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3-D Network Localization Using Angle
Measurements and Reduced Communication

Liangming Chen , Kun Cao , Lihua Xie , Fellow, IEEE, Xiaolei Li , Member, IEEE, and Mir Feroskhan

Abstract—Other than the relative position-based and bearing-
based localization with aligned coordinate frames on all sen-
sor nodes, the existing 3D network localization algorithms using
distance/bearing/angle measurements without aligned coordinate
frames usually require each node to have at least four neighbors,
which poses large communication burden for the network system.
To reduce the communication burden in each iteration, this paper
studies the 3D network localization problem where each node is
allowed to have angle measurements with respect to only three
neighbors. Firstly, we use a tetrahedral angularity to describe the
network consisting of a set of nodes and tetrahedra among the
nodes. Given that at least one node in each tetrahedron has the
knowledge of the direction of the global Z-axis, the geometric
constraint of each tetrahedron is described by an angle-induced
linear constraint whose coefficient matrices are only related to the
interior angles among the four nodes in the tetrahedron and the an-
gles between the global Z-axis and the inter-node edges. Secondly,
both algebraic and topological localizability conditions are derived
based on the coefficient matrices of the tetrahedra’s angle-induced
linear constraints. Moreover, a distributed method is also presented
to check the network localizability. Lastly, distributed localization
laws are designed under the cases of continuous communication,
aperiodic communication, and aperiodic communication on jointly
localizable angularities, respectively. Simulation examples are pro-
vided to validate the effectiveness and advantages of the proposed
localization laws.

Index Terms—Network localization, angle measurements, angle-
induced linear constraint, tetrahedral angularity, aperiodic
communication, reduced communication.

I. INTRODUCTION

R ECENTLY, the network localization problem has been
extensively studied due to its wide applications in practical

missions, such as search and rescue [1], [2], transportation and
logistics [3], [4], and reconnaissance and surveillance [5], [6].
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Two classes of nodes usually exist in these networked systems,
which are anchor nodes whose positions are known and free
nodes whose positions are unknown [7]. The configuration of
these nodes can lie in a 2D plane or 3D space. The aim of
network localization is to determine the positions of the free
nodes by using their measurement information with respect to
their neighbors and their communication information obtained
from their neighbors [8]–[10]. Therefore, these two aspects,
namely sensor measurement and inter-node communication,
become the main focus and evaluation factors when designing
network localization algorithms for practical missions.

According to the types of sensor measurements available
among the nodes, the existing network localization algorithms
can be mainly classified into bearing-based, relative position-
based, distance-based, and angle-based localization [8], [11]–
[14]. Note that aligned bearing measurements require all free
nodes’ coordinate frames to have the same orientation as the
anchor nodes’ coordinate frames, which is challenging to be
guaranteed without extra sensing, networked communication or
orientation estimation. The relative position measurement con-
sists of bearing and distance information, and thus also requires
the alignment of the nodes’ coordinate frames. Compared to the
relative position and bearing measurements, inter-node distance
measurement and triple-node angle measurement are indepen-
dent to the orientations of the nodes’ coordinate frames [15]–
[18]. Moreover, the distance measurement and angle measure-
ment can be acquired from sensors, such as ultra wideband
and directional antenna array, respectively, which prompt the
development of distance-based and angle-based localization
algorithms [11], [17], [19]. The distance-based and angle-based
localization algorithms have been designed in [17], [19], [20]
for the case that all the nodes lie in a 2D plane. The network
localization task in 3D space is more challenging which has
been investigated recently in [11], [13], [21]. The proposed 3D
distance-based and angle-based localization algorithms in [11],
[13], [21] require each free node to have at least four neighbors,
due to which the communication burden will be significantly
increased when the network becomes large-scale. Therefore, it
is of practical importance to further reduce the number of each
node’s neighbors such that not only the communication burden
but also the availability of relative measurements can be reduced.
However, the minimum number of neighbors required for 3D
distance-based network localization is hard to be further reduced
since inter-node distances are invariant to the orientations of the
sensor nodes’ coordinate frames.

Meanwhile, according to the continuity and frequency of the
communication among nodes, the existing network localization
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algorithms can also be classified into network localization under
continuous, periodic, and aperiodic communication. The com-
munication process among nodes plays an important role in the
network localization. This is because when executing network
localization algorithms, the values of the sensor measurements
are constant in the noiseless case which can be obtained by
one time sensing and one time communication with neighbors,
but the communication of estimated positions with neighbors is
constantly needed over time. Most of the localization algorithms
focus on the continuous communication [11], [22], [23], or
periodic communication [7], [19], [20]. Very few localization
algorithms focus on aperiodic communication [24], which can
further reduce the communication burden. Moreover, at each
sampling instant, each node needs to communicate the estimated
positions with all of this neighbors in [24]. Therefore, it is also
interesting to investigate the case of aperiodic communication
where each node communicates with only some of its neighbors
at each sampling instant.

Motivated by the aforementioned two aspects, this paper
studies 3D network localization using angle measurements and
reduced communication. We propose that by adding one more
sensing capability for the network, namely at least one in four
neighboring nodes has the knowledge of the direction of the
global Z axis, each free node only needs three neighbors instead
of four neighbors to construct an angle-induced linear constraint
for localization. This reduces the communication burden in each
iteration. Based on the established linear constraints, algebraic
and topological localizability conditions are proposed. For the
cases of continuous communication and aperiodic communi-
cation, distributed network localization algorithms are also de-
signed, respectively.

The rest of this paper is organized as follows. Section II
presents some preliminaries. Section III introduces angle-
constrained tetrahedral angularities, based on which localiz-
ability conditions are developed in Section IV. In Section V,
localization algorithms are designed under different cases. Sim-
ulation examples are provided in Section VI.

II. PRELIMINARIES

A. Notations

Consider a 3D static sensor network consisting of na ∈ N+

anchor nodes and nf ∈ N+ free nodes. Let Va = {1, 2, . . ., na}
be the set of anchor nodes with |Va| = na ≥ 2, whose posi-
tions, denoted by pa = [p�1 , p

�
2 , . . ., p

�
na
]� ∈ R3na , are known

by themselves. Let Vf = {na + 1, na + 2, . . ., n} be the set of
free nodes with |Vf | = nf = n− na, whose positions, denoted
by pf = [p�na+1, p

�
na+2, . . ., p

�
n ]

� ∈ R3nf , are to be determined.
We assume that no colocated points exist in p = [p�a , p

�
f ]

� ∈
R3n. Let I3, 1n, ×, ⊗, λmax, λmin be the 3-by-3 identity matrix,
n× 1 column vector of all ones, the cross product, the Kronecker
product, the maximum eigenvalue, and the minimum eigenvalue
of a symmetric matrix, respectively. Denote the tetrahedron
formed by the nodes i, j, k,m as ijkm, the plane formed
by three non-collinear nodes i, j, k as Pijk, respectively.

B. Angle Measurements

Let
∑

g be the global coordinate frame under which pa and pf
are represented. Each free node j holds a fixed local coordinate
frame

∑
j for sensor measurements whose orientation can be

different from the orientation of
∑

g . Let pj and pij be the node
j’s coordinates in

∑
g and

∑
i, respectively. Define the bearing

from node j to node i by bji :=
pi−pj

‖pi−pj‖ which is uniquely deter-
mined by the combination of an azimuth angle and an elevation
angle [25]. Then, the bearing from j to i described in

∑
j can be

written as bjji :=
pj
i−pj

j

‖pj
i−pj

j‖
= Qjbji where Qj ∈ SO(3) is the 3D

rotation matrix describing the rotation from
∑

g to
∑

j . Then,

the angle αijk between the rays
−→
ji and

−→
jk can be calculated by

αijk := arccos(b�jibjk) ∈ [0, π]. (1)

Due to the facts that Q�
j Qj = I3 and arccos(bj�ji b

j
jk) =

arccos(b�jiQ
�
j Qjbjk) = arccos(b�jibjk), the angle αijk has the

same value in
∑

j and
∑

g . This also holds for the an-

gle formed by
−→
ji and Pmjk, i.e., arccos(bj�ji

bjjk×bjjm

‖bjjk×bjjm‖ ) =

arccos(b�jiQ
�
j Qj

bjk×bjm
‖bjk×bjm‖ ) = arccos(b�ji

bjk×bjm
‖bjk×bjm‖ ). We as-

sume in this paper that each sensor node j ∈ Vf has the knowl-
edge of the angles αijk and arccos(b�ji

bjk×bjm
‖bjk×bjm‖ ), i, k,m ∈ Nj ,

where Nj denotes node j’s neighbor set. In practice, these
two angles usually are indirectly calculated from those az-
imuth and elevation angles which are the original measured
angles from sensors, such as cameras and directional antenna
arrays. For brevity, we also say in this paper that αijk and
arccos(b�ji

bjk×bjm
‖bjk×bjm‖ ) are measured angles. In addition, if a

node i has the knowledge of the global Z axis, then i can
additionally measure the angle between the global Z axis and
the ray

−→
ik, k ∈ Ni.

III. ANGLE-CONSTRAINED SENSOR NETWORKS

In this section, we first introduce an angle-induced linear
constraint for a tetrahedron with 4 neighboring sensor nodes as
its vertices, then use tetrahedral angularities to describe those
sensor networks with multiple tetrahedra, finally investigate
their properties by defining an angle measurement matrix.

A. Angle-Induced Linear Constraint in a Tetrahedron

According to [13], [20], describing geometric constraints
among sensor nodes as linear algebraic equations is an effi-
cient way to solve network localization problems. Therefore,
we first aim to establish an angle-induced linear constraint
for a basic geometric unit in the 3D sensor network, namely
a 4-node tetrahedron. Consider a tetrahedron formed by four
non-coplanar nodes 1,2,3,4, which is denoted by 1234. Note
that most of the established distance-induced [21], bearing-
induced [14], [20], angle-induced [11], [12] linear constraints
have scalar coefficients and associate with 5 neighboring nodes
in 3D. Instead, we now prove that a 3D angle-induced lin-
ear constraint’s coefficients in front of the 4 nodes’ positions
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p1, p2, p3, p4 should not be all scalars. Suppose on the contrary
that there exists a linear representation p1 = ap2 + bp3 + cp4
wherea, b, c are nonzero scalars. Since the translational transfor-
mation {p1 + 13, p2 + 13, p3 + 13, p4 + 13} should also satisfy
the linear representation, which indicates a+ b+ c = 1. Then,
the linear representation can be rewritten as

a(p2 − p1) + b(p3 − p1) + c(p4 − p1) = 0 (2)

Since b
a ,

c
a are scalars, (2) indicates that {p1, p2, p3, p4} must

be co-planar, which contradicts with the assumption that
p1, p2, p3, p4 are non-coplanar.

Therefore, when p1, p2, p3, p4 are non-coplanar, at least one
coefficient in front of p1, p2, p3, p4 in the linear constraint to
be developed must be a non-zero matrix. Inspired by [20], we
firstly construct 1234’s similar tetrahedron1 1′2′3′4′ by
using the information of available angle measurements where
1′, 2′, 3′, and 4′ are four virtually constructed nodes. Then, we
need to calculate the coefficient matrices in the linear constraint
to be developed. The construction of the similar tetrahedron and
calculation of the matrices are given in three steps.

Step 1 (assign coordinate frames): Let 1 and 1′ be coincident.
Assume that node 1 is the node that has the knowledge of the
global Z-axis, and node 1’s Z-axis is aligned with the global
Z-axis. Since

∑
g is unavailable for other nodes, we define a

new coordinate frame
∑

1′−X0Y0Z0
to describe the coordinates

of 1′, 2′, 3′, and 4′, where the origin of
∑

1′−X0Y0Z0
is 1′. Then,

we choose node 1’s Z-axis as the direction of Z0-axis. Since at
least one of p2, p3, p4 will not lie in the line 1Z0 (otherwise the
four nodes are coplanar), without loss of generality, we assume
p2 is not in the line 1Z0. Then, we choose Y0-axis such that
P2′1′Z0

coincides with PY01′Z0
and b�1′2′b1′Y0

> 0 (this is used to
exclude the case that2′ lies in the right side of PX01′Z0

). Then, the
direction of X0-axis can be determined by the right-hand rule.
Note that rotating 1234 along theZ0-axis can yield 1′2′3′4′.

Step 2 (calculate coordinates of the similar tetrahedron):
Denote by q1′ , q2′ , q3′ , q4′ the coordinates of 1′, 2′, 3′, and 4′ in∑

1′−X0Y0Z0
, respectively. Suppose that the scale of 1′2′3′4′

is determined by l1′2′ = ‖q1′ − q2′ ‖ and without loss of gener-
ality we assume l1′2′ = 1, which will not affect the linear con-
straint since 1234, 1′2′3′4′ are only required to be similar.
Since q1′ = [0, 0, 0]�, we can calculate the remaining coordi-
nates q2′ , q3′ , q4′ using only angle measurements. Using the fact
b�1′2′b1′Y0

> 0, one has

q2′ = [0, sinα2′1′Z0
, cosα2′1′Z0

]�, (3)

where α2′1′Z0
= arccos(b�1′2′b1′Z0

) = arccos(b�12b1Z0
) =

α21Z0
can be obtained by node 1’s angle measurement. Since

l1′2′ = 1, using the Law of Sines, one has l1′3′ =
sinα1′2′3′
sinα1′3′2′

.

Suppose that node 3’s coordinate is q3′ = [x3′ , y3′ , z3′ ]
�. Then,

we can firstly obtain

z3′ = l1′3′ cosαZ01′3′ = sinα123 cosαZ013/sinα132 (4)

To calculate x3′ , y3′ , as shown in Fig. 1, we define three points
H1, H2, H3 which satisfy H1 ∈ PX01′Y0

, 3′H1 ⊥ 1′H1, H2 ∈
1Two tetrahedra are said to be similar here if all the corresponding interior

angles and the sign of the signed volume of the two tetrahedra are the same.

Fig. 1. Construction of a similar tetrahedron 1′2′3′4′ from 1234.

PX01′Y0
∩ PY01′Z0

, H1H2 ⊥ 1′Y0, H3 ∈ PY01′Z0
, and 3′H3 ⊥

1′H3. Since α3′1′H3
is the angle formed by 1′3′ and P2′1′Z0

, one

has l3′H3
= l1′3′ sinαH31′3′ = l1′3′ |b�3′1′

b1′Z0
×b1′2′

‖b1′Z0
×b1′2′ ‖

|. It follows

that lH1H2
= l3′H3

and l1′H2
=

√
l21′3′ − z23′ − l2H1H2

. Accord-

ing to the geometric relation in Fig. 1, one has the remaining
coordinates of point 3’

x3′ =

{
lH1H2

, if b�1′3′(b1′2′ × b1′Z0
) > 0,

−lH1H2
, otherwise,

(5)

y3′ =

{
l1′H2

, if b�1′3′ b̄1′H2
> 0,

−l1′H2
, otherwise,

(6)

where b̄1′H2
= [

1,0,0
0,1,0
0,0,0

]b1′2′ , and b�1′3′ b̄1′H2
= b�13[

1,0,0
0,1,0
0,0,0

]b12 can be

obtained from node 1’s angle measurements (we have used
R�

z (θ)Rz(θ) = I3 for arbitrary θ), and b�1′3′(b1′2′ × b1′Z0
) has

the same sign as b�1′3′
b1′2′×b1′Z0

‖b1′2′×b1′Z0
‖ . Since ‖b1′Z0

× b1′2′ ‖ �= 0, the

above calculation is well-defined.
Similar to the calculation of the coordinates of point 3’, one

can also calculate the coordinates of point 4’, which we denote
as q4′ = [x4′ , y4′ , z4′ ]

�. Following (4)–(6), one has

z4′ = l1′4′ cosαZ01′4′ , (7)

x4′ =

{
lH4H5

, if b�1′4′(b1′2′ × b1′Z0
) > 0,

−lH4H5
, otherwise,

(8)

y4′ =

{
l1′H5

, if b�1′4′b1′H5
> 0,

−l1′H5
, otherwise,

(9)

where l1′4′ = l1′3′
sinα1′3′4′
sinα1′4′3′

, the points H4, H5, H6 are used
to calculate the coordinates of 4′ and are similarly con-
structed as these points H1, H2, H3, respectively, and

thus l4′H6
= l1′4′ sinαH61′4′ = l1′4′ |b�4′1′

b1′Z0
×b1′2′

‖b1′Z0
×b1′2′ ‖

|, lH4H5
=

l4′H6
and l1′H5

=
√

l21′4′ − z24′ − l2H4H5
, and b1′H5

= b1′H2
.
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Step 3 (construct the angle-induced linear constraint): After
knowing the coordinates of 1′, 2′, 3′, and 4′ in

∑
1′−X0Y0Z0

,
we now construct the angle-induced linear constraint for the
tetrahedron 1234 in

∑
g . According to Step 1, one has the

relationship between pi and qi′

pi = ksRz(θ)qi′ + w,∀i = 1, 2, 3, 4, (10)

where ks ∈ R+ is the scaling factor from 1′2′3′4′ to 1234,
w ∈ R3 is the translation vector from 1′ to 1 described in

∑
g ,

and Rz(θ) = [
cos θ − sin θ 0
sin θ cos θ 0
0 0 1

] represents the Z-axis rotation with

rotation angle θ ∈ [0, 2π) from 1′2′3′4′ to 1234, respec-
tively. Therefore, if a linear constraint can be established for

1′2′3′4′ in
∑

1′−X0Y0Z0
and it is invariant with respect to

the tetrahedron 1′2′3′4′’s scaling ks, translation w ∈ R3 and
rotation Rz(θ), then that linear constraint also holds for the
tetrahedron 1234 in

∑
g . Based on this fact, we firstly aim to

establish a linear constraint for 1′2′3′4′ in
∑

1′−X0Y0Z0
. We

assume that the constraint can be written as

[a1, a2, a3 ]q1′ + [ b1, b2, b3 ]q2′

+ [ c1, c2, c3 ]q3′ + [ d2, d3 ]q4′ = 0, (11)

where ai ∈ R, bi ∈ R, ci ∈ R, and di ∈ R, i = 1, 2, 3. Then,
we need to calculate the coefficients ai, bi, ci, di using the condi-
tion that (11) always holds under 1′2′3′4′’s translation motion,
scaling motion, and rotation motion along theZ-axis. Firstly, for
the case of translation motion, one has that for ∀w ∈ R3,

[a1, a2, a3 ](q1′ + w) + [ b1, b2, b3 ](q2′ + w)

+ [ c1, c2, c3 ](q3′ + w)

+ [d1, d2, d3 ](q4′ + w) = 0. (12)

Substituting the cases of w = [1, 0, 0]�, w = [0, 1, 0]�, w =
[0, 0, 1]� into (12), respectively, yields

ai + bi + ci + di = 0, ∀i = 1, 2, 3. (13)

Since ai = −(bi + ci + di), (11) can be rewritten as[
b1, b2, b3

]
(q2′ − q1′) +

[
c1, c2, c3

]
(q3′ − q1′)

+
[
d1, d2, d3

]
(q4′ − q1′) = 0. (14)

Secondly, for the case of scaling motion, one has that (14) holds.
Lastly, for the case of rotation motion along the Z-axis, one has

[b1, b2, b3]Rz(θ)(q2′ − q1′) + [c1, c2, c3]Rz(θ)(q3′ − q1′)

+
[
d1, d2, d3

]
Rz(θ)(q4′ − q1′) = 0, ∀θ ∈ [0, 2π). (15)

Substituting the definition of Rz(θ) into (15) yields

f1 cos θ + f2 sin θ + f3 = 0, (16)

where

f1 = b1q2′(1) + b2q2′(2) + c1q3′(1)

+ c2q3′(2) + d1q4′(1) + d2q4′(2)

f2 = b2q2′(1)− b1q2′(2) + c2q3′(1)

− c1q3′(2) + d2q4′(1)− d1q4′(2)

f3 = b3q2′(3) + c3q3′(3) + d3q4′(3),

and qi′(j) is the jth component of qi′ , and we have used the
fact q1′ = [0, 0, 0]. Since (16) should hold for ∀θ ∈ [0, 2π), one
must have f1 = 0, f2 = 0, f3 = 0. Note that {f1 = 0, f3 = 0}
are linearly dependent to (14). Therefore, we can only obtain two
linearly independent constraints f1 = 0, f2 = 0 for the case of
the rotation motion. To sum up, the linear constraint (14) should
satisfy two linearly independent constraints, namely f1 = 0 and
f2 = 0, which can be written into a compact form

S
[
b1, b2, b3, c1, c2, c3, d1, d2, d3

]�
= 0, (17)

where the matrix S is shown at the bottom of this page.
Now, we discuss the rank of the matrix S ∈ R3×9. Suppose

that the first row and second row of S are linearly dependent. It
follows that qi′(1) = qi′(2) = 0, ∀i = 2, 3, 4 which contradicts
to the fact that 1′2′3′4′ is non-coplanar. Since the third row
of S is linearly independent to the first two rows, the three rows
of S are linearly independent. Applying the same reasoning to
the columns of S yields that there exist at least three linearly
independent columns in S. Combining these two aspects, one
has that Rank(S) = 3.

Since the rank of the matrix S is 3, the null space
of S is spanned by six linearly independent vectors, i.e.,
[b1, b2, b3, c1, c2, c3, d1, d2, d3] has six linearly independent so-
lutions satisfying (17). Substituting the six linearly independent
solutions of [b1, b2, b3, c1, c2, c3, d1, d2, d3] into (14) and writing
them into a compact matrix form yield

B12(α)(q2′ − q1′) + C13(α)(q3′ − q1′)

+D14(α)(q4′ − q1′) = 0, (18)

where B12(α) ∈ R6×3, C13(α) ∈ R6×3, D14(α) ∈ R6×3 are
the row stacks of the six solutions of [b1, b2, b3] ∈ R1×3,
[c1, c2, c3] ∈ R1×3, [d1, d2, d3] ∈ R1×3, respectively, which are
the functions of the angle measurements. Using the relationship
(10) and the fact that (18) is invariant with respect to the tetrahe-
dron 1′2′3′4′’s scaling motion ks, translation motion w ∈ R3

and rotation motion Rz(θ), one has that the linear constraint for

S =

⎡
⎣ q2′(1) q2′(2) 0 q3′(1) q3′(2) 0 q4′(1) q4′(2) 0
−q2′(2) q2′(1) 0 −q3′(2) q3′(1) 0 −q4′(2) q4′(1) 0

0 0 q2′(3) 0 0 q3′(3) 0 0 q4′(3)

⎤
⎦ ∈ R3×9.
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Algorithm 1: Construct an Angle-Induced Linear Con-
straint For Non-Coplanar 1234 where Z1 is Aligned With
Zg and p2 is Not in The Line 1Zg .

Input: Node 1’s angle measurements with respect to its
neighboring nodes and Z-axis, nodes 2’s, 3’s, and 4’s
angle measurements with respect to their neighboring
nodes

Step 1 Assign the coordinate frame
∑

1′−X0Y0Z0
with

node 1 as its origin
Step 2: Calculate the vertices’ coordinates of the similar
tetrahedron 1′2′3′4′ by using (3)–(9)

Step 3: Construct matrix S using its definition after (17),
calculate six linearly independent vectors lying in the
null space of S, write these six column vectors in the
form of [B12, C13, D14]

�

Output: The angle-induced linear constraint can be
written as (19)

the tetrahedron 1234 in
∑

g can be written as

A1(α)p1 +B12(α)p2 + C13(α)p3 +D14(α)p4 = 0, (19)

where A1(α) = −B12(α)− C13(α)−D14(α). Since
B12(α), C13(α), D14(α) are calculated using only angle
measurements, the established linear constraint (19) can be
constructed for the tetrahedron 1234 in

∑
g using angle-only

measurements in each node’s local coordinate frame. Now, we
summarize the above construction steps into Algorithm 1.

Then, we provide a numerical example to illustrate the above
calculation steps 1 to 3.

Example 1: Consider four nodes 1,2,3,4 embedding
in p1 = [3, 5, 8]�, p2 = [2.281, 5.678, 7.845]�, p3 =
[2.199, 4.534, 7.580]�, p4 = [1.121, 11.170,−7.500]�, and Z1

is aligned with the global Z-axis. Using (3)–(9), the coordinates
of 1’, 2’, 3’, and 4’ described in

∑
1′−X0Y0Z0

are q1′ =

[0, 0, 0]�, q2′≈[0, 0.899, 0.437]�, q3′≈[−0.447, 0.666,−0.626]�,
q4′≈[−3.125, 0.172, 0.961]�. Using Step 3, one has

A1≈

⎡
⎢⎢⎣

−11.09 −2.10 0
2.10 −11.09 0
0 0 −9.45

6.00 −4.03 0
4.03 6.00 0
0 0 10.16

⎤
⎥⎥⎦, B12≈

⎡
⎢⎢⎣

1.172 0.777 0
−0.777 1.172 0

0 0 −0.271
−7.133 6.700 0
−6.700 −7.133 0

0 0 −9.996

⎤
⎥⎥⎦,

C13≈

⎡
⎢⎢⎣
9.807 −0.029 0
0.029 9.807 0

0 0 9.993
0.505 −1.264 0
1.264 0.505 0

0 0 −0.268

⎤
⎥⎥⎦, and D14≈

⎡
⎢⎢⎣

0.112 1.356 0
−1.356 0.112 0

0 0 −0.268
0.633 −1.404 0
1.404 0.633 0

0 0 0.108

⎤
⎥⎥⎦.

Following (19), the angle-induced linear constraint can be
constructed as

A1p1 +B12p2 + C13p3 +D14p4 = 0 (20)

which can be verified by substituting the coordinates of pi, i =
1, . . ., 4 and A1, B12, C13, D14 into the left side of (20). Since
the left side of (20) is indeed zero, this example validates the
correctness of (19). �

Now, we introduce a lemma about these four matrices.

Lemma 1: For a tetrahedron 1234, if its vertices are
non-coplanar and the matrices A1(α), B12(α), C13(α), D14(α)
are constructed according to Algorithm 1, then the kernel of
the matrix F = [A1(α), B12(α), C13(α), D14(α)] ∈ R6×12 is
spanned by six linearly independent vectors, or equivalently,
Rank(F ) = 6.

Proof: Firstly, according to (17), one has that[
b1, b2, b3, c1, c2, c3, d1, d2, d3

]
S� = 0 holds for all

the six solutions of [b1, b2, b3, c1, c2, c3, d1, d2, d3], i.e.,
[B12(α), C13(α), D14(α)]S

� = 0. Then, one has that

[A1(α), B12(α), C13(α), D14(α)]

[
03×3

S�

]
= 0 (21)

which implies that all the three column vectors of [
03×3

S� ] ∈

R12×3 lie in the null space of F .
Secondly, according to (18), one has B12(α)q2′ +

C13(α)q3′ +D14(α)q4′ = 0. Since A1(α) = −B12(α)−
C13(α)−D14(α), one has that for every i = 1, 2, 3,

A1(α)ei +B12(α)(q2′ + ei) + C13(α)(q3′ + ei)

+D14(α)(q4′ + ei) = 0,

where e1 = [1, 0, 0]�, e2 = [0, 1, 0]�, e3 = [0, 0, 1]�. It fol-
lows that the three column vectors [ei; q2′ + ei; q3′ + ei; q4′ +
ei], ∀i = 1, 2, 3 also lie in the null space of F .

Lastly, all the six column vectors, including [
03×3

S� ]

and [ei; q2′ + ei; q3′ + ei; q4′ + ei], i = 1, 2, 3 are linearly
independent with each other since ei �= 0. Moreover,
[B12(α), C13(α), D14(α)] is linearly column independent
according to (17). Therefore, Rank(F ) = 6. �

Lemma 1 provides a necessary condition for a tetrahe-
dron to be non-coplanar. The condition (i.e., Rank(F ) = 6)
in Lemma 1 is not sufficient for the tetrahedron to be non-
coplanar. This is because if Rank(F ) = 6, i.e., Rank(S) =
3, then the tetrahedron 1′2′3′4′ may still be coplanar.
A simple example is q1′ = [0; 0; 0], q2′ = [0.5; 1; 2], q3′ = 2 ∗
[0.5; 1; 2], q4′ = 3 ∗ [0.5; 1; 2]. It can be verified that Rank(S) =
3, but 1′, 2′, 3′, and 4′ are collinear. After the establishment of
angle-induced linear constraint for one tetrahedron, we now
investigate the network case which includes multiple tetrahedra
and multiple angle-induced linear constraints.

B. Tetrahedral Angularity

Angle rigidity has been investigated in [16], [26] where the
notion of angularity is defined to describe those frameworks with
triple-vertex angle constraints. Here, we briefly review some
related definitions in 3D and more details can be found in [16],
[26]. For the vertex set V = {1, 2, . . ., n}, define a three-vertex
triplet (i, j, k) to describe the angle constraint αijk. Then, we
define A ⊆ V × V × V = {(i, j, k), i, j, k ∈ V, i �= j �= k} as
an angle set, each element of which is a triplet. We say (j, i, k)
and (k, i, j) are conjugate triplets. We assume that A does not
contain conjugate triplets, and (j, i, k) can be freely changed to
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(k, i, j) for a givenA. Then, the combination of the vertex set V ,
the angle set A and the position configuration p ∈ R3n is called
an angularity which we denote by A(V,A, p). Without p, the
combination of the vertex set V and the angle set A is called a
trigraph T (V,A).

We sayA is a triangular angle set if for every (i1, j1, k1) ∈ A,
there also exists {(j1, k1, i1), (k1, i1, j1)} ⊂ A. Then, a triangu-
lar angle set A can be written in the form of

A = {· · · , (i1, j1, k1), (j1, k1, i1), (k1, i1, j1), · · · } (22)

and S�i1j1k1
= {(i1, j1, k1), (j1, k1, i1), (k1, i1, j1)} denotes

as the triangular angle set of �i1j1k1. Then, we say A is a
tetrahedral angle set if A is a triangular angle set and for every
triangular angle subset S�i1j1k1

∈ A, there always exists a ver-
tex m ∈ V,m �= i �= j �= k such that S�i1j1m ∈ A,S�i1k1m ∈
A,S�j1k1m ∈ A. Then, a tetrahedral angle set A can be written
in the form of

A = {· · · ,S�i1j1k1
,S�i1j1m,S�i1k1m,S�j1k1m, · · · } (23)

and we denote the corresponding tetrahe-
dral angle set of i1j1k1m as S

i1j1k1m
=

{S�i1j1k1
,S�i1j1m,S�i1k1m,S�j1k1m}. We say A(V,A, p) is

a tetrahedral angularity and T (V,A) a tetrahedral trigraph

if A is a tetrahedral angle set. Denote by nA ∈ N+ the total
number of tetrahedron in the tetrahedral trigraph T . Given
S

ijkm
∈ A, define a matrix-weighted vector function of

pi, pj , pk, pm as

f ijkm(α∗, p) := A ijkm(α∗)pi +B ijkm(α∗)pj

+ C ijkm(α∗)pk +D ijkm(α∗)pm, (24)

where f ijkm(α∗, p) ∈ R6×1, and constant matrices

B ijkm(α∗), C ijkm(α∗), D ijkm(α∗) are defined
according to the calculation in Algorithm 1, α∗ represents
those angles that are associated with the construction of

(19), and A ijkm(α∗) = −B ijkm(α∗)− C ijkm(α∗)−
D ijkm(α∗). Note that if the constant angles α∗ are calculated

under p, one directly has f ijkm(α∗(p), p) = 0.

C. Angle Measurement Matrix

For the tetrahedral angularity A(V,A, p), we define the tetra-
hedral angle function

fA(p) := [· · · ,
(
f ijkm(α∗, p)

)�
, · · · ]� ∈ R6nA ,

where S
ijkm

∈ A, α∗ in A ijkm, B ijkm, C ijkm,

D ijkm represents the angle constraints associated with

ijkm. Since f ijkm(α∗(p), p) = 0, one has

RA(α(p))p = 0, (25)

where RA(α) ∈ R6nA ×3n is defined as the angle measurement
matrix in 3D which can be written as

⎡
⎢⎢⎢⎢⎢⎢⎣

··· Vertex i Vertex j Vertex k Vertex m ···

1st · · · · · · · · · · · · · · · · · ·
··· · · · · · · · · · · · · · · · · · ·
ijkm 0 A ijkm B ijkm C ijkm D ijkm 0
··· · · · · · · · · · · · · · · · · · ·

nA th · · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎥⎥⎦

whose row blocks are indexed by the tetrahedra defined in A,
and column blocks are indexed by the vertices in V . It is worth
noting that different from the angle rigidity matrix defined in [16,
Eqn. 13], the angle measurement matrix RA(α) is only related
with the values of those constrained angles defined in A and
some additional angles between the global Z-axis and inter-node
edges, but not related with sensor nodes’ position information
p or inter-node distance information, which plays an important
role in this network localization problem. Given V and its em-
bedding p, we define A∗ := {(i, j, k), ∀i, j, k ∈ V, i �= j �= k}
as the complete angle set, and define A∗(V,A∗, p) and RA∗ as
the corresponding tetrahedral angularity and angle measurement
matrix, respectively. According to the structure of matrix S for
a 4-node tetrahedron, we now define a new matrix KA, which is
shown at the bottom of this page, for the tetrahedral angularity
A(V,A, p) where KA ∈ R3n×6. Then, one has the following
lemma.

Lemma 2: For the tetrahedral angularity A(V,A, p), one
has Span{KA} ⊆ Null(RA∗) ⊆ Null(RA) and Rank(RA) ≤
Rank(RA∗) ≤ 3n− 6.

Proof: According to Lemma 1, all the column vectors of KA

are in the null space of RA and RA∗ . Since RA is a sub-matrix
of RA∗ and they have the same number of columns, one has
Rank(RA) ≤ Rank(RA∗) and Null(RA∗) ⊆ Null(RA). Since all

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 0 1 0 0 · · · 1 0 0
0 1 0 0 1 0 · · · 0 1 0
0 0 1 0 0 1 · · · 0 0 1

p1(1) p1(2) 0 p2(1) p2(2) 0 · · · pn(1) pn(2) 0
−p1(2) p1(1) 0 −p2(2) p2(1) 0 · · · −pn(2) pn(1) 0
p1(1) p1(2) p1(3) p2(1) p2(2) p2(3) · · · pn(1) pn(2) pn(3)

⎤
⎥⎥⎥⎥⎥⎥⎦

�

(26)
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the six column vectors of KA are linearly independent, one has
Rank(RA∗) ≤ 3n− 6. �

Remark 1: It is worth noting that if p = [p�1 , p
�
2 , p

�
3 , p

�
4 ]

�

is the combination of translation, scaling and Z-axis rotation
with respect to p′ = [p

′�
1 , p

′�
2 , p

′�
3 , p

′�
4 ]�, then one always has

f 1234(α∗(p), p′) = 0. However, the converse of the above
argument is not true because {f1 = 0, f2 = 0, f3 = 0} is only

a sufficient condition for (16). As such, f 1234(α∗(p), p′) = 0
and that p is a combination of translation, scaling and Z-axis
rotation with respect to p′ are not equivalent.

Next, we develop localizability conditions for sensor net-
works described by tetrahedral angularities in 3D.

IV. LOCALIZABILITY CONDITIONS

Before giving localizability conditions, we first formulate the
angle-only network localization problem to be solved. We say
nodes i, j, k are neighboring nodes of one another if (i, j, k) ∈
A.

Problem 1: Consider a 3D sensor network described by a
tetrahedral angularity A(V,A, p) where V = Va ∪ Vf , na ≥ 2,
and for each tetrahedron S

ijkm
∈ A, at least one of i, j, k,m

has the knowledge of the direction of global Z-axis. Given
anchor nodes’ positions pa in

∑
g , the aim is to determine the

positions of the free nodes pf using the nodes’ angle measure-
ments with respect to their neighbors and the communication of
estimated positions with their neighbors.

Denote by p̂ = [p̂�a , p̂
�
f ]

� ∈ R3n the estimation of all nodes’
positions. Since each tetrahedral angle subset in A will give one
angle-induced linear constraint (19), the formulated localization
Problem 1 is equivalent to finding p̂f subject to

f ijkm(α∗, p̂) = A ijkm(α∗)p̂i +B ijkm(α∗)p̂j

+ C ijkm(α∗)p̂k +D ijkm(α∗)p̂m = 0, ∀S
ijkm

∈ A

p̂i = pi, ∀i ∈ Va, (27)

where the angles inA ijkm(α∗),B ijkm(α∗),C ijkm(α∗),

D ijkm(α∗) are constants and can be obtained using the nodes’
angle measurements. Note that T (V,A) represents both the
measurement topology and communication topology. Then, we
can define localizable angularity.

Definition 1: A tetrahedral angularity A(V,A, p) is said to
be localizable if the solution p̂f to (27) is unique and p̂f = pf .

In the follow-up subsections, we investigate the algebraic and
topological localizability conditions, respectively.

A. Algebraic Localizability Condition

Now, we develop algebraic localizability conditions for tetra-
hedral angularities A(V,A, p). We transfer the localization
problem (27) into a least-square optimization problem by defin-
ing the cost function of the angle-only network localization

Problem 1 as

J(p̂) =
∑

S
ijkm

∈A
‖f ijkm(α∗, p̂)‖2

=
∑

S
ijkm

∈A
‖A ijkm(α∗)p̂i +B ijkm(α∗)p̂j

+ C ijkm(α∗)p̂k +D ijkm(α∗)p̂m‖2, (28)

where p̂i = pi, ∀i ∈ Va. Our aim is to obtain the localizability
condition, under which the true position pf is the unique and
global minimizer of (28). According to the definition of the angle
measurement matrix in (25), the cost function defined in (28) can
be rewritten as

J(p̂) = p̂�R�
A(α

∗)RA(α
∗)p̂. (29)

Let L(α∗) := R�
A(α

∗)RA(α
∗) ∈ R3n×3n. By partitioning ma-

trix RA = [Ra
AR

f
A] into anchor nodes’ part Ra

A ∈ R6nA ×3na

and free nodes’ part Rf
A ∈ R6nA ×3nf , the matrix L(α∗) can be

written in the form of

L(α∗) =

[
Laa Laf

Lfa Lff

]
, (30)

where Laa = (Ra
A)

�Ra
A ∈ R3na×3na , Laf = (Ra

A)
�Rf

A ∈
R3na×3nf , Lfa = (Rf

A)
�Ra

A ∈ R3nf×3na , and Lff =

(Rf
A)

�Rf
A ∈ R3nf×3nf .

Lemma 3: If p̂∗f is a minimizer of the cost function (28), then
it is also a global minimizer and Lff p̂

∗
f + Lfapa = 0.

Proof: Substituting (30) into (29) yields

J(p̂) = J̃(p̂f ) = p�aLaapa + 2p�aLaf p̂f + p̂�fLff p̂f , (31)

where we used the fact p̂a = pa. Then, any minimizer of
(31) satisfies ∇p̂∗

f
J̃(p̂∗f ) = Lff p̂

∗
f + Lfapa = 0. Also, it fol-

lows from [22] that p̂∗f is a global minimizer. This is because
if we assume p̂∗f = pf + δpf where δpf ∈ R3nf , then one
has from L(α∗)p = 0 and J(p̂∗) = (p+ [0; δpf ])

�L(α∗)(p+
[0; δpf ]) = (δpf )

�Lffδpf = 0 that δpf = 0. �
Theorem 1: A tetrahedral angularity A(V,A, p) with na ≥

2 is localizable if and only if Lff is nonsingular. When the
angularity is localizable, the true positions of the free nodes can
be calculated by pf = −L−1

ffLfapa.
The proof of Theorem 1 is straightforward using Lemma 3

and [22]. Now, we derive conditions such that Lff is nonsingu-
lar.

Theorem 2: For a tetrahedral angularity A(V,A, p) with
na ≥ 2, if Rank(RA(α)) = 3n− 6, then Lff is nonsingular.

Proof: The rank condition Rank(RA(α)) = 3n− 6 implies
that RA(α) has 3n− 6 linearly independent rows. Since the
number of free nodes is less than n− 2 and each free node has
three degrees of freedom, the total number of degrees of freedom
in pf is less than 3n− 6. Due to the fact that RA(α)p = 0 can
provide 3n− 6 independent linear equations, pf can be uniquely
determined by these linear equations. When pf is uniquely
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determined (i.e., the angularity is localizable), one has from
Theorem 1 that Lff is nonsingular. �

Theorem 2 provides a sufficient condition for the localizabil-
ity of tetrahedral angularities. Now, we give a necessary and
sufficient condition for the network localizability when na = 2.

Proposition 1: A tetrahedral angularity A(V,A, p)withna =
2 is localizable if and only if Rank(RA(α)) = 3n− 6.

Proof: The sufficient part of this proposition is proved by
Theorem 2. For the necessary part, if Lff is nonsingular, then
Rank(Lff ) = Rank(Rf

A) = 3n− 6. Since Rf
A is a submatrix

of RA and Rank(RA(α)) ≤ 3n− 6, one has Rank(RA(α)) =
3n− 6. �

For sensor networks described by tetrahedral angularities, to
check their network localizability by the algebraic condition
developed in Theorem 2, one needs to collect all the free
nodes’ measured angle information via communication chan-
nels. Inspired by [27], we now provide a method to check the
networks’ localizability in a distributed manner. Consider that
the tetrahedral angularity A(V,A, p) has two anchor nodes in
Va = {1, 2}, and n− 2 free nodes in Vf = {3, 4, . . ., n}. Based
on the results of checking localizability in a distributed manner
for 2D networks [27, Theorem 3.1], we can similarly have the
following results for 3D networks.

Lemma 4: The 3D tetrahedral angularity A with na = 2 is
localizable if and only if Null(Lff ) ⊥ Ei−2, ∀i ∈ Vf , where
Ei−2 = ei−2 ⊗ I3 and ei−2 ∈ Rn−2 is the natural basis of Rn−2,
i.e., ei−2 is the column vector whose (i− 2)th entry is 1 and all
the other entries are zero.

Proof: Writing Null(Lff ) ⊥ Ei−2, ∀i ∈ Vf into a compact
form yields Null(Lff ) ⊥ I3(n−2). Since I3(n−2) expands the
entire Euclidean space R3(n−2), Null(Lff ) ⊥ I3(n−2) implies
that Null(Lff ) = ∅, that is to sayLff is nonsingular. According
to Theorem 1, the angularity is localizable if and only if Lff is
nonsingular, which completes the proof. �

From the definition of Ei−2, one has that to check the con-
dition Null(Lff ) ⊥ Ei−2 for a specific node i ∈ Vf , the node
i only needs to know the (3(i− 2)− 2)th, (3(i− 2)− 1)th,
and 3(i− 2)th components of every eigenvector of Lff . It
is worth noting that node i can obtain these information by
employing the distributed orthogonal iteration algorithm in [27,
Algorithm 2]. Therefore, the 3D network’s localizability can be
checked in a distributed manner by following Lemma 4 and [27,
Algorithm 2]. Indeed, the communication cost of this checking
is high since several steps in each iteration of [27, Algorithm 2]
require inter-node communication for checking localizability in
a distributed manner.

B. Topological Localizability Condition

Due to the inequivalence mentioned in Remark 1, it is chal-
lenging to develop necessary and sufficient topological local-
izability conditions (relying on T (V,A) only) for Problem 1
using the tool of rigidity graph theory. Instead, we now propose
a sufficient topological localizability condition.

Theorem 3: For a tetrahedral angularity A(V,A, p) with
na = 2, ifS

i(i+1)(i+2)(i+3)
∈ A, ∀i = 1, . . ., n− 3, and each

tetrahedra in A is non-coplanar, then A is localizable.

Proof: For the first tetrahedron 1234, since nodes 1 and
2 are anchor nodes and the linear constraint (19) gives six
linearly independent equations, the positions of nodes 3 and
4 can be localized according to Proposition 1. Then, given the
second tetrahedron 2345, node 5 can be localized. Using the
same reasoning sequentially for the remaining free nodes, the
tetrahedral constraints in A can localize all the free nodes. �

In Theorem 3, A contains at least n− 3 tetrahedra, in which
at least n− 3 nodes need to have the knowledge of the global
Z-axis. For an arbitrary tetrahedral angularity A(V,A, p), the
number nZ ∈ N+ of nodes required to know the global Z-axis

is equal to the number nA of tetrahedra in A. Since some
tetrahedra in A have common nodes which have the knowledge
of the global Z direction, the number of nodes required to have
the knowledge of global Z direction can be reduced by sharing
these common nodes. However, an inappropriate assignment
of these global Z-axis nodes may induce large communication
burden. Therefore, to avoid large communication burden, even
distribution of the global Z-axis nodes is favored for engineering
practices. Suppose the maximum number of neighboring nodes
that each global Z-axis node can have isnmax ∈ N+. To guaran-
tee that each tetrahedron contains one global Z-axis node, at least
� n
nmax+1� global Z-axis nodes are needed. To evenly distribute

the communication burden, a combinatorial task assignment
algorithm [28, Chapters 9 and 19] can be employed to construct
the tetrahedral angle set A such that A is localizable and that
the number of each global Z-axis node’s neighbors is less than
nmax.

V. DISTRIBUTED LOCALIZATION

In this section, we design distributed localization algorithms
to estimate the positions of the free nodes under three cases,
namely, continuous communication, aperiodic communication,
and aperiodic communication on jointly localizable angularities,
respectively.

A. Localization Under Continuous Communication

Based on the formulation of the least-square optimization
problem given in (28), we design a gradient descent continuous
localization algorithm

˙̂pf (t) = −∇p̂f
J̃(p̂f ) = −Lff p̂f (t)− Lfapa (32)

whose component form for each free node i ∈ Vf is

˙̂pi(t) = −
∑

S
ij1k1m1

∈A
(A ij1k1m1(α∗))�

× f ij1k1m1(α∗, p̂)

−
∑

S
i2j2k2m2

∈A
(B j2ik2m2(α∗))�f j2ik2m2(α∗, p̂)

−
∑

S
j3k3im3

∈A
(C j3k3im3(α∗))�f j3k3im3(α∗, p̂)
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−
∑

S
j4k4m4i

∈A
(D j4k4m4i(α∗))�f j4k4m4i(α∗, p̂)

(33)

where f ij1k1m1(α∗, p̂)=A ij1k1m1(α∗)p̂i(t)+B ij1k1m1

(α∗)p̂j1(t) + C ijkm(α∗)p̂k1
(t) +D ijkm(α∗)p̂m1

(t), and

the forms of f j2ik2m2 , f j3k3im3 , f j4k4m4i can be sim-
ilarly obtained from (24), js, ks,ms are i’s neighbors,
s = 1, 2, 3, 4 and S

ij1k1m1

�= S
j2ik2m2

�= S
j3k3im3

�=
S

j4k4m4i
, p̂j(t) = pj , ∀j ∈ Va, and the constant matrix

A ij1k1m1(α∗) ∈ R6×3 is only related to the measured angles
in ij1k1m1. Therefore, the localization law (33) is distributed
and can be implemented using node i’s one time angle mea-
surements and communication to obtain α∗, and continuous
communication to obtain p̂js(t), p̂ks

(t), p̂ms
(t).

Theorem 4: For a tetrahedral angularity A(V,A, p) with
na ≥ 2, if Rank(RA(α)) = 3n− 6, then p̂f globally converges
to pf under the localization algorithm (33).

Proof: According to Theorems 1 and 2, Lff is nonsingular
and positive definite. Consider the candidate Lyapunov function
V1(t) = 0.5‖pf − p̂f (t)‖2 whose time-derivative is

V̇1(t) = − (pf − p̂f (t))
�Lff (pf − p̂f (t))

≤ − λmin(Lff )‖pf − p̂f (t)‖2 = −2λmin(Lff )V1(t).

Since λmin(Lff ) > 0, V1(t) ≤ V1(0)e
−2λmin(Lff )t and p̂f (t)

globally and exponentially converges to pf . �
The above proof implies that the localization error ‖pf −

p̂f (t)‖ converges with at least the exponential rate λmin(Lff ),
which depends on not only the sensor nodes’ locations p, but
also the topology A according to the definitions in (25) and
(30). Since the convergence rate determines the overall required
communication, it is important if it can be tuned after p and A
are given. This can be achieved by adding a gain in front of the
localization law (32). More specifically, if the localization error
‖p̃f (t)‖ is required to be within 10% of the initial localization
error ‖p̃f (0)‖ after τ > 0 seconds, then one can achieve this
performance by executing the localization algorithm

˙̂pf (t) = −kc (Lff p̂f (t) + Lfapa) (34)

where kc =
ln10

τλmin(Lff )
is a number which can be communi-

cated among the network with low communication cost. This
is because the closed-loop dynamics ˙̃pf (t) = −kcLff p̃f (t)
of (34) implies ‖p̃f (t)‖ ≤ ‖p̃f (0)‖e−kcλmin(Lff )t, where p̃f =
p̂f − pf . Since the convergence rate can be tuned, we clarify
that the reduced communication in this paper refers to the re-
duction of the required communication in each iteration instead
of the overall required communication until convergence. This is
also reasonable since each sensor has a limited communication
bandwidth.

Now, we summarize the implementation of the localization
law (33) into Algorithm 2.

Remark 2: Compared to the other 3D network localization
algorithms where at least three anchor nodes are needed and

Algorithm 2: Implementation of the Distributed Localiza-
tion Law (33)

1. Each node i establishes tetrahedral sensing and
communication units with its neighbors j, k,m (each
tetrahedra contains at least one node having the
knowledge of global Z axis).

2. Each node i confirms its order in the tetrahedra, which
can be S

ij1k1m1

(node i will sense the global Z

direction), S
j2ik2m2

(node j2 will sense the global Z

direction), S
j3k3im3

, and S
j4k4m4i

.

3: For the case S
ij1k1m1

, each node i receives the

angle measurements of nodes j1, k1,m1, and then
constructs the angle-induced linear constraint following
Algorithm 1.

4: For the cases S
j2ik2m2

,S
j3k3im3

,S
j4k4m4i

,

each node i sends its angle measurements to nodes
j2, j3, j4, respectively. Then, j2, j3, j4 construct their
corresponding angle-induced linear constraints.

5: Each node i executes the localization law (33) by using
the established angle-induced linear constraints with its
neighbors and the estimation p̂i(t), p̂j(t), j ∈ Ni.

each free node has at least four neighbors [11], [13], [14], [21],
the proposed localization algorithm (33) allows the network to
have only two anchor nodes, and each free node to have only
three neighbors. These advantages of (33) come with the cost
of one more sensing requirement, i.e., at least one node in each
tetrahedron can sense the global Z direction.

Remark 3: For the designed localization algorithm (32), we
consider that the angle measurements are subjected to an addi-
tional noise, and define L̂ff ∈ R3nf×3nf as the corresponding
matrix with noisy angle measurements. Then, the localization
algorithm (32) under the noisy angle measurements becomes

˙̂pf (t) = −(L̂ff p̂f (t) + L̂fapa). (35)

According to [20, Theorem 4.3] and [22, Theorem 5], if ‖Lff −
L̂ff‖ ≤ λmin(Lff ), then L̂ff is nonsingular and the estimated
position p̂f under (35) converges to−L̂−1

ff L̂fapa whose distance
with respect to the true position −L−1

ffLfapa is bounded. Note
that when one uses larger kc to get fast convergence rate in (34),
the error ‖p̂f − pf‖ between the estimated position p̂f under
noisy measurements and the true position pf may become larger.

B. Localization Under Aperiodic Communication

In this part, we consider that the communication among
the sensor nodes is in an aperiodic sampling way. By taking
the first component in (33) as an example, the information

of f ij1k1m1(α∗, p̂) = A ijkm(α∗)p̂i +B ijkm(α∗)p̂j +

C ijkm(α∗)p̂k +D ijkm(α∗)p̂m needs sensor node i’s one
time sensor measurement and communication to obtain the
interior angles α∗, and needs continuous communication to
obtain p̂j(t), p̂k(t), p̂m(t). Assume that the angle measurements
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of α∗ are noise-free and precise, but the real-time communi-
cation of p̂i, p̂j , p̂k, p̂m is in an aperiodic sampling way, un-
der which only p̂i(tk), p̂j(tk), p̂k(tk), p̂m(tk) are available for
t ∈ [tk, tk+1). Also assume that all sensor nodes’ sampling time
instants {t1, t2, . . ., tk, . . .} are synchronized. Firstly, we give an
assumption about the sampling interval.

Assumption 1: The aperiodic sampling interval satisfies

0 < (tk+1 − tk) = Δk = Δ0 + Δ̃k, ∀k = 1, . . .,∞, (36)

where Δ0 > 0 is a fixed scalar, Δmin ≤ Δ̃k ≤ Δmax, ∀k =
1, . . .,∞, and Δmin > 0,Δmax > 0 are the lower and upper
bounds of Δ̃k, respectively.

Defining p̂f (tk) = [p̂�na+1(tk), . . ., p̂
�
n(tk)]

� ∈ R3nf , we de-
sign a piece-wise continuous localization algorithm based on the
aperiodically sampled information

˙̂pf (t) = −Lff p̂f (tk)− Lfapa, t ∈ [tk, tk+1), (37)

where k = 1, . . .,∞. Since −Lff p̂f (tk)− Lfapa is constant
for t ∈ [tk, tk+1), the state p̂f (tk+1) under the control of (37)
can be described by

p̂f (tk+1) = p̂f (tk) + Δk(−Lff p̂f (tk)− Lfapa). (38)

By defining estimation error p̃f (tk) = p̂f (tk)− pf , one has

p̃f (tk+1) = (I −ΔkLff )p̃f (tk). (39)

For the special case of periodic sampling Δk = Δ0, ∀k =
1, . . .,∞, one directly has the conclusion that if Δ0 <
2λ−1

max(Lff ), then p̃f (tk) → 0 as k → ∞. For the general case
of aperiodic sampling, (39) can be rewritten as

p̃f (tk+1) = (I −Δ0Lff )p̃f (tk)− Δ̃kLff p̃f (tk). (40)

To analyze the stability of the system (40), we employ the tool
of the small-gain theorem[29, Section 5.4]. According to [30]
and [31, Lemma 2], one has the following lemma.

Lemma 5: For all Δmin ≤ Δk ≤ Δmax in (40), if the spec-
tral radius ρ(I −Δ0Lff ) < 1 and ‖Δ̃kLff‖∞ ≤ 1, then there
exists a matrix 0 < P = P� ∈ R3nf×3nf such that for every
k ∈ N+,

(I −ΔkLff )
�P (I −ΔkLff )− P < 0 (41)

Note that Lemma 5 provides a sufficient condition for the
selection of Δ0 and Δk such that (41) holds. Now, we give the
main results for the case of aperiodic communication.

Theorem 5: For a tetrahedral angularity A(V,A, p) with
na ≥ 2 and Rank(RA(α)) = 3n− 6, if ρ(I −Δ0Lff ) < 1 and
‖Δ̃kLff‖∞ ≤ 1, then under the aperiodic communication series
{tk} and the localization algorithm (37), p̂f (t) globally con-
verges to pf .

Proof: Design a Lyapunov function candidate

V2(k) = p̃�f (tk)P p̃f (tk) > 0 (42)

which is positive definite and radially unbounded. According to
the conditions in Lemma 5 and (41), one has

V2(k + 1)− V2(k)

= p̃�f (tk)[(I −ΔkLff )
�P (I −ΔkLff )− P ]p̃f (tk) < 0

which implies that p̃f (tk) → 0 globally as k → ∞. �
Note that similar to (34), one can also add a positive gain in

front of (37) to tune the convergence rate of (42), i.e.,

˙̂pf (t) = −kc(Lff p̂f (tk) + Lfapa), t ∈ [tk, tk+1), (43)

where kc > 0 and needs to satisfy ρ(I − kcΔ0Lff ) < 1 and
‖kcΔ̃kLff‖∞ ≤ 1 according to Lemma 5.

C. Localization Under Aperiodic Communication for Jointly
Localizable Angularities

For the case of aperiodic communication investigated in the
previous subsection, each node needs to communicate with all
of its neighbors at each sampling instant. To further reduce the
communication burden for the network, we consider in this
subsection that each node only needs to communicate with a
portion of its neighbors at each sampling instant, and commu-
nicate with each neighbor one time over a period of time. It
has been shown in [24] that the unavailability of neighbors’
estimated positions at some sampling instants can make a stable
localization network unstable. To study this case, we firstly
define a matrix Ltk

ff ∈ R3nf×3nf which represents the part in
Lff whose corresponding communication links among the free
nodes are available at t = tk, more explicitly,

Ltk
ff [i, j] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
Lff [i, j], if the communication between

the free node i+ na and node j + na

is available at t = tk

0, otherwise

where 1 ≤ i, j ≤ nf , and Lff [i, j] represents the block of the
matrix Lff ’s (3i− 2)th ∼ (3i) th rows and (3j − 2)th ∼ (3j)
th columns. Then, we define jointly localizable angularities.

Definition 2: Form ∈ N+ and an angularity A(V,A, p)with
fixed communication topology described by A, we say A is
m-jointly localizable if for everyk ∈ N,

∑k+m
i=k Lti

ff = Lff and
Lff is nonsingular.

For the case m = 2, we propose the following localization
algorithm for a 2-jointly localizable angularity A(V,A, p)

˙̂pf (t)=−Ltk
ff p̂f (tk)− Ltk−1

ff p̂f (tk−1)− Lfapa, t ∈ [tk, tk+1)

(44)

where Ltk
ff + Ltk−1

ff = Lff ,Ltk−1

ff = (Ltk−1

ff )� �= 0, and Ltk
ff =

(Ltk
ff )

� �= 0. The intuition of the localization algorithm (44) is
that if sensor node i cannot receive its neighboring node j’s
estimation p̂j at t = tk, then node i will use node j’s last time
estimation p̂j(tk−1) to continue the iteration of the network
localization process. Based on (44), the position estimation error
p̃f at t = tk+1 can be written as

p̃f (tk+1) = p̂f (tk) + [−Ltk
ff p̂f (tk)

− Ltk−1

ff p̂f (tk−1)− Lfapa]Δk − pf

= (I −ΔkLff )p̃f (tk) + ΔkLtk−1

ff (p̃f (tk)− p̃f (tk−1)) ,

(45)
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where we have used the fact p̂f (tk)− p̂f (tk−1) = p̃f (tk)−
p̃f (tk−1). Since Δk = Δ0 + Δ̃k, (45) can be rewritten as[

p̃f (tk+1)

p̃f (tk)

]
= H1

[
p̃f (tk)

p̃f (tk−1)

]
+H2

[
p̃f (tk)

p̃f (tk−1)

]
, (46)

where H1 =

[
I −Δ0Lff 0

I 0

]
∈ R6nf×6nf and H2 =[

ΔkLtk−1

ff − Δ̃kLff −ΔkLtk−1

ff

0 0

]
∈ R6nf×6nf . Now, we

have the results for the localization of 2-jointly localizable
angularities.

Theorem 6: For a tetrahedral and 2-jointly localizable angu-
larity A(V,A, p) with na ≥ 2, if ρ(H1) < 1 and ‖H2‖∞ ≤ 1,
then under the localization algorithm (44), p̂f (t) globally con-
verges to pf .

Proof: Following Lemma 5, if ρ(H1) < 1 and ‖H2‖∞ ≤ 1,
then one has ‖p̃f (tk+1)‖ < ‖p̃f (tk−1)‖. Although some nodes
do not have all their neighboring nodes’ estimated positions
at t = tk, the estimation error ‖p̃f (t)‖ at the sampling time
t = tk+1 is always less than the estimation error ‖p̃f (t)‖ at the
sampling time t = tk−1, i.e., the estimation error will become
smaller and smaller as t → ∞. Using a similar same Lyapunov
function candidate as V2(k) for the dynamics (46), one has that
p̂f (t) globally converges to pf . �

Following the same design procedure, the results can be
straightforwardly extended to the case of an arbitrary m-jointly
localizable angularity.

Remark 4: Note that Ltk
ff and Ltk−1

ff are constant matrices
for all sampling instants which can be determined before the
execution of the localization algorithm. Therefore, given the
bounds of Δ0, Δ̃k and the angle measurement matrix RA(α),
the stability conditions in Theorems 5–6 can be checked and the
execution of the localization algorithms (37), (44) is distributed.
In addition, different from the proposed strategy in [24] where all
the communication data and iteration at t = tk will be discarded
if there is one node at t = tk that cannot receive its all neighbors’
estimated positions, our proposed strategy will use the latest
received estimated positions from neighbors to continue the
iteration of the localization process.

Remark 5: Multi-agent formation control problem is a dual
problem of network localization. The proposed localization ap-
proach in this paper can be used to achieve multi-agent formation
control. More specifically, by replacing the anchor nodes by
leaders, free nodes by followers, and estimation p̂i in (33) by
follower i’s position pi, a desired angle-described formation can
be achieved by using relative position measurements.

Remark 6: Compared to distance measurement technologies
which are usually active, an angle measurement usually is
passive since its sensing based on cameras mainly relies on
environmental light and there is no need to transmit a detection
signal. Thus, less power consumption is usually needed for
angle measurements. There are generally two types of angle
measurement technologies. The first is vision-based, where the
angles formed with neighboring nodes are calculated from cam-
eras’ images. The second is via directional antenna arrays. For
example, the Bluetooth 5.1 technology has enabled acceptable

Fig. 2. Sensor network with 2 anchor nodes and 4 free nodes.

angle measurements in realistic scenarios [32]. In addition, the
capability of acquiring Z-axis knowledge can be empowered by
equipping the sensor node with a gravity sensor, or an inertial
measurement unit, or extracting the gravity direction via image
processing [33], which usually is energy-efficient and low-cost.

VI. SIMULATION EXAMPLES

In this section, we validate the theoretical results by
localizing a sensor network formed by two anchor nodes
and four free nodes. As shown in Fig. 2, the sensor network
consists of three tetrahedra 6134, 6345, 6234. Among
the four free nodes, only node 6 has the knowledge of the
global Z direction and node 5 only has three neighbors.
Following Section II-B, nodes 3, 4, 5 can measure the
interior angles with respect to the their neighboring nodes.
While node 6 can measure not only the interior angles, but
also the angles formed between the global Z direction and
the rays

−→
6j, j ∈ {1, 2, 3, 4, 5}. The configuration of these

sensor nodes is p1 = [0.1, 0.1,−0.1]�, p2 = [0.2, 4.8, 0.6]�,
p3 = [−0.5, 1.0,−2.3]�, p4 = [1.2, 3.0,−2.8]�, p5 =
[−2.2, 4.0, 1.0]�, p6 = [−1.1, 2.4, 0.5]�. From the simulation
cases on different embedding p, if the two anchor nodes’
Z coordinates are distinct and the three tetrahedra are
non-coplanar, then the sensor network is always localizable, i.e.,
Rank(Lff ) = 12. The free nodes’ initial position estimations
are p̂3(0) = [3.2, 3.3,−4.5]�, p̂4(0) = [1.4,−1.5,−2.1]�,
p̂5(0) = [−1.8, 0.3, 7.9]�, p̂6(0) = [−1.1,−3.2, 3.9]�. We
conduct five simulation cases corresponding to the localization
algorithms (33), (35), (37), (44), and (43), respectively. Finally,
we will compare their communication times among the nodes
and convergence rate of the localization error.

A. Continuous Communication

For the case of continuous communication, we use Mat-
lab/Simulink to simulate the continuous algorithm (33), where
the Runge-Kutta method with fixed-step size 0.1 s is selected
as the solver. The simulation result is shown in Fig. 3, from
which one can see that the position estimation errors converge
to zero within 300 seconds. Moreover, for the continuous case,
according to the analysis for (34), one can find a proper gain kc
to achieve a desired convergence rate.
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Fig. 3. Position estimation errors under algorithm (33).

Fig. 4. Position estimation errors under algorithm (35).

B. Continuous Communication With Measurement Noise

In this case, we consider that the angle measurements in free
nodes 3,4,5,6 are subjected to a random but constant angle
measurement noise, which is bounded by 5◦. By using the
localization algorithm (35) in Remark 3, the simulation results
are shown in Fig. 4, from which one can see that the position es-
timation errors converge to bounded values within 300 seconds.
According to Remark 3, when angle measurement noise exists,
the position estimation errors are bounded, which in this case is
bounded by ‖p̂i(∞)− pi‖ ≤ 0.25‖p̂i(0)− pi‖.

C. Aperiodic Communication

For the case of aperiodic communication, the aperiodic sam-
pling instants are selected as k = 3 ∗ i ∗ T and k = (3 ∗ i+ 2) ∗
T, i = 1, 2, 3, . . .,∞, where T = 0.1s. Then, under the aperi-
odic localization algorithm (37), the simulation result is shown
in Fig. 5, from which one sees that the position estimation errors
converge to zero within 2000 steps. Since the sampling period
T is selected as 0.1 s, the required iteration steps for the con-
vergence of position estimation errors will cost 2000*0.1=200
seconds.

D. Aperiodic Communication for a 2-Jointly Localizable
Angularity

For the aperiodic communication, we still set the aperiodic
sampling instants as k = 3 ∗ i ∗ T and k = (3 ∗ i+ 2) ∗ T, i =

Fig. 5. Position estimation errors under algorithm (37).

Fig. 6. Position estimation errors under algorithm (44).

1, 2, 3, . . .,∞, where T = 0.1s. The 2-jointly localizable angu-
larity has the properties that
� when k = 3 ∗ i ∗ T , the communication links (3,4), (3,6),

(5,6), and (4,5) are available.
� when k = (3 ∗ i+ 2) ∗ T , the communication links (3,5)

and (4,6) are available.
Then, under the aperiodic localization algorithm (44), the

simulation result is shown in Fig. 6, from which one sees that
the position estimation errors converge to zero within 3000
steps, i.e., 300 seconds. It is worth noting that the needed
iteration steps in algorithm (44) is longer than that in algorithm
(37), which implies the compromise of converge time/steps and
communication cost.

E. Aperiodic Communication With Tuned Convergence Rate

To illustrate that the convergence rate of the aperiodic local-
ization law (37) can also be tuned, we simulate the localization
law (43). We choose the gain kc = 17 and the sampling period
T = 0.01s. The corresponding sampling frequency is 100 Hz,
which is implementable in most of angle measurement sensors
and on-board computers. The gain kc is chosen such that the
convergence rate can be faster and the stability conditions still
hold. The simulation results are shown in Fig. 7, where the errors
converge within 1000 steps, i.e., 10 seconds.

Now, we summarize the convergence time/steps and com-
munication times in these simulation cases in Table I, where
in each sampling instant of (37), we consider the network’s
communication times as 6 due to the existence of 6 links among
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Fig. 7. Position estimation errors under algorithm (43).

TABLE I
COMPARISON OF DIFFERENT LOCALIZATION ALGORITHMS

the 4 free nodes. The iteration time in Table I represents the
cost time of the required iteration steps for the convergence of
position estimation errors under the selected sampling period.
We can see from Table I that the communication burden under
the algorithm (44) is lighter than (33) and (37). If one uses those
localization laws where each node needs 4 neighbors to localize
the sensor network in Fig. 2, at least one more communication
link needs to be added between node 5 and one of the other nodes,
which requires more communication in each iteration than the
localization laws in this paper.

VII. CONCLUSION

This paper has studied network localization problem for 3D
tetrahedral angularities where each node can only measure inte-
rior angles towards its neighbors and at least one node in each
tetrahedron has the knowledge of the global Z axis. Compared to
the existing results where each node needs at least 4 neighbors to
construct a linear constraint, we allow each node to only have 3
neighbors such that the communication burden can be reduced.
Also, the network is only required to have 2 anchor nodes in com-
parison with the existing works which require at least 3 anchor
nodes. Both algebraic and topological localizability conditions
have been derived for the networks described by tetrahedral
angularities. Three distributed localization algorithms have been
designed under the cases of continuous communication, aperi-
odic communication, and aperiodic communication on jointly
localizable angularities, respectively. Future work will focus on
other communication factors, such as asynchronized sampling
and communication delays.
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