142}. Sim-

ilarly, one has 0 <
l12 sinαlower

412

sinαupper
142

≤ l42(t) ≤ l12 sinαupper
412

sinαlower
142

< ∞
where sinαlower

412 = min{sinα412(0), sinα
∗
412}, sinαupper

412 =
max{sinα412(0), sinα

∗
412, 1}. Write (54) and (55) into a

compact form [
˙̄e41
˙̄e42

]
= −W (t)W
(t)

[
ē41

ē42

]
(56)

where W (t) =

⎡
⎣
√

sinα142

l14
0

0
√

sinα142

l24

⎤
⎦. Then, for every t > 0,

β1I2 ≤ ∫ t+T

t W (τ)W
(τ)dτ ≤ β2I2 where T > 0

β1 =
(sinαlower

142 )2T

l12 max{sinαupper
421 , sinαupper

412 } ,
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β2 =
(sinαupper

142 )2T

l12 min{sinαlower
421 , sinαlower

412 } .

Using [22, Theorem 2.5.1], ē41(t), ē42(t) converge to zero glob-
ally and exponentially. �
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