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Stabilizing and Maneuvering Angle Rigid
Multiagent Formations With Double-Integrator
Agent Dynamics

Liangming Chen
and Ming Cao

Abstract—This article studies 2-D formation stabilization
and maneuvering of mobile agents governed by double-
integrator dynamics. The desired formation is described
by a set of triple-agent interior angles. A carefully chosen
such set of angle constraints guarantees that the desired
formation is angle rigid. To achieve the desired angle rigid
formation, a stabilization control law is proposed using
only local velocity and direction measurements. We show
that the closed-loop dynamics of the formation, when each
agent is modeled by a double-integrator, are closely re-
lated to the corresponding one in single-integrator agent
dynamics. Sufficient conditions are constructed to guaran-
tee the closed-loop stability for identical and distinct ve-
locity damping gains, respectively. To guide an angle rigid
formation to move with the desired translational velocity,
orientation, and scale, formation maneuvering laws are
then proposed. Simulation examples are also provided to
validate the results.

Index Terms—Angle rigid formations, direction measure-
ments, double-integrator agent dynamics, formation ma-
neuvering, formation control, multiagent systems.

[. INTRODUCTION

ECENTLY, multiagent formations have been widely stud-
R ied due to their broad applications in, e.g., search and res-
cue using mobile robots [1], drone light shows [2], and formation
flying of multiple satellites [3]. Two research problems arise, i.e.,
formation stabilization and formation maneuvering [4]. Under
different specifications of formation shapes and available sensor
measurements, different approaches have been proposed to solve
these two problems [5].
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To achieve a formation specified by relative positions, a
formation stabilization law is proposed in [6] by using the
measurements of relative positions, in which the alignment of the
coordinate frames of all the agents is required. In some scenarios,
however, it can be difficult for all the agents to guarantee the
perfect alignment of their coordinate frames due to the lack
of a global reference and existence of sensor measurement
noise. When misalignment exists in agents’ coordinate frames,
a distorted formation shape and nonzero translational velocity
may appear in the relative position-specified formation [7],
[8]. Without the requirement on coordinate frames’ alignment,
using distance rigidity theory, a desired formation described by
distances is achieved using local relative position measurements
in [9] and [10]. For the translation and rotation of distance rigid
formations, several formation maneuvering algorithms are de-
signed in [11]-[13] by employing a mismatch-based approach.
Besides translational and rotational maneuvering, the scaling
maneuvering is also necessary in many scenarios, e.g., obstacle
avoidance [4], which, however, due to the pairwise distance
change between agents during scaling, is not straightforward to
be obtained by directly modifying the algorithms in [11]-[13].
Intuitively, bearing/angle constraints remain the same under
scaling motion and, thus, can be utilized for both formation shape
control and scaling maneuvering. Recently, it is reported that
bearing/direction measurements can be obtained by monocular
cameras, passive sonars and sensor arrays [14], [15], which
are more accessible than relative position measurements. These
developments promote the application of bearing rigidity the-
ory and bearing-only formation control algorithms [16], which,
however, require the alignment of coordinate frames of all the
agents.

Not requiring the alignment of coordinate frames, a triangular
formation control algorithm is proposed in [17] and [18] by
employing triple-agent interior angles to specify the formation
shape and using local inter-agent directions as the measure-
ments. Further, [15] and [18], study angle rigidity and extend
the results of [17] to formation stabilization with an arbitrary
number of agents. According to [27], angle rigid formations
enjoy more freedom than both distance and bearing rigid for-
mations because the angle preservation motions allow simulta-
neous translation, rotation, and scaling. Given more degrees of
freedom, angle rigid formations can be achieved using fewer
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sensor measurements, and can choose more maneuvering forms
to achieve practical tasks. By exploiting this advantage, maneu-
vering algorithms are proposed in [19] and [27] for angle rigid
formations with single-integrator agent dynamics following a
mismatch-based approach. However, to the authors’ best knowl-
edge, it has not been investigated how to stabilize and maneuver
angle rigid formations with double-integrator agent dynamics,
which is closer to real applications since double-integrator mod-
els capture better forces and moments in real mechanical systems
[20, Ch. 2].

Motivated by the aforementioned works, this article aims at
designing control algorithms for double-integrator multiagent
systems by using local velocity and direction measurements
to achieve the formation stabilization task, and by using the
measurements of velocity, direction, and one relative position to
achieve the desired translational, rotational, and scaling maneu-
vering. The contributions of this article can be summarized as
follows.

1) The stabilization and maneuvering of angle rigid for-
mations with double-integrator agent dynamics are realized.
Although the structure of the double-integrator angle rigid
formation’s angle error dynamics is quite different from the
corresponding one in single-integrator formations, we show that
the closed-loop dynamics of the formation when the agents are
governed by double-integrator dynamics are closely related to
those of the corresponding single-integrator agent dynamics.

2) For the formation stabilization control law, only local
velocity and direction measurements are needed. Compared to
the stabilization of double-integrator formations using relative
position measurements [21], [22], no distance measurements
are required in our formation stabilization control law. For the
formation maneuvering law, in addition to the measurements
mentioned in the stabilization case, we require only one agent,
to measure its relative position with respect to a reference agent.
This relative position will be used to control the rotational and
scaling maneuvering of the formation.

3) The desired maneuvering in forms of translation, rotation,
and scaling is achieved simultaneously. Compared to the forma-
tion specified by relative positions, distances or bearings, angle
rigid formations have more maneuvering degrees of freedom,
which is helpful for those tasks requiring the formation to
maneuver in translation, rotation, and scaling such that it passes
through an unknown environment with obstacles.

The rest of this article is organized as follows. Section II intro-
duces basic background knowledge and formulates the problem.
In Section III, we present the results about the stabilization of
angle rigid formations under identical and distinct control gains,
respectively. The formation maneuvering algorithm and its sta-
bility analysis are given in Section IV. Simulation examples are
provided in Section V. Finally, Section VI concludes this article.

[I. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we introduce the agent dynamics, direction
measurements, and angle rigid formations. Then, the research
problem is formulated.

i+1 X

i+l

Zi(i+1)

Fig. 1. Direction measurements.

A. Agents’ Double-Integrator Dynamics

Consider N mobile agents moving in the plane. Agents are
labeled from 1 to N, and V = {1,2,..., N} is the index set.
The dynamics of each agent 7,7 € V, is governed by

Di = Ui, U = U4 ()
where p; € R? denotes the position of agent 7 with respect to

a fixed global coordinate frame, v; € R2 is its velocity in the
same frame, and u; € R? is its control input to be determined.

B. Direction Measurements

Each agent 7 € V can measure the “direction” with respect to
some other agent j € V with p; # p;, denoted by

_ DPj — Di
Ip; — pill

which is the unit vector starting from p; and pointing towards

p;. The set of such j to which 7 measures its direction is denoted
by N;, and for different 7, A; can be different. For the triangle
formed by agents ¢,¢ + 1 and ¢ — 1 shown in Fig. 1, the interior
angle ;1 1yi(—1) € [0, 7] can be calculated by a(;41)i(i—1) =
arccos(ziT(Hl)zi(i,l)).

Zij -

C. Construction of the Desired Angle Rigid Formation

To guarantee that the desired formation is unique under the
given angle constraints, the formation is required to be angle
rigid [18]. Now, we briefly introduce how to construct an angle
rigid formation through a sequence of steps, which is similar to
a sequence of Henneberg vertex addition steps [23]. For more
details about angle rigidity, we refer the readers to [18]. First,
we define an angle set A C V x V x V to describe the angle
constraints, where each member of A has three ordered vertices.
The desired formation is recursively constructed by completing
the following algorithm consisting of N — 2 steps:

Step 1: The first three entries of A correspond to the three
interior angles of the triangle A123,1i.e., ai312, 123, a231. Then,
the eventual orientation and scale of the whole formation are
determined by the orientation and scale of the first triangular
formation, respectively.

Step 2: Add vertex 4 to the formation. This requires the
knowledge of the next two elements of A, which must be one of
the following three combinations: 142 and 243, 142 and 143, or
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Fig. 2. Construction of an angle rigid formation.
243 and 143. In this article, we consider the combination 142
and ag43 which is shown in Fig. 2.

Steps 3 ~ (N — 3): Similar to Step 2, at each step, add a new
vertex with two associated new angle constraints.

Step (N —2) (last step): Add vertex N by adding two
angle constraints: «;, ns, and o, Nis, 91,102,193 € {1,..., N —
1}, i1 # dp # i3

As described in the above N — 2 steps, the angle set is A4 =
{(37 L, 2)’ (17 2, 3)7 (2’ 3, 1)) (17 4, 2)’ (2’ 4, 3)7 R (jh kan)

5 (jg, ]{i,jg), ceey (il, N, ig), (ig, N, i3)}.Then, for (], 7:, k?) S .A,
we define {7, k} € N;. According to the Type-I vertex addition
operation in [18] and [18, Prop. 2], one has that the above
constructed formation is generically angle rigid. To guarantee
the uniqueness of each new vertex’s position in Step ¢,

1 =2,...,N — 2, the following assumption is needed.
Assumption 1: In each aforementioned Step k — 2,k =
4,..., N with the corresponding angle constraints o, ;;, and

Qj,i5,, WE assume that o 5, and aj,;;, are not zero or m,
Pi» Dji» Dja» Pjs are mot on a circle, o ij, = jijy + Qjyijss
sin Qg jai > sin Qjjy o and sin Qijyjs > sin Qi

Remark 1: According to [18, Prop. 2], when Assumption
1 holds, the position of each new vertex k,k =4,..., N is
locally uniquely determined,' which implies that the constructed
formation is angle rigid. The inequalities in Assumption 1 are
used to guarantee the single-integrator angle rigid formation
locally stable[18, Th. 8]. Compared to [21] and [24], the con-
struction of angle rigid formations is based on the Type-II vertex
addition operation[18, Definition 7], under which the interagent
communication is avoided in the control design and the number
of angle constraints is minimized.

D. Problem Formulation

Consider that all the agents are governed by the double-
integrator dynamics (1), and the desired formation is constructed
by following the steps given in Section II-C. The goal is to design
control input u; for each agent ¢ such that the whole multiagent
system can achieve formation stabilization or formation maneu-
vering described formally as follows.

1) Formation stabilization: Each agent’s position p;(¢) con-
verges to a fixed point which satisfies the angle constraints given
in the desired angle rigid formation, and the velocities of all
agents converge to zero, ie.,

limy o0 pi(t) =0, Vi€ V. 2)

!"This represents that the position of the added vertex is locally unique when
all the vertices are perturbed within a small continuous neighborhood of the
original configuration, but might not unique when the perturbation is large or in
another nonneighboring region.

Note that when all the angle constraints are satisfied, one has
that the first three agents achieve the desired triangular shape

limy o €5(£) =0 Vi=1,2,3 A3)

where e;(t) = a;(t) — o}, oy = aip1)ifi—1]> [0 + 1] = 1 when
i=3,[i —1] =3 when i =1, and o € (0,7) denotes agent
i’s desired interior angle formed with agents [i + 1], [¢ — 1], and
naturally o] + o5 + o = 7. Also note that each agent from 4
to IV achieves the desired two angles

limy oo €1 (t) = limy oo (45, () — O‘;ijz) =0 &
=0

&)
where i=4,...,N, j1 <i,j2<i,j3<i, and o] ;. €
(0,7),a3,,;, € (0,7) denote agent i’s two desired angles
formed with different agents j1, j2,j3 € {1,2,...,4 — 1}. The
available measurement information of each agent 7,7 € V) con-
sists of velocity v; and direction b;; with respect to neighboring
agents j in agent ¢’s local coordinate frame.

2) Formation maneuvering: all the agents achieve the angle
rigid formation described in (3)—(5), and the velocities of all the
agents converge to a desired translational velocity v} (¢) € R2,
and the relative position from a reference agent (chosen to be
agent 1) to another agent (for example, agent 3) will determine
the eventual formation’s orientation and scale. In particular,
in this article, we will consider a piecewise constant vector

15(t) € R? for the orientation and scale reference. The last two
requirements in the formation maneuvering can be mathemati-
cally described by

limy e (pi(t) — v5(£)) =0, VieV 6)
limysoc (ps(t) — pa(t) - 835(t)) = 0. )

Therefore, the formation maneuvering task defined in this
article requires all the agents to achieve (3)—(7) simultaneously.
In this maneuvering case, each agent can measure its own
velocity and the directions with respect to its neighbors, and
agent 3 must measure its relative position with respect to agent 1.

limy o0 €i2(t) = limg o0 (s (1) — af,;5,)

[ll. FORMATION STABILIZATION

In this section, we discuss formation stabilization using iden-
tical and distinct control gains, respectively.

A. Case of Identical Control Gains

We first consider the situation when all the agents have
the same velocity feedback gain. Specifically, we design the
formation stabilization law as

u; = —kgv; — Z(j,i,k)eA (Otjik — a;ik)(zij + Zik) 8)

where the gain ks > 0 applies to all the agents. The con-
trol law (8) consists of a velocity damping part and an an-
gle error feedback part, where the intuition of using z;; + 2z
is that it points toward the bisector of o;;[18]. To obtain
the convergence of angle errors under (8), we need to ana-
lyze their dynamics. First, we assume that [;;(0),;;,(0) and
sina;ix(0) V(j,4,k) € A are finite and bounded away from
zero where [;;(t) = ||p;(t) — p;(t)]|. According to (8), when the
initial velocity v;(0) is bounded and /;;(0) # 0, 1;x(0) # 0, the
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control input u;(0) will be bounded. Therefore, 377 > 0 such
that for t € [0,T1), 1;;(t), lix(t) and sin o (t) V(j,4,k) € A
are bounded away from zero. We now analyze the angle error
dynamics for ¢ € [0, T}) and the extension of 7} to infinity will

d(cosajin)
dt -

be discussed later. Since —(sin ajik )&t jik, one has

. 1 d(cos ajix)
P . 9
Ak SN Qi ( dt ©)
Also, one has
d(cos i) d(2fzk)

T T -
= = ZijZik T ZjjZik

dt dt
Pzw P,
=2k 7 (v — ;) + zg; 7 & (v —v;)  (10)
i ik

where P, = Iy — z;;2);, I, € R**? is the 2 x 2 identity ma-
trix. Substituting (10) into (9) yields

P r P

. Zik
Uj

. T
Qjik = — Zik - — Zij . k
J g sin ok i sin ajg

P, P,
+ (ziTkl = g )vi. (1)
ij S Qi lzk SIN Qi

Let us choose the error variables defined in (2)—(5) to be the
system state

T c ]R4N —4
(12)
which consists of 2N — 4 independent angle errors and all

agents’ velocities. Then, from (8) and (11), one can check that
the closed-loop dynamics satisfy

T T
X =le1,€2,€41,€42, ... ,EN1,EN2, V] ;.- ., VY]

R(X)
*ks 0y IZN

X _ ON—1)x(2N—1)

B00) X =Di(X)X (13)

where R(X) € RCN-4x2N and B(X) € R2V*CN-4) are
shown at the bottom of this page, and

P, .
N]lk :Zgi_zm ERlXZ,j,Z,kGV
lir; sin g,

Now, we linearize (13) around the desired equilibrium X = 0
to study its local stability. By linearizing (13) around X = 0 for

1365
t € [0,T1), one has
. 0lD1(X)X
% - [[gx”u_o} X = [Dy(X)]x—olX
_ 0(2N74)><(2N—4) R(X)‘XZO X =D;X. (16)
B(X)|x=0 —ks ® Dy

For notation conciseness in the following analysis, a quantity
with the superscript * means that it is evaluated at X = 0.
Note that the structure of the system matrix D7 in this double-
integrator formation is quite different from the corresponding
system matrix in the single-integrator formation[18, Egs. (32)
and (46)], which makes the formulated problem challenging.
We then show that system (16) is stable by checking that
D; € R*N-4 is Hurwitz through examining its eigenvalues.
Consider the characteristic polynomial of Dj

_R
(A +ks) ® Iy

AMon_4

|)\'I4N74 - Dﬂ = ’ _B*

‘ a7

where L € C is an eigenvalue of Dj. According to the Schur
complement theorem [25], one has

|Alyn—a — Dj|

* B
= ()» + k‘s)2Nd€t |:)¥I2N4 — R :|

A+ ks

)»()\, + k5)12N74 — R*B*
A ks

= (A + ko)*det(h(A + ko) oy 4 — R*BY).

= (A + ko)*NVdet [

(18)

Hence, —k; is a stable eigenvalue of geometric multiplicity
at least 4. To find the other eigenvalues, we now analyze the
structure of the matrix R*B*. For the first three-agent case, one
has the corresponding submatrix

air a2

[RB](1:2,1:2) = F1 = (19)

a1  A22

where [RB](;.j,x:m) is the submatrix selecting rows from i to
7 and columns from % to m from the matrix RB. Therefore, it

Noi3 + N3i2 —N312
—N321 N321 + Niog
R(X) = N N
—Nogp —N142
—212 — 213 0
0 —Z21 — %23
B(X) = | z31 + 232 231 + 232
0 0
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follows that:
a11 = (Naiz + N3i2)(—z12 — 213) — Nai3(z31 + 232)
a2 = N312(221 + 223) — Na1s(231 + 232)
az1 = N3o1(212 + 213) — Ni23(231 + 232)

a2 = (N321 + Ni23)(—221 — 223) — N123(231 + 232).

Since P, ;z;; =0 and N3jp2z12 =0, one obtains Fl =
Noig(z21 + 223) — (N312 + Nai3)za3
(N321 + Ni23)z13 Niog(z13 + 2z12) —

N312213
N321 203

Substituting the definition of Nj;;, given after (14) into aq;
yields

e — 219 P.yy (221 + 223) B 213 P, 213
H 113 sin (651 l12 sina1
_ PPy (P2 L PPz PiaPei,p13
l12l13 Sian 121 l23 l12Z%3 sin (&3]
— 1 (_p{QPz13p12 o p{2P213p12 _ p{3P212p13>
sin l12l13l23 13503 liolds
sin
= ———— (I35 + halas + h3l23) (20)
12013123
sin oy

where p;; = p; —

S1n ey — Sin Oz3 , one ha.S
l13 l21

pi, 1,7 € V.Byusing the law of sines has =
sin aq

sin o i sin a3
aip = — ( + + > =
l12 l13 l13

Sll’lOéJ

—(g1 + f13) (21)

1 1
Licitr)  ligi-1)

where we define f;; = =, gi= (sin ay;) (
{1,2,3}, and(z—l)eM,( 1) e V.

Similarly, by using simplification and the law of sines, one
also has

sin ap

(35 + lialys + lasliz) = — (g2 + fo3).

(22)

a9 = ————
liali3las

Then, we calculate

ajo = plBPZu
llgllg sin [05]

ploPsy, ) D21 + P13

lioliz sin oy lo3

)iije

o P{3P12P1T2P13 + P?gpmp?gpn
2 2
12 13
l12l13l23 sin a1

2 2
l13 - 112

_ (i — By sinay (23)
- lioliglas

_ sinas

sin o
l23

= sihas one has

By using the law of sines s Ios

a2 = fi2 — f1s. 24

2 2 H
7023;;:?:;[?;&2 = f21 — fa3. Note
that the matrix Fl is equal to F defined in [18].

Then, writing down all the other elements in matrix R, one
finds that R B has a block lower triangular structure. Consider
that for agent 7,7 > 4, there are two desired angles «; and

Jiijz
ol where 71, 72,73 <t are the three neighboring agents

WJhZOJI; the agent ¢ will measure the directions with respect to.
Then, one has (25) shown at the bottom of this page.

By using similar simplification as for the first three agents,
one also has (26) shown at the bottom of this page.

Now, we find that 13‘2-, 4 <1 < Nin(26)isequal to F; defined
in [18]. By checking other matrix elements, one obtains that the
matrix R(X)B(X) in the closed-loop error dynamics (13) of
double-integrators is the same as the system matrix A(e, ) in the
angle dynamics ¢, = A(e,)e, of single-integrators (e, denotes
the column vector consisting of all the 2V — 4 independent
angle errors), i.e.,

Similarly, one has ag; =

*x ﬁ‘4 0 0
R(X)B(X) = A(eq) = | **+ ** Fy - 0 7

ko k) 3k x %k * ok F N

which is an important and convenient fact for the later analysis.
We summarize this using the following remark about matrices
F,i=1,4,...,N.

Remark 2: Under the angle set A and control law (8),
R(X)B(X) in the closed-loop error dynamics (13) of double-
integrators is the same as the system matrix A(e,) in the
dynamics é, = A(e,)e, of single-integrators [18]. Therefore,

[RB](2i-3:2i—4,2i-3:2i—4) = Fi =

—(Njyigs + Njpija ) (Zijy + 2ijp)
_(szija + N33112)<Zij1 + Zijz)

e
T21 W2
—sin @, 45, (% + 11172 )
sin oy, g, SN g ijg 8N iy
Lj, lijs
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t(s)
Fig. 3. Evolution of angle errors in Case 1.
1
I
AL ,}/Quf\f\,_/,\?
BRI RSN
G-
- -i=t
- - -2
i=3
— =142
=243
=452
- =~ =251
40 50
Fig. 4. Evolution of angle errors in Case 2.

according to [18, Thes. 7 and 8], the matrix Fl* is always Hurwitz
and l*:’i* V4 <4 < N are Hurwitz if Assumption 1 holds.

In the case of single-integrators, A(eg)|e,—o being Hurwitz
is sufficient to make the formation’s angle error dynamics
eq = A(eq)e, locally and exponentially stable. However, this
is not sufficient for double-integrators due to (18). Note that in
the case of double-integrators, according to (18) and (27), the
necessary and sufficient condition to make (16) exponentially
stable is that the solutions of

detA(A + ko)l — F]=0,i =1,4,5,....N  (28)

have negative real parts. While an arbitrary choice of positive
gains does not make the single-integrator system unstable, this
is not true for the double-integrator one as illustrated in the
following simulation example.

Example 1: The desired angles: ofy3 = 7/2,0%,5="7/4,
b =7/4, 4o =arctan(1.2), ., = arctan(0.3), abs, =
arctan(3/1/10), a5, = arctan(1.2). The initial states:
p1(0) = 0.5,0.1]7, p2(0) = [0.1,1.2]7, p3 (0)=[1.2,0.2] ",
pa(0) = [0.1,2.07,p5(0) = [1.4,1.2]7,,(0) =
[—0.1,—-0.2]T, p2(0)=[0.2, —0.1]T, p3(0) = [-0.1, -0.1],
p4(0)=[-0.1,0.4]T, p5(0) = [0.1,0.1]T.

Case 1: Single-integrator agent dynamics with Hurwitz ma-
trices Fi*,i = 1,4, 5. The simulation result is shown in Fig. 3.

Case 2: Double-integrator agent dynamics with gain
ks = 0.2. The simulation result is shown in Fig. 4.

Example 1 illustrates that the proper selection of velocity
damping gain kg in angle-controlled double-integrator system
is important. Now, we present the remaining results.

Lemma 1: Under Assumption 1, the matrix D] is Hurwitz if
and only if

E2Re(Li;) + (Im(1i5))* < 0,5 = 1,2 (29)

holds for Vi = 1,4,..., N, where X;; and X;5 are the two con-
jugated eigenvalues of the matrix 7, and Re() and Im() denote
the real and imaginary parts of a complex number, respectively.

Proof: Note that one can always find a nonsingular matrix
P € C?*2 such that

Fr=p|tt p

where #* represents an element which does not affect the fol-
lowing analysis. Then, (28) can be written into
pl}

3D

(30)

det[h(h + ks) 2 — FY]

= det {P

=M+ ks) — 2| [A(A + Es) — Aso]

AMA+ks) — A *k
0 A(A A+ Es) = Aio

which implies that the stability of (16) depends on the solutions
of A\(A+ks) —A;;=0,i=1,4,...,N,j=1,2.Note that 1;,
can be a complex number. According to [26, Th. 40.1], (29) is
the necessary and sufficient condition to guarantee that the two
solutions of A(A + ks) — A;; = 0 have negative real parts. (]

Now, we further explore the condition (29) by calculating A ;1
and A;o. According to Lemma 1, we have that if Assumption 1
holds, then A(ey)|e,—0 = R*B* is Hurwitz, which implies that
Re(%;;) < 0,Vi=1,4,...,N,j=1,2. According to Lemma
1,whenIm(A;;) = 0,A(A + k) — A;; = O will always have two
solutions with negative real parts.

1) For the case of Im(4;1) = Im(X;2) = 0 in the first three
agents, we require for F 1 in (19) that

* * * \2 * *
Al = (ay; — a3y)” + 4ajyay,

= (91 + fis — 95 — f33)? +4(fi2 — fis)(far — f33) = 0.
(32)
By using the law of sines Si;ai = Siﬁaa = Si;ag and simpli-
12

23 13
fication, we can conclude that (32) can be written as
sin o
— +
sin b

. .
4 (Snas _ sinag
sinaj  sinaj

M *
sin o}

- . - SN 2
sinaz  sinah  sinad  sinaj >
4+, — — —

sinai  sina;  sina)  sinaj  sino]

. % . *
S vy _ S11l (g

) > 0.

(33)

sinaj  sinaj

Similarly for agents 4 to NN, to guarantee Im(%,;) = 0,7 =
4,...,N,7 = 1,2 for F; defined in (26), one has

A; = (@ —@3) + 47357, > 0. (34)

Multiplying [} ]22 at both sides of (34) and simplification yields
sinaf . sinal . ?
J2J1t ; * 2J3J2 . *
—=—+1|sin Qg — | =+ 1] sin Qrijs
sin o, i sinag;, ..

sin acf J

(Slna- o sinag )Slnw .

J1tj2 J1tj3 J2J11° 2 *
+4 = sina;, ;.
17271
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s T sin o

sin o o
% (( Jaij J1ijs

2) For the case of Im(%;;) # 0, since Im(%;1) = —Im(A;2) and
Re(Xi1) = Re(A;2) < 0, the stability condition (29) can be writ-
ten as

)SlIlOt

sin al?z]S

1 .
Jaj2 &na}‘-lih) > 0.

(35)

A; <0 and 4k2Re(rij) — AF <0 (36)
where i =1,4,...,N, j =1,2, and Re(;;) = % when
i =1 and Re(%;;) = % when ¢ > 4. By combining the
above two cases, one obtains the conditions such that all the
eigenvalues of D7 have negative real parts, which implies that
D7 is Hurwitz. In summary, we has the following result.

Proposition 1: Consider that N agents of double-integrator
dynamics (1) are governed by (8) with the identical gain kg, the
initial errors X (0) are sufficiently small, the initial inter-agent
distances are bounded away from zero, and Assumption 1 holds.
The system (13) is locally stable for ¢ € [0,T}) if (29) holds for
Vi =1,4,..., N. Moreover, (29) holds if and only if for each
i=1,4,...,N, A¥ > 0 or (36) holds.

Note that if Dj is Hurwitz, X = 0 is the only equilibrium
of (16), which is exponentially stable. We now analyze the
evolution of the distance and angle errors among the agents to
guarantee that the nonlinear closed-loop dynamics (13) is well-
defined because the collinearity case sin oj;, = 0, (4,7, k) € A
and collision case [;; = 0, l;;, = 0 will make (9) and (10) invalid,
respectively. Fort € [0, T}), since D7 is Hurwitz, for an arbitrary
positive definite matrix Q; € RAN-Ix(EN=4) " there always
exists a unique positive definite matrix P; € R(AN-4)x(AN-4)
such that

DiTP, + PD; = —Q;. (37)

Now, for system (16), we design the Lyapunov function

candidate as

Vi=X"PX. (38)

Taking the time-derivative of (38) yields
V= -XTQ,x < — “‘“‘(Ql)v (39)

Q max(Pl)
Then, it follows that:
%1 (t) %1 (0) 7"mm< )
X t 2 S < e )»max(Pl) (40)
|| ( )H )\min(Pl) )‘«min(Pl)

. N
Since | X (1) [[*=ef+e3+edi+ - +eRyFehot2iny [lvill*

one has that for (7,7,k) € A

Vi(0 ,/mm(Q
s (1) — ] < X)) < Do 3T a)
J Amnin (P
lo ()]l < 1% < [ 2O -smintye “2)
! o - )\min(Pl)

Note that (41) implies
. Vi(0) . Vi(0)
o=y ——L— < aiir(t) < o 43
a]lk }‘-Inin(Pl) o a] k( ) o ajlk + )‘-min(Pl) ( )
According to (42), one has
t
lij(t) =1;;(0 / T)dr = 1;;(0) + / ziTj(vj v;)dT
0
t
© = [ (sl + la
0
}‘min(Ql) t

1 — 6727~max(P1) )

4 Vl (O) Amax(Pl) (
)\min(Pl) )"min(Ql

(44)
Therefore, if
. | _1i(0) ) Vi(0)
Qg > T (PD) and o, + T (P1) <7 (45)
then no collinearity happens among j, i, k. If
V O )‘-m X P
li_j(o) >4 1( ) a ( 1) (46)

)‘min (Pl ) )"min (Ql)

no collision will happen between agents 7 and j.

Because o, is bounded away from zero and , and /;;(0) is
bounded away from zero, and X (0), V; (0) are sufficiently small,
(45) and (46) hold for ¢ € [0,T1). Assume that there exists a
collision or collinearity in [T}, o) and denote the first time that
it happens by 77, . Then, one has the following two cases.

1) Collision between 4 and j happens at T3 : Since no collision
and collinearity happens in [0, 75 ), the closed-loop system is
well-defined in [0, 75 ). Following the calculations in (38)—(44),
one has that

Vl (0) )\max(Pl)
)Vmin(Pl) )\min(Ql)

which is bounded away from zero. This implies a contradiction
with the assumption that collision happens at 7%, . Thus, no
collision between agents 7 and j happens at 75, .

2) Collinearity among j, ¢, k happens at 7}, : Then, one has
that o1, (T ) will approach zero or . Since no collinearity and
collision happens in [0, T’ ), using (43), one has that o1, (75 )
is bounded away from zero and 7 which implies a contradiction.
Therefore, no collinearity will occur among j, 4, k at T%, .

Since none of the above two cases is possible, no collision
and collinearity will happen in [0,00) given that the initial
formation is sufficiently close to the desired formation, i.e.,
V1(0) is sufficiently small. Then, the system (13) is well-defined
from ¢ = 0 to 400, under which the asymptotic stability can
be established by using the same analysis from (9)—(36) for
Yt € [0, 00). The following theorem summarizes the main result.

Theorem 1: Consider that N agents of double-integrator
dynamics (1) are governed by (8) with the identical gain k,, the
initial errors X (0) are sufficiently small, the initial distances are

>0

Lij(Ty) > 1;;(0) — 4
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bounded away from zero, and Assumption 1 holds. The forma-
tion stabilization defined in (2)—(5) is locally and asymptotically
achieved for t > 0if (29) holds for Ve = 1,4, ..., N.

Remark 3: Since the initial angles in Example 1 are close
to the desired angles, we can use the initial states given in
Example 1 to approximately check the stability of the forma-
tions governed by the single-integrator agent dynamics and the
double-integrator agent dynamics, respectively.

B. Case of Distinct Control Gains

The designed formation stabilization law (8) in the previous
section requires all the agents to have the identical velocity
feedback gains k. To adapt for different actuator characteristics,
e.g., speed constraints in different agents, in this section we
design a formation stabilization law which allows each agent to
have distinct control gain k;, namely, the control input for agent
1,9 =1,..., N is given by

u; = —k;v; — Z(m.’k)eA (i — i) (zi5 + 2ir) - (47)

where k; > 0 and k; can be different from k;. By choosing the
same system state variable X in (12), one has the closed-loop
dynamics of X

R(X)
—dlag{kz} & _[2

O2n—4)x(2N-4)
B(X)

X = X = Dy(X)X

(48)
where diag{k;} = diag{ky,...,kn} € RV*N. To prove the
local stability of (48), we consider the characteristic polynomial
of D3 again, that is

(49)

. Ao —R*
|)\.I4N_4—D2:’ 2N—-4 ’

—B* diag{A +k;} @ I

where diag{X + k;} = diag{A + k1, ..
to Schur complement theorem, one has

., A+ kn}. According
|Man-a — D3| =

N
[T{x + ki)detliTon s — R*diag{(x + k:)~'} @ LB*]}.
i=1
By multiplying matrix B* with diag{ (X + k;) "'} ® I, then

with matrix R*, it can be observed that

Rdiag{(» + k;)"'} ® I, B*

_Fl* 0 0
Kok Af‘i‘L 0
B P & 0 (50)
| # * % * % * % Af—{:}\,_
where F} = Fy (X)|x—o, Fy(X) = | “12| and
a21 A22

Noi3(z31 + 232)
A+ ks

- (Naiz + Na1z) (=212 — 213)
an =
Ak

_ Naia(2a1 +223) | Noiz(z31 + 232)

a2 = A+ ko A+ ks ’
- (N321 4+ Ni2g)(—2z21 — z23)  Niog(231 + 232)
a1 =

A+ ko A+ ks
- (N321 4+ Niog)(—2z21 — z23)  Niog(2z31 + 232)
22 =

A+ ko A+ ks
Then, it follows that:

3
‘)\14]\/'_4 — D§| = {H()\ + k’z)} det()\.lg — Fl*)
i=1

N
X {Hdet[k(k + ki) — F]} . (51)

1=4

Note that the stability condition of {]2\, det[(% + k;)Io —
F *1} = 0 obtained from (51) is the same as (28), which implies
that there is no difference for the stability condition when agents
4 to N have identical or distinct velocity damping gains. Then,
the stability condition for agents 4 to /N can also be described
as

k?Re(hij) + (Im(r;;))* < 0,i=4,...,N,j=1,2 (52

which holds when (35) or (36) hold for i = 4, ..., N. But this
is not the case for the first three agents. For the first three agents,
different from (28), the corresponding element in {[]>_, (A +
ai

ki)Y (Ao — Fy) = [

*
azy

=%
P
=%

] becomes that

(32

aj; = [AMA+ k) (A +k2) (A + k3)
— (N213 4+ N312)(—212 — 213) (A + k2) (A + k3)
— Notg(za1 + 232) (A + k1) (A + k2)][x=0

gy = [M(A 4 k1) (A + k2) (A + ks3)

— (N321 + Niog)(—221 — z23) (A + k1) (A + k3)

— Ni23(z31 + 232) (A + k1) (A + k2)]|x=0

ajy = — [N3i2(221 + 223) (A + k1)(A + k3)
— No13(z31 + 232) (A + k1) (A + k2)]| x=0
a3 = — [(N321 + Ni23)(—221 — 223) (A + k1) (A + k3)

— N123(Z31 + 232)()\ + k’1)()\ + kQ)HX:Q.

By letting {[]°_, (A + &;) }det(AI — F}) = 0, the stability
condition of the first three agents becomes that the eight solutions
of the following algebraic equation all have negative real parts:

@ g — @iolhy = bgA® + AT+ + biA+Dbp =0 (53)

which can be checked by Routh stability criterion [26, Th.
40.1] or some numerical tools (e.g., MATLAB). But the explicit
solution of (53) is hard to be obtained due to the high order of
(53). The algebraic equation (53) is related to the desired trian-
gular formation shape and the velocity damping gains k1, ko, k3,
which implies that an inappropriate selection of the first three
agents’ velocity damping gains may cause the system unstable.
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Finally, we summarize the above discussion into the following
result.

Theorem 2: Consider that N agents governed by (47) with
distinct gains k;, the initial errors X (0) are sufficient small,
initial inter-agent distances are bounded away from zero and
Assumption 1 holds. The formation stabilization defined in
(2)—(5) can be locally achieved if all the solutions of (53) have
negative real parts and (52) holds. Moreover, (52) holds if and
only if foreach+ =4, ..., N, (35) or (36) holds.

The proof of theorem is followed by the above analysis. The
analysis of collision and collinearity is similar to Theorem 1.

Remark 4: The formation stabilization laws (8) and (47)
can be implemented in each agent’s local coordinate frame,
i.e., the alignment of all agents’ local coordinate frames is not
needed. This can be obtained straightforwardly by following [18,
Remark 6].

IV. FORMATION MANEUVERING

Different from the case of formation stabilization, the ma-
neuvering of angle rigid formations requires all agents to not
only achieve the desired formation shape, but also move with
the desired collective motion in terms of translation, rotation
and scaling. Because of the cascading construction of the de-
sired angle rigid formation in Section II-C, the rotational and
scaling maneuvering can be controlled by the first triangular
formation formed by the first three agents. According to (7),
given a nonzero desired relative position ¢74(¢) from agent 1 to
agent 3, the desired orientation and scale of the formation can
be determined by ;5(¢)/||055(¢)|| and ||675(t)||, respectively.
Therefore, the objective of this section is to achieve the desired
angles, the same translational maneuvering velocity v*(t) € R?
for all the agents, and maintain the desired relative position
035(t) from agent 1 to agent 3. Let {¢1, to, . . ., t,, } be the instants
that &7 (¢) switches its values where n € N*. Then, we present
the assumption on the change of §74(t).

Assumption 2: Each agent has the knowledge of v}, v}.
The desired relative position ¢ () satisfies three properties: 1)
034 (¢) is piecewise-constant and bounded, and 035 (t) # 0 V¢ >
0; 2) the number of its abrupt jumps is finite; 3) the neigh-
boring change of §;5(t) is bounded and sufficiently small, i.e.,
635(t;) — 015(t)|| < e Vi=1,2,...,nwhereeisapositive
and small number.

Remark 5: The agents can either communicate or employ
a consensus-based finite-time estimator to obtain v} and v}.
Compared to the previously proposed maneuvering pattern [19],
[27] where the rotational or scaling maneuvering speed is
constant for all time, the maneuvering pattern defined in this
article is more practical since d74(¢) only needs to be changed
when the rotational or scaling maneuvering is necessary for the
execution of the current task. Moreover, the requirement that
¢ should be sufficiently small can be fulfilled in practice by
changing ¢74(¢) with longer time ¢,, and more steps n. This
is equivalent to requiring that the rotational and scaling speed
should not be very large, which is similarly needed in [11], [19],
and [27].

Now, we design the formation maneuvering algorithm to be
ui(t) = 0(8) = ks(vit) = v2) = kmi(ps(t) — pa(t) — 615(2))
-E:UJkEA(aﬁk@)—Cﬁm)@u(ﬂ-F%k@»

where k,,; =1 if ¢ =3, and k,,; = 0 otherwise. First, we
analyze the convergence of the formation within the time
interval ¢ € [0,t1] where &75(¢) is constant. We need to
obtain the angle error dynamics, velocity error dynamics,
and the relative position error dynamics of the closed-
loop system under the designed maneuvering algorithm
(54). In this maneuvering case, we define the system state
variables

(54)

7
Y =[e1,e2,€41,€42,...,N1,€N2, D13,

T T T *T1T
UV —Ue .- UN — U }

(35)

where P13 = p3 — p1 — 03 and Y € R*N=2 Our objective is to
prove that Y = 0 is alocally stable equilibrium under (54). Sim-
ilar to the formation stabilization case, p;(0) is bounded if the
initial velocity v;(0) is bounded and [;;(0), ;% (0), sin ¢ (0)
are bounded away from zero. Therefore, 75 > 0,75 < t;
such that I;;(t), Lix(t),sin ik (t) Y(j,4,k) € A are bounded
away from zero for ¢t €[0,7y). We first analyze the
error dynamics for t € [0,7%). According to (11), one
has

o qu'j . T quk
Qjik = — Zigy Vi T Ry Uk
l;; sin o, li sin o
P, . P,
+ (2 ” X ZE Yo, (56)

ik lij SIN Qg K lik SIN Qi

Note that the velocity error variable in this case is v; — v,
instead of v;. Therefore, we rewrite (56) into

P P,
. T Zij * T Zik *
Qjik = — Zikl.i(vj — ) — S el Gl ve)
ij S Qi ik SIN Qi
P

P, .

+ | 2h——— + 2 — (v; — V)
l;j sin o, lik; sin o,

v P

* T P
— Zikl%
ij S Qi

T Zik ¢
¢ Y lzk sin Qjik ¢
P, P
ij 24
+ z?,; Bl + zzT] Zik vy
lij SIN Oy lik S ik

In the following, we investigate the effect of the translational
maneuvering term v on the angle dynamics ¢, in (57). Note
that

(57)

_ T Pzij *_ T Pzik *
LT B TR
ij Sin oy ik SiN Qg

(58)

P P,
T Zij T Zik *
+(Zikl~" - +Zijl. —— | v, =0.
ij Sin g, ik SIN Qv

Therefore, (57) and (58) imply that the translational maneu-
vering has no effect on the angle dynamics &, (.4, k) € A
in (57). This is because the whole formation’s translation will
not change the interior angle a;;;. Therefore, one still has the
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similar angle dynamics c¢;;; in (57) as the case of formation
‘ar angle dy jik 1 (57) re | No13(252 + 272)  N3jz2is 63
stabilization (10). 1= v s o ok (63)
Nia3272 Niaszz3,

Then, we analyze the velocity error dynamics of v; — v].
Using (54), one has

0 — U = — ks(vi —v}) — ki (p3 — p1 — 873)
B Z(m,k)eA (ajin — a;ik)(zij + Zik)-

The dynamics of the relative position errors can be described
by

513 = V3 — UZ — (1}1 — ’UZ) (59)
Summarizing (57)—(59) yields the overall dynamics
' ON—4)x@2n-4) O R(Y)
Y = 0 0252 Ky Y =Ds(Y)Y
B(Y) Kl _ksIZN
(60)

where R(Y) and B(Y") have the same definitions as (14) and
(15), respectively, K7 = [02x2;02x2; —I2;02x2;. . .;02x2] €
R2N*2  and Ky = [—12702><27,[2, O2x2, ..., OQXQ] € R2x2N,
Using a similar linearization step for (60) as (13)—(16), the
linearized dynamics of (60) around the desired equilibrium
Y = 0 can be described by

. ON-—4)x@2n-4) O R*
Y = 0 Oowe Ko | Y =Dy (61)
B* Kl _ksIZN

where R* = R(Y)|y—o and B* = B(Y)|y—o can be different
from R* and B*, respectively, due to the different interagent
distances at their equilibrium points. Following the calculation
method in (18), the characteristic polynomial of D3 can be
written as (62) shown at the bottom of the this page. According
to the definitions of K and K5, one has

where #x in the matrix R* K K, B* represents some elements
that will not affect the following analysis. According to the
matrix structure in (62) and (63), one has that compared to
the dynamics (16), the dynamics of py3 in (61) only affect
the angle error dynamics of the first three agents, and does
not affect the remaining agents’ angle error dynamics. Using
the fact (A2 + koA + 1)% = det(diag[A% + kod + 1,12 + koA +
1,1,...,1]) for (62), one has

N
May-2 — Dj| = (A + ko)*{] [ det[A(x + ki) T2 — F;]}

i=4

x det{(A2 + koA + 1)[A(A + ko) [o — F¥] — F¥}. (64)

Therefore, D} has two eigenvalues —kg, —ks, and 4(N — 3)
eigenvalues lying in HzN:z; detA(A + k;)Io — F¥]} =0, and 8
eigenvalues lying in det{(A? + kA + 1)[A (A + kg) o — F}] —
F T} = 0. Now, we are ready to present the main result.

Theorem 3: Consider that N agents of double-integrator
agent dynamics (1) are governed by (54), the initial angle
and velocity errors are sufficiently small, the initial interagent
distances are bounded away from zero, Assumption 1 holds and
t € [0, t1]. The formation maneuvering errors defined in (3)—(7)
will locally and exponentially converge if Assumption 2 and
(29)hold fori = 4, ..., N, and the solutions of det{ (A2 + kA +
)[A(A + k)T, — F¥] — F} = 0 have negative real parts.

Proof: Under the assumptions in Theorem 3, all the eigenval-
ues of D3 have negative real parts, which implies the local and
exponential stability of (60) when ¢ € [0, T2). Now, we extend
T5 to t; to establish the stability of (60) for ¢ € [0, t1]. First,
one can construct a Lyapunov function V5 = Y7 P,Y where
P, = P > 0O satisfying D37 P, + P,D} = —Q2 < 0. Similar
to (38)—(45), one has that no collinearity will happen since (41)

F T 0 0