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Abstract—This article studies 2-D formation stabilization
and maneuvering of mobile agents governed by double-
integrator dynamics. The desired formation is described
by a set of triple-agent interior angles. A carefully chosen
such set of angle constraints guarantees that the desired
formation is angle rigid. To achieve the desired angle rigid
formation, a stabilization control law is proposed using
only local velocity and direction measurements. We show
that the closed-loop dynamics of the formation, when each
agent is modeled by a double-integrator, are closely re-
lated to the corresponding one in single-integrator agent
dynamics. Sufficient conditions are constructed to guaran-
tee the closed-loop stability for identical and distinct ve-
locity damping gains, respectively. To guide an angle rigid
formation to move with the desired translational velocity,
orientation, and scale, formation maneuvering laws are
then proposed. Simulation examples are also provided to
validate the results.

Index Terms—Angle rigid formations, direction measure-
ments, double-integrator agent dynamics, formation ma-
neuvering, formation control, multiagent systems.

I. INTRODUCTION

R ECENTLY, multiagent formations have been widely stud-
ied due to their broad applications in, e.g., search and res-

cue using mobile robots [1], drone light shows [2], and formation
flying of multiple satellites [3]. Two research problems arise, i.e.,
formation stabilization and formation maneuvering [4]. Under
different specifications of formation shapes and available sensor
measurements, different approaches have been proposed to solve
these two problems [5].
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To achieve a formation specified by relative positions, a
formation stabilization law is proposed in [6] by using the
measurements of relative positions, in which the alignment of the
coordinate frames of all the agents is required. In some scenarios,
however, it can be difficult for all the agents to guarantee the
perfect alignment of their coordinate frames due to the lack
of a global reference and existence of sensor measurement
noise. When misalignment exists in agents’ coordinate frames,
a distorted formation shape and nonzero translational velocity
may appear in the relative position-specified formation [7],
[8]. Without the requirement on coordinate frames’ alignment,
using distance rigidity theory, a desired formation described by
distances is achieved using local relative position measurements
in [9] and [10]. For the translation and rotation of distance rigid
formations, several formation maneuvering algorithms are de-
signed in [11]–[13] by employing a mismatch-based approach.
Besides translational and rotational maneuvering, the scaling
maneuvering is also necessary in many scenarios, e.g., obstacle
avoidance [4], which, however, due to the pairwise distance
change between agents during scaling, is not straightforward to
be obtained by directly modifying the algorithms in [11]–[13].
Intuitively, bearing/angle constraints remain the same under
scaling motion and, thus, can be utilized for both formation shape
control and scaling maneuvering. Recently, it is reported that
bearing/direction measurements can be obtained by monocular
cameras, passive sonars and sensor arrays [14], [15], which
are more accessible than relative position measurements. These
developments promote the application of bearing rigidity the-
ory and bearing-only formation control algorithms [16], which,
however, require the alignment of coordinate frames of all the
agents.

Not requiring the alignment of coordinate frames, a triangular
formation control algorithm is proposed in [17] and [18] by
employing triple-agent interior angles to specify the formation
shape and using local inter-agent directions as the measure-
ments. Further, [15] and [18], study angle rigidity and extend
the results of [17] to formation stabilization with an arbitrary
number of agents. According to [27], angle rigid formations
enjoy more freedom than both distance and bearing rigid for-
mations because the angle preservation motions allow simulta-
neous translation, rotation, and scaling. Given more degrees of
freedom, angle rigid formations can be achieved using fewer
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sensor measurements, and can choose more maneuvering forms
to achieve practical tasks. By exploiting this advantage, maneu-
vering algorithms are proposed in [19] and [27] for angle rigid
formations with single-integrator agent dynamics following a
mismatch-based approach. However, to the authors’ best knowl-
edge, it has not been investigated how to stabilize and maneuver
angle rigid formations with double-integrator agent dynamics,
which is closer to real applications since double-integrator mod-
els capture better forces and moments in real mechanical systems
[20, Ch. 2].

Motivated by the aforementioned works, this article aims at
designing control algorithms for double-integrator multiagent
systems by using local velocity and direction measurements
to achieve the formation stabilization task, and by using the
measurements of velocity, direction, and one relative position to
achieve the desired translational, rotational, and scaling maneu-
vering. The contributions of this article can be summarized as
follows.

1) The stabilization and maneuvering of angle rigid for-
mations with double-integrator agent dynamics are realized.
Although the structure of the double-integrator angle rigid
formation’s angle error dynamics is quite different from the
corresponding one in single-integrator formations, we show that
the closed-loop dynamics of the formation when the agents are
governed by double-integrator dynamics are closely related to
those of the corresponding single-integrator agent dynamics.

2) For the formation stabilization control law, only local
velocity and direction measurements are needed. Compared to
the stabilization of double-integrator formations using relative
position measurements [21], [22], no distance measurements
are required in our formation stabilization control law. For the
formation maneuvering law, in addition to the measurements
mentioned in the stabilization case, we require only one agent,
to measure its relative position with respect to a reference agent.
This relative position will be used to control the rotational and
scaling maneuvering of the formation.

3) The desired maneuvering in forms of translation, rotation,
and scaling is achieved simultaneously. Compared to the forma-
tion specified by relative positions, distances or bearings, angle
rigid formations have more maneuvering degrees of freedom,
which is helpful for those tasks requiring the formation to
maneuver in translation, rotation, and scaling such that it passes
through an unknown environment with obstacles.

The rest of this article is organized as follows. Section II intro-
duces basic background knowledge and formulates the problem.
In Section III, we present the results about the stabilization of
angle rigid formations under identical and distinct control gains,
respectively. The formation maneuvering algorithm and its sta-
bility analysis are given in Section IV. Simulation examples are
provided in Section V. Finally, Section VI concludes this article.

II. PROBLEM FORMULATION AND PRELIMINARIES

In this section, we introduce the agent dynamics, direction
measurements, and angle rigid formations. Then, the research
problem is formulated.

Fig. 1. Direction measurements.

A. Agents’ Double-Integrator Dynamics

Consider N mobile agents moving in the plane. Agents are
labeled from 1 to N , and V = {1, 2, . . . , N} is the index set.
The dynamics of each agent i, i ∈ V , is governed by

ṗi = vi, v̇i = ui (1)

where pi ∈ R2 denotes the position of agent i with respect to
a fixed global coordinate frame, vi ∈ R2 is its velocity in the
same frame, and ui ∈ R2 is its control input to be determined.

B. Direction Measurements

Each agent i ∈ V can measure the “direction” with respect to
some other agent j ∈ V with pi �= pj , denoted by

zij :=
pj − pi
‖pj − pi‖

which is the unit vector starting from pi and pointing towards
pj . The set of such j to which i measures its direction is denoted
by Ni, and for different i, Ni can be different. For the triangle
formed by agents i, i+ 1 and i− 1 shown in Fig. 1, the interior
angle α(i+1)i(i−1) ∈ [0, π] can be calculated by α(i+1)i(i−1) =
arccos(zTi(i+1)zi(i−1)).

C. Construction of the Desired Angle Rigid Formation

To guarantee that the desired formation is unique under the
given angle constraints, the formation is required to be angle
rigid [18]. Now, we briefly introduce how to construct an angle
rigid formation through a sequence of steps, which is similar to
a sequence of Henneberg vertex addition steps [23]. For more
details about angle rigidity, we refer the readers to [18]. First,
we define an angle set A ⊂ V × V × V to describe the angle
constraints, where each member of A has three ordered vertices.
The desired formation is recursively constructed by completing
the following algorithm consisting of N − 2 steps:

Step 1: The first three entries of A correspond to the three
interior angles of the triangle�123, i.e.,α312, α123, α231. Then,
the eventual orientation and scale of the whole formation are
determined by the orientation and scale of the first triangular
formation, respectively.

Step 2: Add vertex 4 to the formation. This requires the
knowledge of the next two elements of A, which must be one of
the following three combinations: 142 and 243, 142 and 143, or
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Fig. 2. Construction of an angle rigid formation.

243 and 143. In this article, we consider the combination α142

and α243 which is shown in Fig. 2.
Steps 3 ∼ (N − 3): Similar to Step 2, at each step, add a new

vertex with two associated new angle constraints.
Step (N − 2) (last step): Add vertex N by adding two

angle constraints: αi1Ni2 and αi2Ni3 , i1, i2, i3 ∈ {1, . . ., N −
1}, i1 �= i2 �= i3.

As described in the above N − 2 steps, the angle set is A =
{(3, 1, 2), (1, 2, 3), (2, 3, 1), (1, 4, 2), (2, 4, 3), · · · , (j1, k, j2)
, (j2, k, j3), . . . , (i1, N, i2), (i2, N, i3)}. Then, for (j, i, k) ∈ A,
we define {j, k} ∈ Ni. According to the Type-I vertex addition
operation in [18] and [18, Prop. 2], one has that the above
constructed formation is generically angle rigid. To guarantee
the uniqueness of each new vertex’s position in Step i,
i = 2, . . ., N − 2, the following assumption is needed.

Assumption 1: In each aforementioned Step k − 2, k =
4, . . . , N with the corresponding angle constraints αj1ij2 and
αj2ij3 , we assume that αj1ij2 and αj2ij3 are not zero or π,
pi, pj1 , pj2 , pj3 are not on a circle, αj1ij3 = αj1ij2 + αj2ij3 ,
sinαj1j2i > sinαij1j2 , and sinαij2j3 > sinαj2j3i.

Remark 1: According to [18, Prop. 2], when Assumption
1 holds, the position of each new vertex k, k = 4, . . . , N is
locally uniquely determined,1 which implies that the constructed
formation is angle rigid. The inequalities in Assumption 1 are
used to guarantee the single-integrator angle rigid formation
locally stable[18, Th. 8]. Compared to [21] and [24], the con-
struction of angle rigid formations is based on the Type-II vertex
addition operation[18, Definition 7], under which the interagent
communication is avoided in the control design and the number
of angle constraints is minimized.

D. Problem Formulation

Consider that all the agents are governed by the double-
integrator dynamics (1), and the desired formation is constructed
by following the steps given in Section II-C. The goal is to design
control input ui for each agent i such that the whole multiagent
system can achieve formation stabilization or formation maneu-
vering described formally as follows.

1) Formation stabilization: Each agent’s position pi(t) con-
verges to a fixed point which satisfies the angle constraints given
in the desired angle rigid formation, and the velocities of all
agents converge to zero, i.e.,

limt→∞ ṗi(t) = 0, ∀i ∈ V. (2)

1This represents that the position of the added vertex is locally unique when
all the vertices are perturbed within a small continuous neighborhood of the
original configuration, but might not unique when the perturbation is large or in
another nonneighboring region.

Note that when all the angle constraints are satisfied, one has
that the first three agents achieve the desired triangular shape

limt→∞ ei(t) = 0 ∀i = 1, 2, 3 (3)

where ei(t) = αi(t)− α∗
i , αi = α[i+1]i[i−1], [i+ 1] = 1 when

i = 3, [i− 1] = 3 when i = 1, and α∗
i ∈ (0, π) denotes agent

i’s desired interior angle formed with agents [i+ 1], [i− 1], and
naturally α∗

1 + α∗
2 + α∗

3 = π. Also note that each agent from 4
to N achieves the desired two angles

limt→∞ ei1(t) = limt→∞(αj1ij2(t)− α∗
j1ij2

) = 0 (4)

limt→∞ ei2(t) = limt→∞(αj2ij3(t)− α∗
j2ij3

) = 0 (5)

where i = 4, . . . , N , j1 < i, j2 < i, j3 < i, and α∗
j1ij2

∈
(0, π), α∗

j2ij3
∈ (0, π) denote agent i’s two desired angles

formed with different agents j1, j2, j3 ∈ {1, 2, . . ., i− 1}. The
available measurement information of each agent i, i ∈ V con-
sists of velocity vi and direction bij with respect to neighboring
agents j in agent i’s local coordinate frame.

2) Formation maneuvering: all the agents achieve the angle
rigid formation described in (3)–(5), and the velocities of all the
agents converge to a desired translational velocity v∗c(t) ∈ R2,
and the relative position from a reference agent (chosen to be
agent 1) to another agent (for example, agent 3) will determine
the eventual formation’s orientation and scale. In particular,
in this article, we will consider a piecewise constant vector
δ∗13(t) ∈ R2 for the orientation and scale reference. The last two
requirements in the formation maneuvering can be mathemati-
cally described by

limt→∞ (ṗi(t)− v∗c(t)) = 0, ∀i ∈ V (6)

limt→∞ (p3(t)− p1(t)− δ∗13(t)) = 0. (7)

Therefore, the formation maneuvering task defined in this
article requires all the agents to achieve (3)–(7) simultaneously.
In this maneuvering case, each agent can measure its own
velocity and the directions with respect to its neighbors, and
agent 3 must measure its relative position with respect to agent 1.

III. FORMATION STABILIZATION

In this section, we discuss formation stabilization using iden-
tical and distinct control gains, respectively.

A. Case of Identical Control Gains

We first consider the situation when all the agents have
the same velocity feedback gain. Specifically, we design the
formation stabilization law as

ui = −ksvi −
∑

(j,i,k)∈A (αjik − α∗
jik)(zij + zik) (8)

where the gain ks > 0 applies to all the agents. The con-
trol law (8) consists of a velocity damping part and an an-
gle error feedback part, where the intuition of using zij + zik
is that it points toward the bisector of αjik[18]. To obtain
the convergence of angle errors under (8), we need to ana-
lyze their dynamics. First, we assume that lij(0), lik(0) and
sinαjik(0) ∀(j, i, k) ∈ A are finite and bounded away from
zero where lij(t) = ‖pi(t)− pj(t)‖. According to (8), when the
initial velocity vi(0) is bounded and lij(0) �= 0, lik(0) �= 0, the
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control input ui(0) will be bounded. Therefore, ∃T1 > 0 such
that for t ∈ [0, T1), lij(t), lik(t) and sinαjik(t) ∀(j, i, k) ∈ A
are bounded away from zero. We now analyze the angle error
dynamics for t ∈ [0, T1) and the extension of T1 to infinity will
be discussed later. Since d(cosαjik)

dt = −(sinαjik)α̇jik, one has

α̇jik = − 1

sinαjik

(
d(cosαjik)

dt

)
. (9)

Also, one has

d(cosαjik)

dt
=

d
(
zTijzik

)
dt

= żTijzik + zTij żik

= zTik
Pzij

lij
(vj − vi) + zTij

Pzik

lik
(vk − vi) (10)

where Pzij = I2 − zijz
T
ij , I2 ∈ R2×2 is the 2× 2 identity ma-

trix. Substituting (10) into (9) yields

α̇jik = − zTik
Pzij

lij sinαjik
vj − zTij

Pzik

lik sinαjik
vk

+

(
zTik

Pzij

lij sinαjik
+ zTij

Pzik

lik sinαjik

)
vi. (11)

Let us choose the error variables defined in (2)–(5) to be the
system state

X = [e1, e2, e41, e42, . . . , eN1, eN2, v
T
1 , . . . , v

T
N ]T ∈ R4N−4

(12)
which consists of 2N − 4 independent angle errors and all
agents’ velocities. Then, from (8) and (11), one can check that
the closed-loop dynamics satisfy

Ẋ =

[
0(2N−4)×(2N−4) R(X)

B(X) −ks ⊗ I2N

]
X = D1(X)X (13)

where R(X) ∈ R(2N−4)×2N and B(X) ∈ R2N×(2N−4) are
shown at the bottom of this page, and

Njik = zTij
Pzik

lik sinαjik
∈ R1×2, j, i, k ∈ V

Now, we linearize (13) around the desired equilibrium X = 0
to study its local stability. By linearizing (13) around X = 0 for

t ∈ [0, T1), one has

Ẋ =

[
∂[D1(X)X]

∂X
|X=0

]
X = [D1(X)|X=0]X

=

[
0(2N−4)×(2N−4) R(X)|X=0

B(X)|X=0 −ks ⊗ I2N

]
X = D∗

1X. (16)

For notation conciseness in the following analysis, a quantity
with the superscript ∗ means that it is evaluated at X = 0.
Note that the structure of the system matrix D∗

1 in this double-
integrator formation is quite different from the corresponding
system matrix in the single-integrator formation[18, Eqs. (32)
and (46)], which makes the formulated problem challenging.
We then show that system (16) is stable by checking that
D∗

1 ∈ R4N−4 is Hurwitz through examining its eigenvalues.
Consider the characteristic polynomial of D∗

1

|λI4N−4 −D∗
1| =

∣∣∣∣λI2N−4 −R∗

−B∗ (λ + ks)⊗ I2N

∣∣∣∣ (17)

where λ ∈ C is an eigenvalue of D∗
1. According to the Schur

complement theorem [25], one has

|λI4N−4 −D∗
1|

= (λ + ks)
2Ndet

[
λI2N−4 − R∗B∗

λ + ks

]

= (λ + ks)
2Ndet

[
λ(λ + ks)I2N−4 −R∗B∗

λ + ks

]

= (λ + ks)
4det[λ(λ + ks)I2N−4 −R∗B∗]. (18)

Hence, −ks is a stable eigenvalue of geometric multiplicity
at least 4. To find the other eigenvalues, we now analyze the
structure of the matrix R∗B∗. For the first three-agent case, one
has the corresponding submatrix

[RB](1:2,1:2) = F̃1 =

[
a11 a12

a21 a22

]
(19)

where [RB](i:j,k:m) is the submatrix selecting rows from i to
j and columns from k to m from the matrix RB. Therefore, it

R(X) =

⎡
⎢⎢⎢⎣
N213 +N312 −N312 −N213 0 . . . 0

−N321 N321 +N123 −N123 0 . . . 0

−N241 −N142 0 N142 +N241 . . . 0

. . . . . . . . . . . . · · · . . .

⎤
⎥⎥⎥⎦ (14)

B(X) =

⎡
⎢⎢⎢⎢⎢⎢⎣

−z12 − z13 0 0 0 . . . 0

0 −z21 − z23 0 0 . . . 0

z31 + z32 z31 + z32 0 0 . . . 0

0 0 −z41 − z42 −z42 − z43 . . . 0

. . . . . . . . . . . . . . . . . .

⎤
⎥⎥⎥⎥⎥⎥⎦

(15)
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follows that:

a11 = (N213 +N312)(−z12 − z13)−N213(z31 + z32)

a12 = N312(z21 + z23)−N213(z31 + z32)

a21 = N321(z12 + z13)−N123(z31 + z32)

a22 = (N321 +N123)(−z21 − z23)−N123(z31 + z32).

Since Pzijzij = 0 and N312z12 = 0, one obtains F̃1 =[
N213(z21 + z23)−N312z13 (N312 +N213)z23

(N321 +N123)z13 N123(z13 + z12)−N321z23

]
.

Substituting the definition of Njik given after (14) into a11
yields

a11 =
zT12Pz13(z21 + z23)

l13 sinα1
− zT13Pz12z13

l12 sinα1

=
pT12Pz13

l12l13 sinα1

(
p21
l21

+
p13 − p12

l23

)
− pT13Pz12p13

l12l213 sinα1

=
1

sinα1

(
−pT12Pz13p12

l12l13l23
− pT12Pz13p12

l212l13
− pT13Pz12p13

l12l213

)

= − sinα1

l12l13l23
(l212 + l12l23 + l13l23) (20)

where pij = pj − pi, i, j ∈ V . By using the law of sines sinα1

l23
=

sinα2

l13
= sinα3

l21
, one has

a11 = −
(
sinα1

l12
+

sinα1

l13
+

sinα3

l13

)
= −(g1 + f13) (21)

where we definefij =
sinαj

lij
, gi=(sinαi)

(
1

li(i+1)
+ 1

li(i−1)

)
, i, j ∈

{1, 2, 3}, and (i− 1) ∈ Ni, (i+ 1) ∈ Ni.
Similarly, by using simplification and the law of sines, one

also has

a22 = − sinα2

l12l13l23
(l212 + l12l13 + l23l13) = −(g2 + f23).

(22)
Then, we calculate

a12 =

(
pT13Pz12

l12l13 sinα1
+

pT12Pz13

l12l13 sinα1

)
p21 + p13

l23

=
l213 − l212 − pT

13p12p
T
12p13

l212
+

pT
12p13p

T
13p12

l213

l12l13l23 sinα1

=
(l213 − l212) sinα1

l12l13l23
. (23)

By using the law of sines sinα1

l23
= sinα2

l13
= sinα3

l21
, one has

a12 = f12 − f13. (24)

Similarly, one has a21 =
(l223−l221) sinα2

l12l13l23
= f21 − f23. Note

that the matrix F̃1 is equal to Fs defined in [18].
Then, writing down all the other elements in matrix RB, one

finds that RB has a block lower triangular structure. Consider
that for agent i, i ≥ 4, there are two desired angles α∗

j1ij2
and

α∗
j2ij3

where j1, j2, j3 < i are the three neighboring agents
whom the agent i will measure the directions with respect to.
Then, one has (25) shown at the bottom of this page.

By using similar simplification as for the first three agents,
one also has (26) shown at the bottom of this page.

Now, we find that F̃i, 4 ≤ i ≤ N in (26) is equal toFi defined
in [18]. By checking other matrix elements, one obtains that the
matrix R(X)B(X) in the closed-loop error dynamics (13) of
double-integrators is the same as the system matrix A(ea) in the
angle dynamics ėa = A(ea)ea of single-integrators (ea denotes
the column vector consisting of all the 2N − 4 independent
angle errors), i.e.,

R(X)B(X) = A(ea) =

⎡
⎢⎢⎢⎢⎢⎢⎣

F̃1 0 0 · · · 0

∗∗ F̃4 0 · · · 0

∗∗ ∗ ∗ F̃5 · · · 0

· · · · · · · · · . . .
...

∗∗ ∗ ∗ ∗ ∗ ∗ ∗ F̃N

⎤
⎥⎥⎥⎥⎥⎥⎦

(27)

which is an important and convenient fact for the later analysis.
We summarize this using the following remark about matrices
F̃i, i = 1, 4, . . ., N .

Remark 2: Under the angle set A and control law (8),
R(X)B(X) in the closed-loop error dynamics (13) of double-
integrators is the same as the system matrix A(ea) in the
dynamics ėa = A(ea)ea of single-integrators [18]. Therefore,

[RB](2i−3:2i−4,2i−3:2i−4) = F̃i =[
−(Nj1ij2 +Nj2ij1)(zij1 + zij2) −(Nj1ij2 +Nj2ij1)(zij2 + zij3)

−(Nj2ij3 +Nj3ij2)(zij1 + zij2) −(Nj2ij3 +Nj3ij2)(zij2 + zij3)

]
. (25)

F̃i =

[
ω̄1 r̄12

r̄21 ω̄2

]
=

[ − sinαj1ij2(
1

lij1
+ 1

lij2
)

sinαj2ij3

lij2
− sinαj1ij2

+sinαj1ij3

lij1
sinαj1ij2

lij2
− sinαj2ij3

+sinαj1ij3

lij3
− sinαj2ij3(

1
lij3

+ 1
lij2

)

]
. (26)
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Fig. 3. Evolution of angle errors in Case 1.

Fig. 4. Evolution of angle errors in Case 2.

according to [18, Thes. 7 and 8], the matrix F̃ ∗
1 is always Hurwitz

and F̃ ∗
i ∀4 ≤ i ≤ N are Hurwitz if Assumption 1 holds.

In the case of single-integrators, A(ea)|ea=0 being Hurwitz
is sufficient to make the formation’s angle error dynamics
ea = A(ea)ea locally and exponentially stable. However, this
is not sufficient for double-integrators due to (18). Note that in
the case of double-integrators, according to (18) and (27), the
necessary and sufficient condition to make (16) exponentially
stable is that the solutions of

det[λ(λ + ks)I2 − F̃ ∗
i ] = 0, i = 1, 4, 5, . . . , N (28)

have negative real parts. While an arbitrary choice of positive
gains does not make the single-integrator system unstable, this
is not true for the double-integrator one as illustrated in the
following simulation example.

Example 1: The desired angles: α∗
123 = π/2, α∗

312=π/4,
α∗
231=π/4, α∗

142=arctan(1.2), α∗
243 = arctan(0.3), α∗

251 =
arctan(3/

√
10), α∗

452 = arctan(1.2). The initial states:
p1(0) = [0.5, 0.1]T , p2(0)= [0.1, 1.2]T , p3(0)=[−1.2, 0.2]T ,
p4(0) = [0.1, 2.0]T , p5(0) = [−1.4, 1.2]T , ṗ1(0) =
[−0.1,−0.2]T , ṗ2(0)=[0.2,−0.1]T , ṗ3(0)=[−0.1,−0.1]T ,
ṗ4(0)=[−0.1, 0.4]T , ṗ5(0) = [0.1, 0.1]T .

Case 1: Single-integrator agent dynamics with Hurwitz ma-
trices F̃ ∗

i , i = 1, 4, 5. The simulation result is shown in Fig. 3.
Case 2: Double-integrator agent dynamics with gain

ks = 0.2. The simulation result is shown in Fig. 4.
Example 1 illustrates that the proper selection of velocity

damping gain ks in angle-controlled double-integrator system
is important. Now, we present the remaining results.

Lemma 1: Under Assumption 1, the matrix D∗
1 is Hurwitz if

and only if

k2sRe(λij) + (Im(λij))
2 < 0, j = 1, 2 (29)

holds for ∀i = 1, 4, . . . , N , where λi1 and λi2 are the two con-
jugated eigenvalues of the matrix F̃ ∗

i , and Re() and Im() denote
the real and imaginary parts of a complex number, respectively.

Proof: Note that one can always find a nonsingular matrix
P̄ ∈ C2×2 such that

F̃ ∗
i = P̄

[
λi1 ∗∗
0 λi2

]
P̄−1 (30)

where ∗∗ represents an element which does not affect the fol-
lowing analysis. Then, (28) can be written into

det[λ(λ + ks)I2 − F̃ ∗
i ]

= det

{
P̄

[
λ(λ + ks)− λi1 ∗∗

0 λ(λ + ks)− λi2

]
P̄−1

}

= [λ(λ + ks)− λi1][λ(λ + ks)− λi2] (31)

which implies that the stability of (16) depends on the solutions
of λ(λ + ks)− λij = 0, i = 1, 4, . . . , N, j = 1, 2. Note that λij

can be a complex number. According to [26, Th. 40.1], (29) is
the necessary and sufficient condition to guarantee that the two
solutions of λ(λ + ks)− λij = 0 have negative real parts. �

Now, we further explore the condition (29) by calculating λi1

and λi2. According to Lemma 1, we have that if Assumption 1
holds, then A(ea)|ea=0 = R∗B∗ is Hurwitz, which implies that
Re(λij) < 0, ∀i = 1, 4, . . . , N, j = 1, 2. According to Lemma
1, when Im(λij) = 0, λ(λ + ks)− λij = 0will always have two
solutions with negative real parts.

1) For the case of Im(λi1) = Im(λi2) = 0 in the first three
agents, we require for F̃ ∗

1 in (19) that

Δ∗
1 = (a∗11 − a∗22)

2 + 4a∗12a
∗
21

= (g∗1 + f ∗
13 − g∗2 − f ∗

23)
2 + 4(f ∗

12 − f ∗
13)(f

∗
21 − f ∗

23) ≥ 0.
(32)

By using the law of sines sinα∗
1

l∗23
=

sinα∗
2

l∗13
=

sinα∗
3

l∗12
and simpli-

fication, we can conclude that (32) can be written as(
sinα∗

1

sinα∗
2

+
sinα∗

1

sinα∗
3

+
sinα∗

3

sinα∗
2

− sinα∗
2

sinα∗
1

− sinα∗
2

sinα∗
3

− sinα∗
3

sinα∗
1

)2

+ 4

(
sinα∗

2

sinα∗
3

− sinα∗
3

sinα∗
2

)
(
sinα∗

1

sinα∗
3

− sinα∗
3

sinα∗
1

) ≥ 0. (33)

Similarly for agents 4 to N , to guarantee Im(λij) = 0, i =

4, . . . , N, j = 1, 2 for F̃i defined in (26), one has

Δ∗
i = (ω̄∗

1 − ω̄∗
2)

2 + 4r̄∗12r̄
∗
21 ≥ 0. (34)

Multiplying l∗2ij2 at both sides of (34) and simplification yields

[(
sinα∗

j2j1i

sinα∗
ij2j1

+ 1

)
sinα∗

j1ij2
−
(
sinα∗

ij3j2

sinα∗
ij2j3

+ 1

)
sinα∗

j2ij3

]2

+ 4

((
sinα∗

j1ij2
+ sinα∗

j1ij3

)
sinα∗

j2j1i

sinα∗
ij2j1

− sinα∗
j2ij3

)
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×
((

sinα∗
j2ij3

+ sinα∗
j1ij3

)
sinα∗

ij3j2

sinα∗
ij2j3

− sinα∗
j1ij2

)
≥ 0.

(35)

2) For the case of Im(λij) �= 0, since Im(λi1) = −Im(λi2) and
Re(λi1) = Re(λi2) < 0, the stability condition (29) can be writ-
ten as

Δ∗
i < 0 and 4k2sRe(λij)−Δ∗

i < 0 (36)

where i = 1, 4, . . . , N , j = 1, 2, and Re(λij) =
a∗
11+a∗

22

2 when

i = 1 and Re(λij) =
ω̄∗

1+ω̄∗
2

2 when i ≥ 4. By combining the
above two cases, one obtains the conditions such that all the
eigenvalues of D∗

1 have negative real parts, which implies that
D∗

1 is Hurwitz. In summary, we has the following result.
Proposition 1: Consider that N agents of double-integrator

dynamics (1) are governed by (8) with the identical gain ks, the
initial errors X(0) are sufficiently small, the initial inter-agent
distances are bounded away from zero, and Assumption 1 holds.
The system (13) is locally stable for t ∈ [0, T1) if (29) holds for
∀i = 1, 4, . . . , N . Moreover, (29) holds if and only if for each
i = 1, 4, . . . , N , Δ∗

i ≥ 0 or (36) holds.
Note that if D∗

1 is Hurwitz, X = 0 is the only equilibrium
of (16), which is exponentially stable. We now analyze the
evolution of the distance and angle errors among the agents to
guarantee that the nonlinear closed-loop dynamics (13) is well-
defined because the collinearity case sinαjik = 0, (j, i, k) ∈ A
and collision case lij = 0, lik = 0will make (9) and (10) invalid,
respectively. For t ∈ [0, T1), sinceD∗

1 is Hurwitz, for an arbitrary
positive definite matrix Q1 ∈ R(4N−4)×(4N−4), there always
exists a unique positive definite matrix P1 ∈ R(4N−4)×(4N−4)

such that

D∗T
1 P1 + P1D

∗
1 = −Q1. (37)

Now, for system (16), we design the Lyapunov function
candidate as

V1 = XTP1X. (38)

Taking the time-derivative of (38) yields

V̇1 = −XTQ1X ≤ −λmin(Q1)

λmax(P1)
V1. (39)

Then, it follows that:

‖X(t)‖2 ≤ V1(t)

λmin(P1)
≤ V1(0)

λmin(P1)
e
− λmin(Q1)

λmax(P1)
t
. (40)

Since‖X(t)‖2=e21+e22+e241+ · · ·+e2N1+e2N2+
∑N

i=1 ‖vi‖2,
one has that for (j, i, k) ∈ A

|αjik(t)− α∗
jik| ≤ ‖X(t)‖ ≤

√
V1(0)

λmin(P1)
e
− λmin(Q1)

2λmax(P1)
t (41)

‖vi(t)‖ ≤ ‖X(t)‖ ≤
√

V1(0)

λmin(P1)
e
− λmin(Q1)

2λmax(P1)
t
. (42)

Note that (41) implies

α∗
jik −

√
V1(0)

λmin(P1)
≤ αjik(t) ≤ α∗

jik +

√
V1(0)

λmin(P1)
. (43)

According to (42), one has

lij(t) = lij(0) +

∫ t

0

l̇ij(τ)dτ = lij(0) +

∫ t

0

zTij(vj − vi)dτ

≥ lij(0)−
∫ t

0

(‖vj‖+ ‖vi‖)dτ

≥ lij(0)− 4

√
V1(0)

λmin(P1)

λmax(P1)

λmin(Q1)
(1− e

− λmin(Q1)

2λmax(P1)
t
).

(44)

Therefore, if

α∗
jik >

√
V1(0)

λmin(P1)
and α∗

jik +

√
V1(0)

λmin(P1)
< π (45)

then no collinearity happens among j, i, k. If

lij(0) > 4

√
V1(0)

λmin(P1)

λmax(P1)

λmin(Q1)
(46)

no collision will happen between agents i and j.
Because α∗

jik is bounded away from zero and π, and lij(0) is
bounded away from zero, andX(0), V1(0) are sufficiently small,
(45) and (46) hold for t ∈ [0, T1). Assume that there exists a
collision or collinearity in [T1,∞) and denote the first time that
it happens by T−

2 . Then, one has the following two cases.
1) Collision between i and j happens atT−

2 : Since no collision
and collinearity happens in [0, T−

2 ), the closed-loop system is
well-defined in [0, T−

2 ). Following the calculations in (38)–(44),
one has that

lij(T
−
2 ) ≥ lij(0)− 4

√
V1(0)

λmin(P1)

λmax(P1)

λmin(Q1)
> 0

which is bounded away from zero. This implies a contradiction
with the assumption that collision happens at T−

2 . Thus, no
collision between agents i and j happens at T−

2 .
2) Collinearity among j, i, k happens at T−

2 : Then, one has
that αjik(T

−
2 ) will approach zero or π. Since no collinearity and

collision happens in [0, T−
2 ), using (43), one has that αjik(T

−
2 )

is bounded away from zero and π which implies a contradiction.
Therefore, no collinearity will occur among j, i, k at T−

2 .
Since none of the above two cases is possible, no collision

and collinearity will happen in [0,∞) given that the initial
formation is sufficiently close to the desired formation, i.e.,
V1(0) is sufficiently small. Then, the system (13) is well-defined
from t = 0 to +∞, under which the asymptotic stability can
be established by using the same analysis from (9)–(36) for
∀t ∈ [0,∞). The following theorem summarizes the main result.

Theorem 1: Consider that N agents of double-integrator
dynamics (1) are governed by (8) with the identical gain ks, the
initial errors X(0) are sufficiently small, the initial distances are
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bounded away from zero, and Assumption 1 holds. The forma-
tion stabilization defined in (2)–(5) is locally and asymptotically
achieved for t ≥ 0 if (29) holds for ∀i = 1, 4, . . . , N .

Remark 3: Since the initial angles in Example 1 are close
to the desired angles, we can use the initial states given in
Example 1 to approximately check the stability of the forma-
tions governed by the single-integrator agent dynamics and the
double-integrator agent dynamics, respectively.

B. Case of Distinct Control Gains

The designed formation stabilization law (8) in the previous
section requires all the agents to have the identical velocity
feedback gains ks. To adapt for different actuator characteristics,
e.g., speed constraints in different agents, in this section we
design a formation stabilization law which allows each agent to
have distinct control gain ki, namely, the control input for agent
i, i = 1, . . . , N is given by

ui = −kivi −
∑

(j,i,k)∈A (αjik − α∗
jik)(zij + zik) (47)

where ki > 0 and ki can be different from kj . By choosing the
same system state variable X in (12), one has the closed-loop
dynamics of X

Ẋ =

[
0(2N−4)×(2N−4) R(X)

B(X) −diag{ki} ⊗ I2

]
X = D2(X)X

(48)
where diag{ki} = diag{k1, . . . , kN} ∈ RN×N . To prove the
local stability of (48), we consider the characteristic polynomial
of D∗

2 again, that is

|λI4N−4 −D∗
2| =

∣∣∣∣λI2N−4 −R∗

−B∗ diag{λ + ki} ⊗ I2

∣∣∣∣ (49)

where diag{λ + ki} = diag{λ + k1, . . . , λ + kN}. According
to Schur complement theorem, one has

|λI4N−4 −D∗
2| =

N∏
i=1

{(λ + ki)det[λI2N−4 −R∗diag{(λ + ki)
−1} ⊗ I2B

∗]}.

By multiplying matrix B∗ with diag{(λ + ki)
−1} ⊗ I2 then

with matrix R∗, it can be observed that

R∗diag{(λ + ki)
−1} ⊗ I2B

∗

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

F̄ ∗
1 0 0 · · · 0

∗∗ F̃ ∗
4

λ+k4
0 · · · 0

∗∗ ∗ ∗ F̃ ∗
5

λ+k5
· · · 0

· · · · · · · · · . . .
...

∗∗ ∗ ∗ ∗ ∗ ∗ ∗ F̃ ∗
N

λ+kN

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(50)

where F̄ ∗
1 = F̄1(X)|X=0, F̄1(X) =

[
ã11 ã12

ã21 ã22

]
and

ã11 =
(N213 +N312)(−z12 − z13)

λ + k1
+

N213(z31 + z32)

λ + k3

ã12 =
N312(z21 + z23)

λ + k2
+

N213(z31 + z32)

λ + k3
,

ã21 =
(N321 +N123)(−z21 − z23)

λ + k2
+

N123(z31 + z32)

λ + k3

ã22 =
(N321 +N123)(−z21 − z23)

λ + k2
+

N123(z31 + z32)

λ + k3
.

Then, it follows that:

|λI4N−4 −D∗
2| =

{
3∏

i=1

(λ + ki)

}
det(λI2 − F̄ ∗

1 )

×
{

N∏
i=4

det[λ(λ + ki)I2 − F̃ ∗
i ]

}
. (51)

Note that the stability condition of {∏N
i=4 det[λ(λ + ki)I2 −

F̃ ∗
i ]} = 0 obtained from (51) is the same as (28), which implies

that there is no difference for the stability condition when agents
4 to N have identical or distinct velocity damping gains. Then,
the stability condition for agents 4 to N can also be described
as

k2i Re(λij) + (Im(λij))
2 < 0, i = 4, . . . , N, j = 1, 2 (52)

which holds when (35) or (36) hold for i = 4, . . . , N . But this
is not the case for the first three agents. For the first three agents,
different from (28), the corresponding element in {∏3

i=1(λ +

ki)}(λI2 − F̄ ∗
1 ) =

[
ā∗11 ā∗12
ā∗21 ā∗22

]
becomes that

ā∗11 = [λ(λ + k1)(λ + k2)(λ + k3)

− (N213 +N312)(−z12 − z13)(λ + k2)(λ + k3)

−N213(z31 + z32)(λ + k1)(λ + k2)]|X=0

ā∗22 = [λ(λ + k1)(λ + k2)(λ + k3)

− (N321 +N123)(−z21 − z23)(λ + k1)(λ + k3)

−N123(z31 + z32)(λ + k1)(λ + k2)]|X=0

ā∗12 = − [N312(z21 + z23)(λ + k1)(λ + k3)

−N213(z31 + z32)(λ + k1)(λ + k2)]|X=0

ā∗21 = − [(N321 +N123)(−z21 − z23)(λ + k1)(λ + k3)

−N123(z31 + z32)(λ + k1)(λ + k2)]|X=0.

By letting {∏3
i=1(λ + ki)}det(λI2 − F̄ ∗

1 ) = 0, the stability
condition of the first three agents becomes that the eight solutions
of the following algebraic equation all have negative real parts:

ā∗11ā
∗
22 − ā∗12ā

∗
21 = b8λ

8 + b7λ
7 + · · ·+ b1λ + b0 = 0 (53)

which can be checked by Routh stability criterion [26, Th.
40.1] or some numerical tools (e.g., MATLAB). But the explicit
solution of (53) is hard to be obtained due to the high order of
(53). The algebraic equation (53) is related to the desired trian-
gular formation shape and the velocity damping gains k1, k2, k3,
which implies that an inappropriate selection of the first three
agents’ velocity damping gains may cause the system unstable.
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Finally, we summarize the above discussion into the following
result.

Theorem 2: Consider that N agents governed by (47) with
distinct gains ki, the initial errors X(0) are sufficient small,
initial inter-agent distances are bounded away from zero and
Assumption 1 holds. The formation stabilization defined in
(2)–(5) can be locally achieved if all the solutions of (53) have
negative real parts and (52) holds. Moreover, (52) holds if and
only if for each i = 4, . . . , N , (35) or (36) holds.

The proof of theorem is followed by the above analysis. The
analysis of collision and collinearity is similar to Theorem 1.

Remark 4: The formation stabilization laws (8) and (47)
can be implemented in each agent’s local coordinate frame,
i.e., the alignment of all agents’ local coordinate frames is not
needed. This can be obtained straightforwardly by following [18,
Remark 6].

IV. FORMATION MANEUVERING

Different from the case of formation stabilization, the ma-
neuvering of angle rigid formations requires all agents to not
only achieve the desired formation shape, but also move with
the desired collective motion in terms of translation, rotation
and scaling. Because of the cascading construction of the de-
sired angle rigid formation in Section II-C, the rotational and
scaling maneuvering can be controlled by the first triangular
formation formed by the first three agents. According to (7),
given a nonzero desired relative position δ∗13(t) from agent 1 to
agent 3, the desired orientation and scale of the formation can
be determined by δ∗13(t)/‖δ∗13(t)‖ and ‖δ∗13(t)‖, respectively.
Therefore, the objective of this section is to achieve the desired
angles, the same translational maneuvering velocity v∗c(t) ∈ R2

for all the agents, and maintain the desired relative position
δ∗13(t) from agent 1 to agent 3. Let {t1, t2, . . ., tn} be the instants
that δ∗13(t) switches its values where n ∈ N+. Then, we present
the assumption on the change of δ∗13(t).

Assumption 2: Each agent has the knowledge of v∗c, v̇
∗
c .

The desired relative position δ∗13(t) satisfies three properties: 1)
δ∗13(t) is piecewise-constant and bounded, and δ∗13(t) �= 0 ∀t >
0; 2) the number of its abrupt jumps is finite; 3) the neigh-
boring change of δ∗13(t) is bounded and sufficiently small, i.e.,
‖δ∗13(t−i )− δ∗13(t

+
i )‖ ≤ ε ∀i = 1, 2, . . ., nwhere ε is a positive

and small number.
Remark 5: The agents can either communicate or employ

a consensus-based finite-time estimator to obtain v∗c and v̇∗c .
Compared to the previously proposed maneuvering pattern [19],
[27] where the rotational or scaling maneuvering speed is
constant for all time, the maneuvering pattern defined in this
article is more practical since δ∗13(t) only needs to be changed
when the rotational or scaling maneuvering is necessary for the
execution of the current task. Moreover, the requirement that
ε should be sufficiently small can be fulfilled in practice by
changing δ∗13(t) with longer time tn and more steps n. This
is equivalent to requiring that the rotational and scaling speed
should not be very large, which is similarly needed in [11], [19],
and [27].

Now, we design the formation maneuvering algorithm to be

ui(t) = v̇∗c(t)− ks(vi(t)− v∗c)− kmi(p3(t)− p1(t)− δ∗13(t))

−
∑

(j,i,k)∈A (αjik(t)− α∗
jik)(zij(t) + zik(t)) (54)

where kmi = 1 if i = 3, and kmi = 0 otherwise. First, we
analyze the convergence of the formation within the time
interval t ∈ [0, t1] where δ∗13(t) is constant. We need to
obtain the angle error dynamics, velocity error dynamics,
and the relative position error dynamics of the closed-
loop system under the designed maneuvering algorithm
(54). In this maneuvering case, we define the system state
variables

Y = [e1, e2, e41, e42, . . ., eN1, eN2, p̃
T
13,

vT1 − v∗Tc , . . ., vTN − v∗Tc ]T (55)

where p̃13 = p3 − p1 − δ∗13 and Y ∈ R4N−2. Our objective is to
prove that Y = 0 is a locally stable equilibrium under (54). Sim-
ilar to the formation stabilization case, p̈i(0) is bounded if the
initial velocity vi(0) is bounded and lij(0), lik(0), sinαjik(0)
are bounded away from zero. Therefore, ∃T2 > 0, T2 ≤ t1
such that lij(t), lik(t), sinαjik(t) ∀(j, i, k) ∈ A are bounded
away from zero for t ∈ [0, T2). We first analyze the
error dynamics for t ∈ [0, T2). According to (11), one
has

α̇jik = − zTik
Pzij

lij sinαjik
vj − zTij

Pzik

lik sinαjik
vk

+ (zTik
Pzij

lij sinαjik
+ zTij

Pzik

lik sinαjik
)vi. (56)

Note that the velocity error variable in this case is vi − v∗c
instead of vi. Therefore, we rewrite (56) into

α̇jik = − zTik
Pzij

lij sinαjik
(vj − v∗c)− zTij

Pzik

lik sinαjik
(vk − v∗c)

+

(
zTik

Pzij

lij sinαjik
+ zTij

Pzik

lik sinαjik

)
(vi − v∗c)

− zTik
Pzij

lij sinαjik
v∗c − zTij

Pzik

lik sinαjik
v∗c

+

(
zTik

Pzij

lij sinαjik
+ zTij

Pzik

lik sinαjik

)
v∗c. (57)

In the following, we investigate the effect of the translational
maneuvering term v∗c on the angle dynamics α̇jik in (57). Note
that

− zTik
Pzij

lij sinαjik
v∗c − zTij

Pzik

lik sinαjik
v∗c

+

(
zTik

Pzij

lij sinαjik
+ zTij

Pzik

lik sinαjik

)
v∗c = 0. (58)

Therefore, (57) and (58) imply that the translational maneu-
vering has no effect on the angle dynamics α̇jik, (j, i, k) ∈ A
in (57). This is because the whole formation’s translation will
not change the interior angle αjik. Therefore, one still has the
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similar angle dynamics α̇jik in (57) as the case of formation
stabilization (10).

Then, we analyze the velocity error dynamics of vi − v∗c .
Using (54), one has

v̇i − v̇∗c = − ks(vi − v∗c)− kmi (p3 − p1 − δ∗13)

−
∑

(j,i,k)∈A (αjik − α∗
jik)(zij + zik).

The dynamics of the relative position errors can be described
by

˙̃p13 = v3 − v∗c − (v1 − v∗c). (59)

Summarizing (57)–(59) yields the overall dynamics

Ẏ =

⎡
⎢⎣0(2N−4)×(2N−4) 0 R(Y )

0 02×2 K2

B(Y ) K1 −ksI2N

⎤
⎥⎦Y = D3(Y )Y

(60)

where R(Y ) and B(Y ) have the same definitions as (14) and
(15), respectively, K1 = [02×2; 02×2;−I2; 02×2; . . .; 02×2] ∈
R2N×2 and K2 = [−I2, 02×2, I2, 02×2, . . ., 02×2] ∈ R2×2N .
Using a similar linearization step for (60) as (13)–(16), the
linearized dynamics of (60) around the desired equilibrium
Y = 0 can be described by

Ẏ =

⎡
⎢⎣0(2N−4)×(2N−4) 0 R̄∗

0 02×2 K2

B̄∗ K1 −ksI2N

⎤
⎥⎦Y = D∗

3Y (61)

where R̄∗ = R(Y )|Y=0 and B̄∗ = B(Y )|Y=0 can be different
from R∗ and B∗, respectively, due to the different interagent
distances at their equilibrium points. Following the calculation
method in (18), the characteristic polynomial of D∗

3 can be
written as (62) shown at the bottom of the this page. According
to the definitions of K1 and K2, one has

R̄∗K1K2B̄
∗ =

⎡
⎢⎢⎢⎢⎣
F̂ ∗
1 0 · · · 0

∗∗ 0 · · · 0

∗∗ ∗ ∗ . . . 0

∗∗ ∗ ∗ · · · 0

⎤
⎥⎥⎥⎥⎦

F̂ ∗
1 =

[
N ∗

213(z
∗
32 + z∗12) N ∗

213z
∗
32

N ∗
123z

∗
12 N ∗

123z
∗
31

]
(63)

where ∗∗ in the matrix R̄∗K1K2B̄
∗ represents some elements

that will not affect the following analysis. According to the
matrix structure in (62) and (63), one has that compared to
the dynamics (16), the dynamics of p̃13 in (61) only affect
the angle error dynamics of the first three agents, and does
not affect the remaining agents’ angle error dynamics. Using
the fact (λ2 + ksλ + 1)2 = det(diag[λ2 + ksλ + 1, λ2 + ksλ +
1, 1, . . ., 1]) for (62), one has

|λI4N−2 −D∗
3| = (λ + ks)

2{
N∏
i=4

det[λ(λ + ki)I2 − F̃ ∗
i ]}

× det{(λ2 + ksλ + 1)[λ(λ + ks)I2 − F̃ ∗
1 ]− F̂ ∗

1}. (64)

Therefore, D∗
3 has two eigenvalues −ks,−ks, and 4(N − 3)

eigenvalues lying in
∏N

i=4 det[λ(λ + ki)I2 − F̃ ∗
i ]} = 0, and 8

eigenvalues lying in det{(λ2 + ksλ + 1)[λ(λ + ks)I2 − F̃ ∗
1 ]−

F̂ ∗
1} = 0. Now, we are ready to present the main result.
Theorem 3: Consider that N agents of double-integrator

agent dynamics (1) are governed by (54), the initial angle
and velocity errors are sufficiently small, the initial interagent
distances are bounded away from zero, Assumption 1 holds and
t ∈ [0, t1]. The formation maneuvering errors defined in (3)–(7)
will locally and exponentially converge if Assumption 2 and
(29) hold for i = 4, . . ., N , and the solutions of det{(λ2 + ksλ +
1)[λ(λ + ks)I2 − F̃ ∗

1 ]− F̂ ∗
1} = 0 have negative real parts.

Proof: Under the assumptions in Theorem 3, all the eigenval-
ues of D∗

3 have negative real parts, which implies the local and
exponential stability of (60) when t ∈ [0, T2). Now, we extend
T2 to t1 to establish the stability of (60) for t ∈ [0, t1]. First,
one can construct a Lyapunov function V2 = Y TP2Y where
P2 = PT

2 > 0 satisfying D∗T
3 P2 + P2D

∗
3 = −Q2 < 0. Similar

to (38)–(45), one has that no collinearity will happen since (41)
and (45) still hold. The analysis for the distance change lij is
slightly different. Note that (42) is changed to

‖vi − v∗c‖ ≤ ‖Y (t)‖ ≤
√

V2(0)

λmin(P2)
e
− λmin(Q2)

2λmax(P2)
t
. (65)

|λI4N−2 −D∗
3| =

∣∣∣∣∣∣
λI(2N−4) 0 −R̄∗

0 λI2 −K2

−B̄∗ −K1 (λ + ks)I2N

∣∣∣∣∣∣
= (λ + ks)

2det

(
λ(λ + ks)I2N−2 −

[
R̄∗B̄∗ R̄∗K1

K2B̄
∗ K2K1

])

= (λ + ks)
2det

[
λ(λ + ks)I2N−4 − R̄∗B̄∗ −R̄∗K1

−K2B̄
∗ (λ2 + ksλ + 1)I2

]

= (λ + ks)
2(λ2 + ksλ + 1)2

× det[λ(λ + ks)I2N−4 − R̄∗B̄∗ − R̄∗K1K2B̄
∗

λ2 + ksλ + 1
]. (62)
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Also, (44) is changed to

lij(t) = lij(0) +

∫ t

0

zTij(vj − vi)dτ

≥ lij(0)−
∫ t

0

(‖vj − v∗c‖+ ‖vi − v∗c‖)dτ

≥ lij(0)− 4

√
V2(0)

λmin(P2)

λmax(P2)

λmin(Q2)
(1− e

− λmin(Q2)

2λmax(P2)
t
). (66)

Therefore, if lij(0) > 4
√

V2(0)
λmin(P2)

λmax(P2)
λmin(Q2)

, then lij(t) > 0.

Since V2(0) is sufficiently small and lij(0) is bounded away
from zero, T2 can be extended to t1. Then, it follows that
limt→∞ Y (t) = 0, which implies that the formation maneuver-
ing errors defined in (3)–(7) will be locally and exponentially
converge for t ∈ [0, t1]. By summarizing the above analysis, we
come to the conclusion that the transnational formation maneu-
vering and desired constant relative position δ∗12 are achieved
under (54) for t ∈ [0, t1]. �

Now, we discuss the case where t ∈ [0,∞) and δ∗12(t) is
piecewise-constant. Since the control input ui(t) in (54) is
piecewise-continuous, the integration of ui(t), i.e., agent i’s
velocity vi(t), is continuous, which implies that the evolution of
velocity error vi − v∗c(t) is also continuous. Also, the integration
of vi(t), i.e., agent i’s position pi(t), is continuous, which im-
plies that the evolution of angle error αjik − α∗

jik, {j, k} ∈ Ni

is also continuous. Therefore, under Assumption 2, both the
velocity errors and the angle errors converge to zero. For the
relative position error, one has

‖p̃13(t+i )− p̃13(t
−
i )‖

= ‖p13(t+i )− δ∗12(t
+
i )− p13(t

−
i ) + δ∗12(t

−
i )‖

= ‖δ∗13(t+i )− δ∗13(t
−
i )‖ ≤ ε (67)

where i = 1, 2, .., n and we have used the fact that p13(t
+
i ) =

p13(t
−
i ) since p1(t), p3(t) are continuous. Using Assumption 2,

one has that ‖p̃13(t+i )− p̃13(t
−
i )‖ is sufficiently small. There-

fore, if p̃13(0) is sufficiently small, then p̃13(t
+
i ), ∀i = 1, . . ., n

is sufficiently small. Then, for each t ∈ [ti, ti+1], one can always
employ a similar analysis from (60)–(66) to obtain the conver-
gence of Y (t) within t ∈ [ti, ti+1]. Since the number of abrupt
jump of δ13(t) is finite, one has that after the final jump at t = tn,
Y (t) will converge to zero as t → ∞.

Remark 6: In the stabilization of distance rigid formations
with double-integrator agent dynamics [13], the fact that their
control law is the gradient of a potential function helps their
stability analysis, see, e.g., the multiplication of rigidity matrix
and its transpose being positive semidefinite, and a nice struc-
ture in the Jacobian matrix of the linearized system. However,
for the control law (8) designed for the stabilization of angle
rigid formations with double-integrator agent dynamics, it can
be proved that it is not a gradient-based control law due to
the asymmetric/directed direction measurements, which makes
its stability analysis challenging and this work essential. One
of the main contributions of this article is the finding that
the relationship between single-integrator and double-integrator

Fig. 5. Formation stabilization trajectories.

agent dynamics for angle rigid formations is underscored by
R(p)B(p) = A(ea) obtained in (27). In addition, according
to the local unique determination in Remark 1, the nonlinear
dynamics (13) is indeed not globally stable.

Remark 7: To implement the formation maneuvering laws
(54) and (54) according to all the agents’ local coordinate frames,
the desired translational maneuvering velocity v∗c needs to be
described in each agent’s local coordinate frame in the design
stage. But this is not required for rotation and scaling maneu-
verings since δ∗13 can be described in agent 3’s local coordinate
frame. In addition, given the desired angles and δ∗13, the solu-
tions of det{(λ2 + ksλ + 1)[λ(λ + ks)I2 − F̃ ∗

1 ]− F̂ ∗
1} = 0 in

Theorem 3 can be checked. The reason we choose to control the
relative position between agents 1 and 3 instead of agents 1 and
2 or agents 2 and 3 is that in the Step 2 of constructing the desired
formation, we select the combination of anglesα142, α243, under
which the edges 12 and 23 lie inside �143, and the edge 13 lies
in the outer boundary of �143. Although, controlling arbitrary
one of these three edges can guarantee the closed-loop dynamics
stable, simulation examples show that controlling the edge 13
comes with smaller overshoot than controlling the other two
edges. We will consider the optimal selection of the controlling
edge as our future work.

V. SIMULATION EXAMPLES

We use numerical simulation examples to illustrate the effec-
tiveness of the proposed formation stabilization and maneuver-
ing control algorithms.

A. Formation Stabilization

The simulation parameters including agents’ initial states and
desired angles are the same as those given in Example 1 of
Section IV. It can be checked that the stability condition (29)
holds when the identical velocity damping gain is chosen as
ks = 2.

Under the formation control law (8) with ks = 2, the sim-
ulation results are shown in Figs. 5 and 6. According to the
formation stabilization trajectories shown in Fig. 5, the desired
angle rigid formation is achieved. According to the evolution
of angle errors shown in Fig. 6, all the angle errors converge
to zero within 20 s, in which the maximum initial angle error
is 0.7.
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Fig. 6. Angle errors in formation stabilization.

Fig. 7. Change of piecewise-constant δ∗13(t).

Fig. 8. Formation maneuvering trajectories when conducting the ex-
ploration of the unknown environment.

B. Formation Maneuvering

We consider the formation maneuvering of four agents
to achieve the exploration of an unknown environment.
The agents’ desired angles are the same as those given in
the simulation part of [27]. The agents’ initial states are
chosen as p1(0)=[0;−4], p2(0)=[−1;−4], ṗ3(0)=[−1.5;−3],
p4(0)=[−1.4;−4.9], ṗ1(0)=[0.1;−0.1], ṗ2(0)=[0.1;−0.1],
ṗ3(0)=[−0.1; 0.1], ṗ4(0)=[−0.1; 0.1]. The control gain is
selected as ks=10. The desired translational velocity is
selected as: v∗c(t)=[0; 0.82], t ∈ [0, 4]; v∗c(t)=[0.05 ∗ t; 0.82−
0.82(t− 4)/20], t ∈ [4, 24]; v∗c(t)=[0.2; 0], t > 24. The
piecewise-constant δ∗13(t) is shown in Fig. 7. Under the

Fig. 9. Evolution of angle errors.

control law (54), the maneuvering trajectories and the evolution
of angle errors are shown in Figs. 8 and 9, respectively.

According to Figs. 7–9, one sees that the formation maneu-
vering with translation, rotation and scaling is achieved under
the proposed law (54). Although, δ∗13(t) is piecewise-constant
in Fig. 7, the angle errors in Fig. 9 are continuous, and converge
to zero at 150 s after the final scaling maneuvering at 42 s.
According to Fig. 7, the formation rotates by π/2 from 4 to
24 s, and shrinks to half of the original formation at 33 s,
which demonstrates the effectiveness of the proposed maneu-
vering approach. Compared to the the maneuvering approach
for single-integrators in [11] and [27], a specified rotating angle
and scaling size can be achieved in this approach.

VI. CONCLUSION

This article has designed control algorithms to stabilize and
maneuver angle rigid formations governed by double-integrator
dynamics. For the stabilization case, each agent only needs
to measure its own velocity and directions with respect to its
neighbors. The proposed formation stabilization control law
can be implemented in agents’ local coordinate frames, i.e., the
alignment of agents’ coordinate frames is not needed. For the
maneuvering case, in addition to the sensor measurements re-
quired in the stabilization case, one of the first three agents must
measure its relative position with respect to the maneuvering
reference agent such that the desired translational, rotational,
and scaling maneuvering can be achieved. Compared to the
single-integrator agents, the stabilization and maneuvering of
double-integrators are closer to real applications. Future work
will focus on designing angle-based formation laws to guarantee
almost global stability.
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