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a b s t r a c t

Recent advances in sensing technology have enabled sensor nodes to measure interior angles with
respect to their neighboring nodes. However, it is unknown which combination of angle measurements
is necessary to make a sensor network localizable, and it is also unidentified if there is a distributed
localization algorithm whose required communication only consists of the sensor nodes’ measured
angles and estimated positions. Motivated by these two challenging problems, this paper develops
triangular angle rigidity for those networks consisting of a set of nodes and triangular angle constraints
in 2D. First, we transfer the geometric constraint of each triangle into an angle-induced linear
constraint. Based on the linear constraint, we show that different from angle rigidity, triangular angle
rigidity implies global triangular angle rigidity. More importantly, inspired by Laman’s theorem, we
propose a topological, necessary and sufficient condition to check generic triangular angle rigidity.
Based on the results on triangular angle rigidity, both algebraic and topological localizability conditions
are developed, which are necessary and sufficient when the number of anchor nodes in the network is
two. Both continuous and discrete localization algorithms are proposed, in which only measured angles
and estimated positions are communicated among the sensor nodes. Finally, a simulation example with
32 sensor nodes is used to validate the effectiveness of the proposed approaches.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Sensor network localization has been extensively studied due
o its wide applications in, e.g., robotics (Nguyen, Qiu, Nguyen,
ao, & Xie, 2019). The aim of network localization is to determine
he positions of free nodes using their sensor measurements with
espect to their neighbors and communication information from
heir neighbors (Aspnes et al., 2006; Mao, Fidan, & Anderson,
007). Three kinds of measurements are often employed in the
ocalization of sensor networks, namely, relative positions, dis-
ances, and bearings. When relative position measurements are
vailable, distributed localization algorithms have been devel-
ped in Lin, Fu, and Diao (2015). Since an inter-node relative
osition consists of distance and bearing information, the sensor
easurement cost will be reduced if only one of them is required

or localization. This prompts the development of distributed
ocalization approaches using distance-only measurements (Diao,
in, & Fu, 2014; Han, Lin, Zheng, Han, & Zhang, 2017; Jiang,
nderson, & Hmam, 2019). Using the localized positions from
istance measurements, formation control algorithms have been
esigned to achieve a desired multi-agent formation (Cao, Yu,

✩ The material in this paper was not presented at any conference. This paper
was recommended for publication in revised form by Associate Editor Paolo
Frasca under the direction of Editor Sophie Tarbouriech.

E-mail addresses: liangmingchen2018@gmail.com,
iangming.chen@ntu.edu.sg.
ttps://doi.org/10.1016/j.automatica.2022.110414
005-1098/© 2022 Elsevier Ltd. All rights reserved.
& Anderson, 2011; Jiang, Deghat, & Anderson, 2016; Nguyen
et al., 2019). Bearing-only network localization has also received
growing interest since bearing sensing is passive, low-cost and
light-weight (Zhao & Zelazo, 2019). Two types of bearing sensing
have been studied, namely bearing sensing with and without the
alignment of all sensor nodes’ coordinate frames. For the first
type, bearing-only network localization has been studied with
focuses on rigidity-based localizability conditions (Eren, White-
ley, & Belhumeur, 2006; Zhao & Zelazo, 2016b), noisy bearing
measurements (Shames, Bishop, & Anderson, 2012; Ye, Anderson,
& Yu, 2017), and coordinate frame alignment by orientation esti-
mation (Li, Luo, & Zhao, 2019; Trinh, Lee, Ye, & Ahn, 2018), just
name a few. For the second type, localization algorithms have also
been proposed, where the sensor nodes’ coordinate frames can be
chosen with arbitrary orientations (Cao, Han, Lin, & Xie, 2021; Lin,
Han, Zheng, & Fu, 2016).

In addition to these three kinds of measurements, interior
angle measurements within triangles have been becoming ac-
cessible, particularly from the angle of arrival and angle of de-
parture modules embedded in the latest Bluetooth 5.1 technol-
ogy (Cominelli, Patras, & Gringoli, 2019). Thus, it is crucial to
identify angle-only localizability conditions and develop angle-
only localization algorithms, which, however, have not been ade-
quately investigated. To solve these two problems, we choose to
use the tool of rigidity theory since distance rigidity and bearing
rigidity have been used to solve the localization of distance-
constrained networks (Eren et al., 2004; Jiang et al., 2019) and

https://doi.org/10.1016/j.automatica.2022.110414
http://www.elsevier.com/locate/automatica
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earing-constrained networks (Eren et al., 2006; Zhao & Ze-
azo, 2016b), respectively. Thus, to solve the triangular angle-
onstrained network localization problem, we propose triangular
ngle rigidity, which describes the property that under the given
riangular angle constraints, the network can only translate, ro-
ate or scale when its points are perturbed locally. Based on
he developed results on triangular angle rigidity, the two chal-
enging problems, namely angle-only localizability and angle-only
ocalization, are solved.

The paper’s contributions are summarized as follows.
(1) Triangular angle rigidity: Different from angle rigidity

Chen, Cao, & Li, 2021), triangular angle rigidity implies global
riangular angle rigidity. More importantly, we propose a topolog-
cal, necessary and sufficient condition to check generic triangular
ngle rigidity.
(2) Localizability conditions: A new angle-induced linear con-

traint is proposed to identify localizability of triangular angle-
onstrained networks. Different from those sufficiently topo-
ogical localizability conditions (Cao et al., 2021; Jing, Wan, &
ai, 2022; Lin et al., 2016) and algebraic localizability condi-
ions (Fang, Li, & Xie, 2020; Jing et al., 2022), both the proposed
lgebraic and topological localizability conditions are necessary
nd sufficient when the number of anchor nodes is two.
(3) Localization algorithms: Different from those localization

lgorithms whose required communication includes measured
earing vectors (Cao et al., 2021; Jing et al., 2022; Lin et al.,
016; Zhao & Zelazo, 2016b), our localization algorithms require
he communication of interior angles which are scalars and to-
ally independent of sensor nodes’ coordinate frames. Compared
ith the 2D network localization using distance measurements
here each sensor node is required to have at least three neigh-
ors (Diao et al., 2014), each sensor node in our localization
lgorithms is allowed to have only two neighbors.
The rest of the paper is organized as follows. Section 2 presents

he preliminaries. Section 3 discusses the triangular angle rigidity.
ection 4 presents the localizability conditions. Section 5 pro-
oses localization algorithms. Simulation examples are presented
n Section 6.

. Preliminaries

.1. Notations

Consider a 2D static sensor network consisting of na anchor
odes and nf free nodes. Let Va = {1, 2, . . . , na} be the set of

anchor nodes, whose positions, denoted by pa = [p⊤

1 , . . . , p⊤
na ]

⊤
∈

R2na , are known by themselves. Let Vf = {na+1, . . . , n} be the set
of free nodes with |Vf | = nf = n−na, whose positions, denoted by
pf = [p⊤

na+1, . . . , p
⊤
n ]

⊤
∈ R2nf , are to be determined. We assume

that no overlapping points exist in p = [p⊤
a , p⊤

f ]
⊤

∈ R2n. Let
I2, 1n, ⊗, λmax, and λmin be the 2-by-2 identity matrix, n × 1
column vector of all ones, the Kronecker product, the maximum
eigenvalue, and the minimum eigenvalue of a symmetric real
matrix, respectively. Denote by R̄(θ ) the 2D rotation matrix with
rotation angle θ .

2.2. Angle measurements

Let
∑

g be the fixed global coordinate frame, and
∑

i be the
ode i’s local coordinate frame for angle measurements, where i ∈

Va∪Vf . Let Qi ∈ SO(2) be the unknown rotation matrix from
∑

g to
i. Define the bearing from node i to node j, j ∈ Va∪Vf in

∑
g by

ij := (pj − pi)/∥pj − pi∥, and in
∑

i by biij := (pij − pii)/∥p
i
j − pii∥ =

ibij, where pij represents the node j’s coordinate in
∑

i. Assume
hat each node i measures the angle α ∈ [0, 2π ) with respect to
kij

2

Fig. 1. Three sensor nodes k, i, j form a triangle.

ts neighboring nodes k, j ∈ Va ∪ Vf under the counterclockwise
direction, which can be calculated by (Chen et al., 2021)

αkij :=

{
arccos(b⊤

ij bik), if b⊤

ij b
⊥

ik ≥ 0,

2π − arccos(b⊤

ij bik), otherwise,
(1)

where b⊥

ik := R̄( π
2 )bik =

[
0 −1
1 0

]
bik, j, k ∈ Ni, and Ni is node i’s

neighbor set. Since bi⊤ij b
i⊥
ik = b⊤

ij b
⊥

ik and bi⊤ij b
i
ik = b⊤

ij bik, the angle
measurement αkij is independent of

∑
i.

2.3. Triangular angularity and triangular trigraph

First, we recall the definition of angularity from Chen et al.
(2021), which is more efficient than using a graph to describe
a network with triple-vertex angle constraints. For the vertex
set V = {1, 2, . . . , n}, define a three-vertex triplet (k, i, j) to
describe the angle constraint αkij. Then, we define A ⊆ V ×

V × V = {(k, i, j), k, i, j ∈ V, i ̸= j ̸= k} as an angle set, each
element of which is a triplet. Since constraining αkij is equivalent
to constraining αjik, we allow (j, i, k) to freely change to (k, i, j) for
a given A. Then, the combination of the vertex set V , the angle set
A and the position configuration p ∈ R2n is called an angularity
which we denote by A(V,A, p). Without p, the combination of the
vertex set V and the angle set A is called a trigraph T (V,A). We
say A is a triangular angle set if for every (i1, j1, k1) ∈ A, there
also exists {(j1, k1, i1), (k1, i1, j1)} ⊂ A. Then, a triangular angle
set A can be written in the form of

A = {. . . , (i1, j1, k1), (j1, k1, i1), (k1, i1, j1), . . .}. (2)

We say A(V,A, p) is a triangular angularity and T (V,A) a trian-
gular trigraph if A is a triangular angle set. Denote by m(T ) ∈ N+

the total number of triangles in T .

3. Triangular angle rigidity

In this section, we first establish an angle-induced linear con-
straint, and then develop triangular angle rigidity, and finally
discuss a triangular angle rigidity matrix.

3.1. Angle-induced linear constraint in a triangle

Consider three non-collinear nodes k, i, j forming a triangle in
Fig. 1. Denote by bi−bisector ∈ R2×1 the bearing vector starting
from pi and pointing towards the bisector of the interior angle αkij.
Different from Lin et al. (2016) where local bearing measurements
within a triangle are used to establish a complex linear constraint,
we establish the angle-induced linear constraint using the fact

bi−bisector = R̄(−
αkij )

pj − pi
= R̄(

αkij )
pk − pi

, (3)

2 lij 2 lik
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here lij := ∥pi − pj∥ and R̄(−αkij/2) = R̄⊤(αkij/2). Because the
distance information lij, lik in (3) cannot be obtained from angle
measurements, we use the law of sines in △ijk to describe their
elative magnitude.1 Multiplying R̄⊤(αkij/2)lij in both sides of (3)
ields

R̄⊤(
αkij

2
)lij

(
R̄⊤(

αkij

2
)
pj − pi

lij
− R̄(

αkij

2
)
pk − pi

lik

)
R̄⊤(αkij)(pj − pi) −

sinαjki

sinαijk
(pk − pi) = 0. (4)

We say (4) is an angle-induced linear constraint in triangle
△ijk. Since the coefficient matrices in front of pi, pj, pk in (4) are
nly related to αkij, αjki and αijk, (4) can be established among
odes i, j and k using their angle measurements and inter-node
ommunication. Although Fig. 1 uses the case αkij ∈ (0, π ), it
an be verified that (4) also holds for the case αkij ∈ (π, 2π ). By
similarly defining bj−bisector and using (3), one also has another
angle-induced linear constraint in △ijk

¯⊤(αijk)(pk − pj) − (sinαkij/sinαjki)(pi − pj) = 0. (5)

Now, we present the relationship between (4) and (5).

emma 1. The angle-induced linear constraints (4) and (5) in △ijk
re interchangeable/linearly dependent.

The proof of Lemma 1 is given in Chen (2022). Lemma 1 im-
lies that each triangle only has one independent angle-induced
inear constraint. In contrast to (4), we now introduce how to ob-
ain the values of the three interior angles from a linear constraint
mong three nodes.

emma 2. If three unknown points pi, pj, pk satisfy R̄(θ )(pj −pi)−
ik(pk −pi) = 0 where R̄(θ ) ∈ SO(2) and εik is a nonzero scalar, then
he three interior angles in △ijk are uniquely determined.

The proof of Lemma 2 is also given in Chen (2022). Compared
ith Fang et al. (2020, Thm 1), the constraints (4) and (5) are

inear.

.2. Triangular angle rigidity

For the triangular angularity A(V,A, p), denote by α∗
=

. . . , α∗

ijk, α
∗

jki, α
∗

kij, . . .]
⊤

∈ R|A|, (i, j, k) ∈ A those constant angle
onstraints defined by A, and p position variables. Given (i, j, k) ∈

A, define a matrix-weighted vector function of pi, pj, pk as
△ijk
i (α∗, p) := A△ijk

i (α∗)pi + A△ijk
j (α∗)pj + A△ijk

k (α∗)pk, (6)

here f △ijk
i ∈ R2×1, and the coefficient matrices

△ijk
i (α∗) :=

(
sinα∗

jkiI2 − sinα∗

ijkR̄
⊤(α∗

kij)
)

∈ R2×2,

△ijk
j (α∗) := sinα∗

ijkR̄
⊤(α∗

kij) ∈ R2×2,

△ijk
k (α∗) := − sinα∗

jkiI2 ∈ R2×2

re defined according to (4), which satisfy A△ijk
i (α∗)+ A△ijk

j (α∗)+
△ijk
k (α∗) ≡ 0. If α∗

ijk, α
∗

jki, α
∗

kij are calculated under p, then
△ijk
i (α∗(p), p) = 0. In contrast to (4), (6) is well-defined even
hen sinα∗

ijk = 0.

emark 1. The reason of constructing such form of f △ijk
i (α∗, p) is

hat for the static sensor network, those angle measurements are
nown and constant, but the nodes’ positions are unknown and
o be determined.

1 This becomes invalid when p , p , p are collinear.
i j k

3

We say △ijk is strongly similar to △i′j′k′ if △ijk is similar to
△i′j′k′ and no reflection is between them, which we denote by
△ijk ≃ △i′j′k′.

Lemma 3. For non-collinear p = [p⊤

i , p⊤

j , p⊤

k ]
⊤ and p′

=

[p′⊤

i , p′⊤

j , p′⊤

k ]
⊤, if f △ijk

i (α∗(p), p′) = A△ijk
i (α∗(p))p′

i+A△ijk
j (α∗(p))p′

j+

A△ijk
k (α∗(p))p′

k = 0 where A△ijk
i (α∗(p)) is a 2-by-2 matrix whose

angles α∗ are calculated under p, then △ijk ≃ △i′j′k′.

Proof. Since the three points in p are non-collinear, using the def-
initions of A△ijk

i , A△ijk
j , A△ijk

k , and f △ijk
i (α∗(p), p′), one has

R̄⊤(α∗

kij(p))(p
′

j − p′

i) −
sinα∗

jki(p)

sinα∗
ijk(p)

(p′

k − p′

i) = 0. Using Lemma 2, one
has α∗

jki(p) = αjki(p′), α∗

jki(p) = αjki(p′) and α∗

jki(p) = αjki(p′). Since
each angle defined by (1) is calculated under a specific direction,
△ijk is strongly similar to △i′j′k′. □

Lemma 3 provides an algebraic approach to check triangles’
similarities. Now, we define triangular equivalence and triangular
congruence.

Definition 1. A triangular angularity A′(V,A, p′) is triangularly
equivalent to A(V,A, p) if f △ijk

i (α∗(p), p′) = 0 for all (i, j, k) ∈ A.

Definition 2. A triangular angularity A′(V,A, p′) is triangularly
congruent to A(V,A, p) if f △ijk

i (α∗(p), p′) = 0 for all i, j, k ∈ V, i ̸=

j ̸= k.

When p is generic,2 Definition 1 (resp. Definition 2) implies
that A and A′ are triangularly equivalent (resp. congruent) if their
triangles defined inA (resp. all possible triangles) are correspond-
ingly strongly similar.

Definition 3 (Chen et al., 2021). Triangular angularity A(V,A, p)
is triangularly angle rigid if there exists a constant ε > 0 such
that any triangular angularity A′(V,A, p′) which is triangularly
equivalent to A(V,A, p) and satisfies ∥p − p′

∥ < ε is also
triangularly congruent to A(V,A, p).

Definition 4 (Chen et al., 2021). Triangular angularity A(V,A, p)
is globally triangularly angle rigid if any triangular angularity
A′(V,A, p′) which is triangularly equivalent to A(V,A, p) is also
triangularly congruent to A(V,A, p).

Different from using angles separately to define angle rigidity
in Chen et al. (2021, Def 3), triangular angle rigidity defined in
this paper uses one matrix-weighted vector (6) to describe three
interior angles associated within one triangle. Similar to Chen
et al. (2021, Fig. 3), non-generic embedding of T also results in
different properties than the triangular angularity with generic
configuration p. For example, any triangular angularity A(V,A, p)
with collinear configuration p and arbitrary nonempty A is glob-
ally triangularly angle rigid. However, the probability that a ran-
domly chosen configuration p is generic is 1 (Connelly & Guest,
2015, Thm 7.2.1), i.e., the density of non-generic configurations
is measure zero in the whole Euclidean space. Therefore, we are
more interested in the properties of the triangular angularity
with generic configuration. Because triangular angle rigidity of
A(V,A, p) with generic p is a property of the trigraph T (V,A),
we also say that a trigraph T (V,A) is (generically) triangularly
angle rigid if A(V,A, p) is triangularly angle rigid for generic
configurations p. Then, we have the relationship between angle
rigidity and triangular angle rigidity.

2 The definition of generic here is the same as Chen et al. (2021, Def 4).
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emma 4. A (resp. globally) triangularly angle rigid angularity
(V,A, p) with generic configuration p is (resp. globally) angle rigid.

Proof. Note that if p is generic, none of three points in p will
be collinear. According to Lemma 3, if f △ijk

i (α∗(p), p′) = 0, then
△ijk ≃ △i′j′k′ which implies αijk(p) = αijk(p′), αjki(p) = αjki(p′),
nd αkij(p) = αkij(p′). Therefore, f △ijk

i (α∗(p), p′) = 0 used in
efinitions 1 and 2 is equivalent to constraining the three angles
eparately, which is the case in the definition of angle rigid-
ty (Chen et al., 2021, Def 3). This equivalence implies that the
riangularly angle rigid angularity A is angle rigid. The same case
olds for global angle rigidity. □

The difference between triangular angle rigidity and angle
igidity is that the angle set A in triangular angle rigidity must
e a triangular angle set, while in angle rigidity it can be non-
riangular.

.3. Triangular angle rigidity matrix

Since p are variables in (6), for the triangular angularity
(V,A, p), we can define the triangular angle function

A(p) := [. . . , (f △i1j1k1
i1

(α∗, p))⊤, . . .]⊤ ∈ R2m(T ),

here (i1, j1, k1) ∈ A, and α∗ in f △i1j1k1
i1

(α∗, p) represents those
onstant angle constraints associated with △i1j1k1. Using the
aylor series expansion, one has

A(p + δp) = fA(p) + RA(α∗)δp + high order terms, (7)

here RA(α∗) :=
∂ fA(p)

∂p ∈ R2m(T )×2n is defined as the triangular
ngle rigidity matrix, and δp is the infinitesimal motion of p.
ecause all the coefficient matrices in (6) are constant matrices,
A(α∗) can be written by

⎡⎢⎢⎢⎣
··· Vertex i ··· Vertex j ··· Vertex k ···

1st △ · · · · · · · · · · · · · · · · · · · · ·

··· · · · · · · · · · · · · · · · · · · · · ·

△ijk 0 A△ijk
i 0 A△ijk

j 0 A△ijk
k 0

··· · · · · · · · · · · · · · · · · · · · · ·

m(T )th △ · · · · · · · · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎦
hose row blocks are indexed by the triangles in A and column
locks the vertices. Different from the angle rigidity matrix de-
ined in Chen et al. (2021, Eqn 13), the triangular angle rigidity
atrix RA(α∗) is only related to the values of those constrained
ngles α∗ in A but not related to the sensor nodes’ position
nformation p or inter-node distance information, which plays
n important role in this network localization problem. Define
∗

:= {(i, j, k), ∀i, j, k ∈ V, i ̸= j ̸= k} as the complete angle set,
nd RA∗ (ᾱ∗) and RA(α∗) as the triangular angle rigidity matrices
f triangular angularities A(V,A∗, p) and A(V,A, p), respectively,
here ᾱ∗

= [..., α∗

ijk, α
∗

jki, α
∗

kij, . . .]
⊤

∈ R|A∗
|, (i, j, k) ∈ A∗.

heorem 1. For the triangular angularity A(V,A, p) with generic
, one has Span{1n ⊗ I2,

(
In ⊗ R̄( π

2 )
)
p, p} ⊆ Null(RA∗ (ᾱ∗(p))) ⊆

ull(RA(α∗(p))), and Rank(RA(α∗(p))) ≤ Rank(RA∗ (ᾱ∗(p))) ≤

n − 4.

The proof of Theorem 1 is given in Appendix A. We now
iscuss the relationship between triangular angle rigidity and
lobal triangular angle rigidity.

heorem 2. A triangular angularity A′(V,A, p′) is triangularly
quivalent to A(V,A, p) if and only if RA (α∗(p)) p′

= 0. Also, A′

s triangularly congruent to A if and only if R ∗ ᾱ∗(p) p′
= 0.
A ( )

4

roof. Note that in RA (α∗(p)), the angles α∗ are calculated under
. According to Definitions 1 and 2 and the structure of the tri-
ngular angle rigidity matrix RA, the conclusion can be obtained
traightforwardly by writing all the triangles’ linear constraints
nto a compact form. □

emma 5. A triangular angularity A(V,A, p) is globally triangu-
larly angle rigid if and only if Null(RA∗ (ᾱ∗(p))) = Null(RA(α∗(p))),
or equivalently Rank(RA∗ (ᾱ∗(p))) = Rank(RA(α∗(p))).

The proof of Lemma 5 is given in Chen (2022), which can also
e obtained by following Zhao and Zelazo (2016a, Thm 2).

heorem 3. For a triangular angularity A(V,A, p), it is globally
triangularly angle rigid if and only if it is triangularly angle rigid.

The proof of Theorem 3 is given in Appendix B. According
to Chen et al. (2021, Thm 1), angle rigidity does not necessarily
imply global angle rigidity. However, Theorem 3 implies that for
triangular angle rigidity where angle constraints are associated
within triangles in A, triangular angle rigidity implies global
triangular angle rigidity.

Theorem 4. A trigraph T (V,A) is triangularly angle rigid if and
nly if Rank(RA(α∗(p))) = 2n − 4 where p is an arbitrary generic

configuration.

The proof of Theorem 4 is given in Chen (2022), which can
also be obtained by using Lemma 1 and Chen et al. (2021, Thm
2). Different from Chen et al. (2021) where the rank checking
condition for angle rigidity is related to inter-node distances and
bearings, the rank checking condition in Theorem 4 is only related
to the interior angles. We develop localizability conditions for
triangular angle-constrained sensor networks in the next section,
where more results on triangular angle rigidity will be presented.

4. Localizability conditions

If (i, j, k) ∈ A, then we say nodes i, j, k are neighboring nodes
with one another, i.e., {j, k} ⊆ Ni, {i, k} ⊆ Nj, and {j, i} ⊆ Nk.
Now, we formulate the angle-only network localization problem.

Problem 1. Consider a 2D triangular sensor network described
by A(V,A, p) with V = Va ∪ Vf , na ≥ 2, and generic p. Given
he anchor nodes’ positions pa in

∑
g , the aim is to determine

he free nodes’ positions pf using the nodes’ angle measurements
nd inter-node communication, whose topologies are described
y triangular trigraph T (V,A).

Denote by p̂ = [p̂⊤
a , p̂⊤

f ]
⊤ the estimation of all nodes’ positions.

ince one triangle’s three angle constraints in A will give one
ngle-induced linear constraint, the localization Problem 1 is
quivalent to finding p̂f subject to
△ijk
i (α∗(p), p̂) = A△ijk

i (α∗(p))p̂i + A△ijk
j (α∗(p))p̂j

+ A△ijk
k (α∗(p))p̂k = 0, p̂i = pi, ∀i ∈ Va, (8)

where (i, j, k) ∈ A, and A△ijk
i , A△ijk

j , A△ijk
k are constant matrices

since the angles α∗ and p are constants.

Definition 5. The triangular angularity A(V,A, p) is said to be
localizable if the solution p̂f to the problem (8) is globally unique
and p̂f = pf .

Next, we introduce both algebraic and topological localizabil-
ity conditions for the triangular sensor network A.
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.1. Algebraic localizability condition

Different from Jing et al. (2022) where the localization prob-
em is formulated as a nonlinear optimization problem, we trans-
er the localization problem (8) into a linear least-square opti-
ization problem by defining the cost function

(p̂) =

∑
(i,j,k)∈A

∥A△ijk
i p̂i + A△ijk

j p̂j + A△ijk
k p̂k∥2, (9)

here p̂i = pi, ∀i ∈ Va. Then, we want to know under which
ondition the true position pf is the unique and global minimizer
f (9), which is the localizability condition. According to the
efinition of the triangular angle rigidity matrix, one has

(p̂) = p̂⊤R⊤

A(α∗(p))RA(α∗(p))p̂. (10)

et D(α∗) := R⊤
A(α∗)RA(α∗) ∈ R2n×2n. By partitioning matrix

A = [Ra
A Rf

A] into anchor nodes’ part Ra
A ∈ R2m(T )×2na and

ree nodes’ part Rf
A ∈ R2m(T )×2nf , the matrix D(α∗) can be written

n the form of D(α∗) =

[
Daa Daf
Dfa Dff

]
, where Daa = (Ra

A)⊤Ra
A ∈

2na×2na , Daf = (Ra
A)⊤Rf

A ∈ R2na×2nf , Dfa = (Rf
A)⊤Ra

A ∈ R2nf ×2na ,
nd Dff = (Rf

A)⊤Rf
A ∈ R2nf ×2nf .

emma 6. If p̂∗

f is a minimizer of the cost function (9), then it is
lso a global minimizer and Dff p̂∗

f + Dfapa = 0.

roof. Substituting the matrix D(α∗) into (10) yields

(p̂) = J̃(p̂f ) = p⊤

a Daapa + 2p⊤

a Daf p̂f + p̂⊤

f Dff p̂f , (11)

here we used p̂a = pa. It follows that any minimizer of (11)
atisfies ∇p̂∗

f
J̃(p̂∗

f ) = Dff p̂∗

f + Dfapa = 0. Then, by following the
ame line as Zhao and Zelazo (2016b, Lem 4), p̂∗

f is a global
inimizer. □

heorem 5. A triangular angularity A(V,A, p) with na ≥ 2 and
eneric p is localizable if and only if Dff is nonsingular. When the
ngularity is localizable, the true positions of the free nodes can be
alculated by pf = −D−1

ff Dfapa.

The proof of Theorem 5 can be straightforwardly obtained by
sing Lemma 6. The algebraic localizability condition in Theo-
em 5 is more straightforward than those in Jing et al. (2022).
owever, the algebraic localizability condition depends on all the
ngle measurements. Next, we develop topological localizability
ondition which does not depend on the sensor nodes’ angle
easurements but only depends on the topology T (V,A).

.2. Topological localizability condition

Based on Theorem 4, we first show the relationship between
he network localizability and triangular angle rigidity.

heorem 6. For a triangular angularity A(V,A, p) with na = 2
nd generic p, it is localizable if and only if the trigraph T (V,A) is
riangularly angle rigid.

The proof of Theorem 6 is given in Appendix C. Theorem 6 re-
uires that the number of anchor nodes is 2. We give an example
n Fig. 2 to show that when na = 3, the necessity of Theorem 6
oes not hold. However, the sufficient part of Theorem 6 still
olds for na ≥ 2. The network in Fig. 2 is unlocalizable under (Jing
t al., 2022) since the angle in Jing et al. (2022) is defined without
direction (its magnitude is in [0, π]), which also indicates that
he localizability condition in Theorem 6 is milder than those in
ing et al. (2022, Thm 2).
5

Fig. 2. A localizable but triangularly non-angle rigid angularity A(V,A, p) with
na = 3.

Although Theorem 6 proposes a rigidity-based condition to
check the localizability, the available checking condition of tri-
graph T ’s generic triangular angle rigidity still relies on algebraic
information according to Theorem 4. Similar cases exist in those
localizability conditions using bearing rigidity (Zhao & Zelazo,
2016b, Thm 3 and Lem 2) and angle-displacement rigidity (Fang
et al., 2020, Thm 6 and Thm 2). Some pure topological localizabil-
ity conditions have been proposed in Jing et al. (2022, Corollary 2)
and Lin et al. (2016, Thm 4.1), which are only sufficient. Different
from these previous works, we aim to propose a pure topological,
necessary and sufficient localizability condition by developing a
topological, necessary and sufficient checking condition for T ’s
generic triangular angle rigidity. This condition is inspired by
Laman’s theorem (Laman, 1970, Thm 6.5) which is a classic result
on generic distance rigidity and has played a very important role
in the development of rigidity graph theory during the past fifty
years (Connelly & Guest, 2015; Whiteley, 1996). Before giving the
condition, we first present some related definitions.

Definition 6. A triangular trigraph T (V,A) is minimally and
riangularly angle rigid if T is triangularly angle rigid and the
umber of triangles m(T ) = n − 2.

From Definition 6, the minimum number of triangles in A to
ake a triangular trigraph T angle rigid is n − 2, which can
e seen from Theorem 4 and the definition of RA. Inspired by
aman’s theorem and its proof Laman (1970, Thm 5.6), we define
special type of trigraph.

efinition 7. A trigraph T (V,A) is said to be a L-trigraph if it
atisfies the property L: (a) T is a triangular trigraph, (b) the
umber of triangles m(T ) = |V| − 2, and (c) for any subset V ′

f V , the induced triangular subtrigraph T ′(V ′,A′) of T satisfies
(T ′) ≤ |V ′

| − 2.

Now, we present a fact which will be an important foundation
or the follow-up analysis. Note that in an infinitesimally and
inimally distance rigid graph, there must exist a vertex associ-
ted with fewer than 4 edges (Laman, 1970, Prop 6.1). We also
ave a similar conclusion for minimally and triangularly angle
igid trigraphs.

emma 7. For a minimally and triangularly angle rigid trigraph
(V,A), there must exist a vertex associated with 1 or 2 triangles

n A.

The proof of Lemma 7 is given in Appendix D. Now, we present
he topological, necessary and sufficient condition for generic
riangular angle rigidity.

heorem 7. A triangular trigraph T (V,A) is triangularly angle
igid in 2D if and only if there exists a subtrigraph T ′(V,A′) with
′
⊆ A and T ′ being a L-trigraph.
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The proof of Theorem 7 is given in Appendix E. Theorem 7
implies that a trigraph T is minimally and triangularly angle rigid
if and only if it is a L-trigraph. Combining Theorems 6 and 7 yields
the topological, necessary and sufficient localizability condition
for a triangular network A(V,A, p) with na = 2 and generic p.

Remark 2. In Appendix E, three types of triangle deletion opera-
tions are defined. One can also define the reverse of the triangle
deletion operations as triangle addition operations, in which T0
adds one triangle constraint, and then becomes T ′. Note that
these three types of triangle addition operations in triangular
angle rigidity plays a similar role as the Henneberg construction
in distance rigidity (Henneberg, 1911). In addition, different from
the case in distance rigidity, the condition developed in Theo-
rem 7 is also a topological, necessary and sufficient condition for
generic global triangular angle rigidity according to Theorem 3.

5. Distributed localization

In this section, we design both continuous and discrete local-
ization algorithms to achieve p̂f → pf .

5.1. Continuous localization algorithm

Based on the least-square optimization problem (9), we design
a gradient descent localization algorithm
˙̂pf (t) = −∇p̂f J̃(p̂f ) = −Dff p̂f (t) − Dfapa, (12)

whose component form for each free node is
˙̂pi(t) = −

∑
(i,j1,k1)∈Ā

(A△ij1k1
i )⊤f △ij1k1

i (α∗, p̂(t))

−

∑
(j2,i,k2)∈Ā

(A△j2ik2
i )⊤f △j2 ik2

i (α∗, p̂(t))

−

∑
(j3,k3,i)∈Ā

A△j3k3 i
i f △j3k3 i

i (α∗, p̂(t)), i ∈ Vf , (13)

here p̂j(t) = pj, ∀j ∈ Va, f
△j2 ik2
i (α∗, p̂) = A△j2 ik2

j2
p̂j2 + A△j2ik2

i p̂i +
A△j2 ik2
k2

p̂k2 , f
△j3k3 i
i (α∗, p̂) = A△j3k3 i

j3
p̂j3+A△j3k3 i

k3
p̂k3+A△j3k3 i

i p̂i, and Ā ⊂

A, |Ā| = m(T ), and if (i, j, k) ∈ Ā, then {(j, i, k), (i, k, j)} ⊈ Ā. The
distributed law (13) can be implemented by using node i’s angle
measurements to obtain αj2 ik2 , and inter-node communication to
obtain αik1j1 , αj3k3 i, p̂js (t), p̂ks (t), s = 1, 2, 3. A detailed and specific
form of (13) under a localizable network with eight sensor nodes
is provided in Chen (2022).

Theorem 8. If A(V,A, p) is triangularly angle rigid and p is
generic, then Problem 1 is solved and p̂f (t) globally and exponentially
converges to pf under the distributed and continuous localization
algorithm (13).

Proof. According to Section 4.2, the sensor network is localizable
and Dff is nonsingular and positive definite. Then, consider the
candidate Lyapunov function V1(t) = 0.5∥pf − p̂f (t)∥2 whose
time-derivative is V̇1(t) = −(pf − p̂f (t))⊤ ˙̂pf (t) ≤ −λmin(Dff )∥pf −

p̂f (t)∥2, where pf = −D−1
ff Dfapa. Since V̇1(t) is negative definite,

p̂f (t) converges to pf globally and exponentially. □

To tune the convergence rate of the estimation error ∥p̂f −pf ∥,
a positive gain can be added in (12), i.e.,
˙̂pf (t) = −kc∇p̂f J̃(p̂f ) = −kc(Dff p̂f (t) + Dfapa), (14)

where kc > 0. Then, one has ∥pi − p̂i(t)∥ ≤ ∥pf − p̂f (t)∥ =
√
2V1(t) ≤

√
2V1(0)e−kcλmin(Dff )t . In practice, angle measurements

are subjected to noises, whose effects on the estimation error
∥p̂f − pf ∥ can be similarly obtained by following Lin et al. (2016,
Thm 4.3).
6

5.2. Discrete localization algorithm

Consider that the network localization law (12) is executed
under discrete iteration dynamics. We define the constant sam-
pling period as h > 0 and use the forward Euler approximation
o describe the differential operation in the continuous algorithm
12). More specifically,
˙̂
f (t)|t=kh ≈ (p̂f [k + 1] − p̂f [k])/h, k ∈ N, (15)

here p̂f [k + 1] = p̂f ((k + 1)h) and p̂f [k] = p̂f (kh). Under (15),
he continuous localization law (12) becomes

ˆ f [k + 1] = p̂f [k] − hDff p̂f [k] − hDfapa, (16)

here p̂f [k] =
[
p̂⊤

na+1[k], . . . , p̂
⊤
n [k]

]⊤. The component form of
(16) can be described by

p̂i[k + 1] = p̂i[k] − h
∑

(i,j1,k1)∈Ā

(A△ij1k1
i )⊤f △ij1k1

i (α∗, p̂[k])

− h
∑

(j2,i,k2)∈Ā

(A△j2ik2
i )⊤f △j2 ik2

i (α∗, p̂[k])

− h
∑

(j3,k3,i)∈Ā

A△j3k3 i
i f △j3k3i

i (α∗, p̂[k]). (17)

Defining p̃f [k] := p̂f [k] − pf , one has

p̃f [k + 1] = (I2nf − hDff )p̃f [k]. (18)

ince Dff is positive definite, all the eigenvalues of (I2nf − hDff )
ill be in the open unit disk if

< 2 min
i=1,...,2nf

λ−1
i (Dff ) = 2λ−1

max(Dff ). (19)

heorem 9. If A(V,A, p) is triangularly angle rigid, p is generic,
nd the sampling period h satisfies (19), then Problem 1 is solved
nd p̂f [k] globally converges to pf under the discrete localization
lgorithm (17).

The condition (19) can be satisfied in practice by, e.g., em-
loying a distributed algorithm to estimate Dff ’s maximum eigen-
alue (Lin et al., 2016) or properly using the information of each
ode’s associated edges or triangles in the sensor network (Li
t al., 2019).

emark 3. Compared with the bearing-based localization
Bishop, Anderson, Fidan, Pathirana, & Mao, 2009; Eren et al.,
006; Li et al., 2019; Shames et al., 2012; Zhao & Zelazo, 2016b),
he angle-based localization laws (13), (17) do not require the
lignment of the nodes’ coordinate frames. The required commu-
ication of the localization laws in Cao et al. (2021), Jing et al.
2022) and Lin et al. (2016) consists of measured local bearing
ectors and estimated positions, while in (13), (17) only measured
ngles and estimated positions. Compared with the distributed
ocalization in Jing et al. (2022) where the anchors must be
eighboring and the localization topology is sequential, (13), (17)
llow the anchors to be non-neighboring and the localization
opology to be non-sequential.

. Simulation examples

We use a sensor network with 2 anchors (labeled by 1 and 2)
nd 30 free nodes (labeled by 3 ∼ 32) to validate Theorem 7 and
he localization laws (14) and (17). The network topology is given
n Fig. 3, which consists of 30 triangles whose detailed forms are
iven in Chen (2022). It is verified that the trigraph in Fig. 3 is a
-trigraph. The fact Rank(RA(α∗(p))) = 60 validates Theorem 7.
ccording to Theorem 6, the network in Fig. 3 is localizable.
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Fig. 4. Position estimation errors in continuous cases.

The changes of position estimation error ∥p̂f − pf ∥ under
he localization algorithms (14), (17) are shown in Figs. 4, 5,
espectively. Fig. 4 shows that the convergence time is shorter
hen kc is larger. Since λmax(Dff ) ≈ 4.33, we need to choose
< 0.462. Fig. 5 shows that more iteration steps are needed for

he convergence when h is smaller.

. Conclusion

This paper has developed triangular angle rigidity for dis-
ributed localization using angle measurements in 2D. First, we
ave shown that triangular angle rigidity implies global triangular
ngle rigidity. We have proposed a topological, necessary and
ufficient condition to check generic triangular angle rigidity,
rom which a trigraph is minimally and triangularly angle rigid if
nd only if it is a L-trigraph. Then, we have developed algebraic
nd topological localizability conditions, both of which can be
 h

7

Fig. 5. Position estimation errors in discrete cases.

ecessary and sufficient. Moreover, both continuous and discrete
istributed localization algorithms have been proposed, which
nly rely on the measured angles and estimated positions. Fu-
ure work will focus on the 3D case, which cannot be obtained
traightforwardly from this 2D case since when a 3D rotation
atrix is used to establish a 3D angle-induced linear constraint

ike (4), the 3D rotation matrix will depend on its associated
odes’ relative positions.

ppendix A. Proof of Theorem 1

The cases δp = 1n ⊗ I2, δp =
(
In ⊗ R̄(π/2)

)
p and δp =

correspond to translation, rotation and scaling motion of A,
espectively. According to (6), one has A△ijk

i + A△ijk
j + A△ijk

k ≡ 0
hich implies that RA(α∗(p))(1n ⊗ I2) = 0. According to (4), one
as f △ijk(α∗(p), p) = 0, which implies R (α∗(p))p = 0. Since
i A
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△ijk
i R̄( π

2 ) = R̄( π
2 )A

△ijk
i , one has RA(α∗(p))

(
In ⊗ R̄(π/2)

)
p = 0.

hese three facts imply that {1n ⊗ I2,
(
In ⊗ R̄(π/2)

)
p, p} always

ie in the null space of RA and RA∗ . Since RA is a sub-matrix
f RA∗ and they have the same number of columns, one has
ank(RA) ≤ Rank(RA∗ ) and Null(RA∗ ) ⊆ Null(RA). The inde-
endence of the four vectors in {1n ⊗ I2,

(
In ⊗ R̄(π/2)

)
p, p} can

e similarly obtained by using Chen et al. (2021, Lem 2), which
mplies Rank(RA∗ ) ≤ 2n − 4. □

ppendix B. Proof of Theorem 3

The necessity of this theorem is straightforward by following
efinitions 3 and 4. We now prove its sufficiency. Assume that
(V,A, p) is triangularly angle rigid. According to Definition 3,
ny triangular angularity A(V,A, p) satisfying RA(α∗(p))p′

= 0
nd ∥p−p′

∥ ≤ ε has that RA∗ (ᾱ∗(p))p′
= 0. Because RA(α∗(p))p =

and RA∗ (ᾱ∗(p))p = 0 using Theorem 1, one has that

A(α∗(p))δp = 0 ⇒ RA∗ (ᾱ∗(p))δp = 0, (20)

here δp = p′
− p and ∥δp∥ ≤ ε. Since δp ∈ R2n is a vector,

he constraint ∥δp∥ ≤ ε allow δp to lie in a 2n-dimensional
all with δp = 0 as its origin and ε as its radius. Therefore,
sδp will expand the entire Euclidean space when ks ∈ [0, ∞).
oreover, (20) implies that RA(α∗(p))(ksδp) = ksRA(α∗(p))δp =

⇒ RA∗ (ᾱ∗(p))(ksδp) = 0 holds for an arbitrary ks ∈ [0, ∞). It
ollows that Null(RA(α∗)) ⊆ Null(RA∗ (ᾱ∗)). Since Null(RA∗ (ᾱ∗)) ⊆

ull(RA(α∗)) according to Theorem 1, one has that Null(RA∗ (ᾱ∗))
Null(RA(α∗)), i.e., A(V,A, p) is globally triangularly angle

igid. □

ppendix C. Proof of Theorem 6

Firstly, according to Theorem 5, A is localizable if and only
f Dff is nonsingular. Because Rank(Dff ) = Rank(Rf

A) and Dff ∈
(2n−4)×(2n−4), one has that Dff is nonsingular if and only if
ank(Rf

A) = 2n − 4. Secondly, by Theorem 4, T is triangularly
ngle rigid if and only if Rank(RA) = 2n− 4. Thus, the statement
f this theorem is equivalent to that Rank(Rf

A) = 2n − 4 if and
nly if Rank(RA) = 2n − 4.
ufficiency: Since RAp = 0 by Lemma 1, one has

Ap =
[
Ra
A Rf

A

] [
pa
pf

]
= Ra

Apa + Rf
Apf = 0. (21)

ince Rank(RA) = 2n − 4, the four nonzero linearly independent
ectors span the null space of RA. Then, p = β11n ⊗ [1, 0]⊤ +

21n ⊗ [0, 1]⊤ + β3
(
In ⊗ R̄(π/2)

)
p0 + β4p0, where βi ∈ R, i =

, . . . , 4, p0 ∈ R2n is an arbitrary generic realization of those angle
onstraints α∗ among the sensor nodes. When pa ∈ R4 is given,
i, i = 1, . . . , 4 can be uniquely determined, under which pf is
hen uniquely determined. According to (21), if Rf

Apf = −Ra
Apa

as a unique solution for pf , then Rank(Rf
A) = 2n − 4 because

f
A ∈ R2m(T )×(2n−4).
ecessity: When Rank(Rf

A) = 2n − 4, the (2n − 4) columns in
f
A are independent. Since Rf

A is a sub-matrix of RA with the
ame number of rows, there exist at least (2n − 4) independent
olumns in RA, i.e., Rank(RA) ≥ 2n − 4. By Theorem 1, one has
hat Rank(RA) ≤ 2n − 4. Therefore, Rank(RA) = 2n − 4. □

ppendix D. Proof of Lemma 7

We prove this lemma by contradiction. Obviously, it is im-
ossible that a triangularly angle rigid trigraph T has one vertex
ithout involving in any triangles in A. Assume on the contrary
hat each vertex in V is associated with at least three triangles
n A. For the triangle △ijk in A, each vertex of i, j, k will show
8

thrice in A because {(i, j, k), (j, k, i), (j, i, k)} ⊆ A. If one vertex
is associated with 3 triangles in A, it will show 9 times in A.
Therefore, if each vertex of V is associated with at least three
triangles in A, then the total shown times of the vertices of V in
A should be at least 9n. However, a minimally and triangularly
angle rigid trigraph T only has 3 ∗ 3 ∗ (n − 2) places in A for all
the vertices, which implies a contradiction with the assumption
because 9n > 9(n − 2). Therefore, there must be at least one
vertex associated with only one or two triangles in A. □

Appendix E. Proof of Theorem 7

To prove the necessity, we need to prove that if T ′(V,A′) with
m(T ′) = |V| − 2 is triangularly angle rigid, then any triangular
subtrigraph T ′′(V ′′,A′′) of T ′ satisfies m(T ′′) ≤ |V ′′

|−2. We prove
this by contradiction. Suppose that there exists a subtrigraph T ′′

of T ′ with m(T ′′) > |V ′′
|−2. Let RA′′ ∈ R2m(T ′′)×2|V ′′

| be the trian-
ular angle rigidity matrix of T ′′. According to Theorem 1, one has
ank(RA′′ ) ≤ 2|V ′′

| − 4 which implies that there are row depen-
ences in the matrix RA′′ . Note that [RA′′ 02m(T ′′)×2(|V|−|V ′′|)] ∈
2m(T ′′)×2|V| is a submatrix of RA′ ∈ R(2|V|−4)×2|V| with the same

number of columns. Then, the row dependences in RA′′ imply row
dependences in RA′ . However, T ′ is minimally and triangularly
angle rigid, and thus no row dependences should exist in the
matrix RA′ . This contradiction proves that m(T ′′) ≤ |V ′′

| − 2.
To prove the sufficiency, we need to prove that if T ′(V,A′)

is a L-trigraph, then T ′ is triangularly angle rigid. We prove
the sufficiency by sequentially removing the nodes in V and
their associated triangles in T ′ until the trigraph ends up with a
single triangle that is itself triangularly angle rigid. This inductive
proof works only when the following two propositions can be
guaranteed at each step (Connelly & Guest, 2015, Thm 7.5.3). The
first is that deleting a selected node from the trigraph T ′ will
not change the triangle count condition m(T ′′) ≤ |V ′′

| − 2 on
any subtrigraphs T ′′ of T ′. The second is that if the trigraph after
the deletion of a selected node is triangularly angle rigid, then
the trigraph before this deletion is triangularly angle rigid. These
indicate the importance of the selection of the node that will be
deleted at each step. According to Lemma 7, there must be at least
one node, which we label by j ∈ V that is only associated with 1
or 2 triangles in T ′. Therefore, we only need to check whether
the two propositions hold when the node j and its associated
triangles are deleted from T ′. The following three cases exist for
the deletion of the node j’s associated triangles.

(a) Type-I triangle deletion: If j is only associated with one
triangle3 △i1i2j in T ′(V,A′), we now delete j and the associated
triangle △i1i2j in T ′ to get the subtrigraph T0(V0,A0) with V0 =

V − {j} and A0 = A′
− {(j, i1, i2), (i1, j, i2), (i1, i2, j)} (see Fig. 6).

Note that the triangle count condition in any subtrigraphs of T0
is unchanged in comparison with that of T ′. Then, we prove that
if T0 is triangularly angle rigid, then T ′ is triangularly angle rigid.
The triangular angle rigidity matrix of T ′ can be written by RA′ =

RA0 0

⋆ A
△i1 i2 j
j

]
, where A△i1 i2j

j = − sinα∗

i2ji1
I2 ̸= 0 under generic p,

and ⋆ represents a matrix that will not affect the analysis. Then,
one has Rank(RA′ ) = Rank(RA0 )+ Rank(A△i1 i2j

j ) = Rank(RA0 )+ 2,
which implies that T0 is triangularly angle rigid if and only if T ′

is triangularly angle rigid.
(b) Type-II triangle deletion: If j is associated with two tri-

angles △ji1i2, △ji2i3 and three vertices i1, i2, i3 in T ′(V,A′), we
now delete j, △ji1i2, △ji2i3 from T ′ and add △i1i2i3 into T ′ to
get the new trigraph T0(V0,A0) with V0 = V − {j}, A0 = A′

−

A1 − A2 + A3, where A1 = {(j, i1, i2), (i1, j, i2), (i1, i2, j)},A2 =

3 The sequence of i , i , j in △i i j makes no difference.
1 2 1 2
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Fig. 6. Type-I triangle deletion: Node j is only associated with one triangle △i1i2j
nd two vertices in T ′ .

Fig. 7. Type-II triangle deletion: Node j is associated with two triangles △ji1i2 ,
ji2i3 and three vertices in T ′ .

(j, i3, i2), (i3, j, i2), (i3, i2, j)}, and A3 = {(i3, i1, i2), (i1, i3, i2),
i1, i2, i3)} (see Fig. 7). To proceed the proof, three parts need to
rove: △i1i2i3 is addable (i.e., (i1, i2, i3) /∈ A′); the triangle count
ondition holds for any subtrigraphs of T0; and angle rigid T0⇒

ngle rigid T ′.
To prove the first part, suppose on the contrary (i1, i2, i3) ∈

A′. Then, for T ′’s subtrigraph T4(V4,A1 ∪ A2 ∪ A3) with V4 =

{j, i1, i2, i3}, one has m(T4) = 3 > |V4| − 2 = 2 which contradicts
with the assumption of triangle count condition on subtrigraphs
of T ′. Therefore, (i1, i2, i3) /∈ A′.

To prove the second part, it is obvious that the triangle count
condition still holds for T0’s subtrigraphs T ′′ with {i1, i2, i3}⊈V ′′.
To prove the remaining case, we consider an arbitrary subtrigraph
T5(V5,A5) of T ′ with {i1, i2, i3} ⊆ V5, j /∈ V5 and m(T5) ≤ |V5|−2.
Note that A3 ⊈ A5 since A3 ⊈ A′ but A3⊆A0. Therefore, we
need to prove m(T5) ≤ |V5| − 3, otherwise the triangle count
condition is violated in T5 after △i1i2i3 is added. Consider another
ew trigraph T6(V5 ∪ j,A5 ∪ A1 ∪ A2). Since T6 is a subtrigraph

of T ′, one has m(T6) = m(T5) + 2 ≤ |V6| − 2 = |V5| − 1,
i.e., m(T5) ≤ |V5| − 3.

To prove the third part, we only need to prove that row inde-
pendence in RA0 implies row independence in RA′ . The triangular
angle rigidity matrix of T0 is written by

RA0 =

[
RA′′ ⋆ ⋆ ⋆

0 A△i2 i3i1
i1

A△i2 i3 i1
i2

A△i2 i3 i1
i3

]
,

where RA0 ∈ R2m(T0)×2|V0|, and RA′′ ∈ R2(m(T0)−1)×2(|V0|−3). The
triangular angle rigidity matrix of T ′ is written by

RA′ =

⎡⎢⎣RA′′ ⋆ ⋆ ⋆ 0

0 A△i2ji1
i1

A△i2ji1
i2

0 A△i2ji1
j

0 0 A△i2i3j
i2

A△i2 i3j
i3

A△i2i3j
j

⎤⎥⎦.

Then, we construct the following rigidity matrix P1 ∈ R6×8 to
describe the triangle constraints △i2i3i1, △i2ji1, △i2i3j

P1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

r⊤1

r⊤2

r⊤3

r⊤4

r⊤5

r⊤6

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎣
A△i2i3i1
i1

A△i2i3i1
i2

A△i2 i3i1
i3

0

A△i2ji1
i1

A△i2ji1
i2

0 A△i2ji1
j

0 A△i2i3j
i2

A△i2i3j
i3

A△i2 i3j
j

⎤⎥⎥⎦ ,

where ri ∈ R8×1, i = 1, . . . , 6 and Rank(P1) = 4 according to
Theorem 4. Different from the proof of Laman’s theorem (Laman,
9

1970; Whiteley, 1996, Thm 2.2.2), RA0 and RA′ consist of matrix
blocks instead of row vectors. To prove this part, it is equivalent
to proving that row dependences in RA′ imply row dependences
in RA0 . According to the definitions of A△i2ji1

j and A△i2 i3j
j in (6), the

row dependences corresponding to vertex j in matrix RA′ imply
that⎧⎪⎨⎪⎩

ω3 cosα∗

i1i2j
− ω4 sinα∗

i1i2j
− ω5

sinα∗
i3 ji2

sinα∗
i2 ji1

= 0,

ω3 sinα∗

i1 i2j
+ ω4 cosα∗

i1i2j
− ω6

sinα∗
i3 ji2

sinα∗
i2 ji1

= 0,
(22)

where ωi ∈ R, i = 3, 4, 5, 6 are four scalars describing the
row dependences of r⊤

3 , r⊤

4 , r⊤

5 , r⊤

6 in matrix RA′ . To prove the
existence of row dependences in matrix RA0 , we only need to
prove that r1 and r2 are linearly dependent to r3, r4, r5, r6 with
the exactly same coefficients ω3, ω4, ω5, ω6, respectively, i.e.,{

ω1r1 + ω3r3 + ω4r4 + ω5r5 + ω6r6 = 0,
ω2r2 + ω3r3 + ω4r4 + ω5r5 + ω6r6 = 0,

(23)

where ω1 ̸= 0 and ω2 ̸= 0 are two scalars. Note that the
fact Rank(P1) = 4 implies that r1, r2 are linearly dependent to
r3, r4, r5, r6. However, if the coefficients in front of r3, r4, r5, r6
are not exactly ω3, ω4, ω5, ω6 in these dependences, one can-
not directly conclude the existence of row dependences in RA0 .
Therefore, we first calculate ω1, ω2 by using the row dependence
corresponding to vertex i1 in P1, i.e.,{

ω1sinα∗

i3i1 i2
+ ω3sinα∗

ji1 i2
= 0,

ω2sinα∗

i3 i1 i2
+ ω4sinα∗

ji1 i2
= 0.

(24)

Due to the fact that the sum of each row’s elements is zero for
triangular angle rigidity matrices, we do not need to check both
the row dependences corresponding to vertices i2 and i3. More
pecifically, since A△i2 i3 i1

i2
= −A△i2 i3 i1

i1
− A△i2 i3 i1

i3
, to prove (23), one

only needs to verify the row dependence corresponding to vertex
i3 in P1, which can be written by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ω1 cosα∗

i1 i2 i3
− ω2 sinα∗

i1 i2 i3

=
sinα∗

i2 i3 j
sinα∗

i2 i3 i1
(ω6 sinα∗

ji2 i3
− ω5 cosα∗

ji2 i3
),

ω1 sinα∗

i1 i2i3
+ ω2 cosα∗

i1 i2 i3

= −
sinα∗

i2 i3 j
sinα∗

i2 i3 i1
(ω6 cosα∗

ji2i3
+ ω5 sinα∗

ji2i3
).

(25)

By taking the first equation of (25) as an example, substituting
(22), (24) into the first equation of (25) yields[

γ1

sinα∗

i3ji2

−
cosα∗

i1 i2 i3
sinα∗

ji1 i2
sinα∗

i2i3 i1

sinα∗

i2ji1
sinα∗

i3 i1 i2

]
ω3 (26)

+

[
γ2

sinα∗

i3ji2

−
sinα∗

i1 i2 i3
sinα∗

ji1 i2
sinα∗

i2i3 i1

sinα∗

i2ji1
sinα∗

i3 i1 i2

]
ω4 = 0,

where γ1 = (cosα∗

ji2i3
cosα∗

i1i2j
− sinα∗

ji2 i3
sinα∗

i1 i2j
) × sinα∗

i2 i3j
= cosα∗

i1 i2i3
sinα∗

i2 i3j
and γ2 = (cosα∗

ji2 i3
× sinα∗

i1 i2j
+ sinα∗

ji2 i3
× cosα∗

i1 i2j
) sinα∗

i2i3j
= sinα∗

i1 i2 i3
sinα∗

i2 i3j
. The coefficient in front

of ω3 satisfies γ1
sinα∗

i3 ji2
−

cosα∗
i1 i2 i3

sinα∗
ji1 i2

sinα∗
i2 i3 i1

sinα∗
i2 ji1

sinα∗
i3 i1 i2

= cosα∗

i1 i2 i3
(

li2 j
li2 i3

−

lji2
lli2 i1

li2 i1
li3 i2

) = 0, where we used the law of sines. By using similar

calculations, the coefficient in front of ω4 in (26) also equals zero.
The same case applies for the second equation of (25). Therefore,
no matter what ω3, ω4 are in (22), (25) always holds, which
implies that (23) holds and row dependences exist in RA0 .

(c) Type-III triangle deletion: If j is associated with two tri-
angles △ji1i2, △ji3i4 and four vertices i1, i2, i3, i4 in T ′(V,A′), we
now remove j, △ji i , △ji i and add one triangle of △i i i ,
1 2 3 4 1 2 3
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Fig. 8. Type-III triangle deletion: Node j is associated with two triangles △ji1i2 ,
ji3i4 and four vertices in T ′ .

i1i2i4, △i1i3i4, △i2i3i4 (without loss of genericity, consider that
he added triangle is △i1i2i3 in the follow-up analysis) to get
he new trigraph T0(V0,A0) with V0 = V − {j} and A0 =
′
− A1 − A6 + A3, where A1 = {(j, i1, i2), (i1, j, i2), (i1, i2, j)},

6 = {(j, i3, i4), (i3, j, i4), (i3, i4, j)}, A3 = { (i3, i1, i2),
i1, i3, i2), (i1, i2, i3)} (see Fig. 8). To proceed the proof, three parts
need to prove: △i1i2i3 is addable; the triangle count condition
holds for any subtrigraphs of T0; and angle rigid T0⇒ angle rigid
T ′.

To prove the first part, we consider T ′’s subtrigraph T4(V4,A4)
with V4 = {i1, i2, i3, i4}, A4 consisting of those triangles asso-
ciated with the four vertices, and m(T4) ≤ 4 − 2 = 2. Then,
we only need to prove m(T4) ≤ 1, i.e., one more triangle can
be added into T4, which is one of △i1i2i3, △i1i2i4, △i1i3i4, △i2i3i4.
Suppose on the contrary m(T4) ≥ 2. Consider the subtrigraph
T5(V5,A5) of T ′ with V5 = {j, i1, i2, i3, i4} and A5 = A4 ∪A1 ∪A6.
It follows that m(T5) = m(T4) + 2 ≥ 4 > |V5| − 2 which
violates the triangle count condition on the subtrigraph of T ′. This
ontradiction implies m(T4) ≤ 1.
To prove the second part, we only need to prove that T ′’s

ubtrigraph T ′′(V ′′,A′′) with {i1, i2, i3, i4} ⊆ V ′′ and j /∈ V ′′

atisfies m(T ′′) ≤ |V ′′
| − 3 since the triangle count condition

on the other subtrigraphs of T ′ directly holds. Considering the
subtrigraph T7(V ′′

∪ j,A′′
∪ A1 ∪ A6) of T ′, one has m(T7) =

(T ′′) + 2 ≤ (|V ′′
| + 1) − 2, which implies m(T ′′) ≤ |V ′′

| − 3.
To prove the third part, we also aim to prove that row de-

endences in RA′ imply row dependences in RA0 . The triangular
angle rigidity matrix of T0 can be written by

RA0 =

[
RA′′ ⋆ ⋆ ⋆ ⋆

0 A△i1 i2 i3
i1

A△i1 i2 i3
i2

A△i1 i2 i3
i3

0

]
,

where RA′′ ∈ R2(n−4)×2(n−4). The triangular angle rigidity matrix
of T ′ is written by

RA′ =

⎡⎢⎣
RA′′ ⋆ ⋆ ⋆ ⋆ 0

0 A
△i1 ji2
i1

A
△i1 ji2
i2

0 0 A
△i1 ji2
j

0 0 0 A
△i4 i3 j
i3

A
△i4 i3 j
i4

A
△i4 i3 j
j

⎤⎥⎦ .

Also, we construct the following rigidity matrix P2 ∈ R(2M+2)×2|V|

with M = m(T ′) = n − 2 to describe all the triangle constraints
n T ′ and △i1i2i3

P2 =
[
r1, r2, . . . r2M−2, r2M−1, r2M , r2M+1, r2M+2

]⊤

=

⎡⎢⎢⎢⎢⎣
RA′′ ⋆ ⋆ ⋆ ⋆ 0

0 A△i1ji2
i1

A△i1ji2
i2

0 0 A△i1ji2
j

0 0 0 A△i4i3j
i3

A△i4 i3j
i4

A△i4 i3j
j

0 A△i1 i2 i3
i1

A△i1i2 i3
i2

A△i1i2i3
i3

0 0

⎤⎥⎥⎥⎥⎦ ,

here ri ∈ R2|V|×1. We remark that the proof of this part is
more challenging than the third part of Type-II triangle dele-
tion since the last six rows of P2 are independent. Thus, the
roof of this part needs the involvement of all the triangle con-
trains in T ′ and all the vertices. After comparing the structure of
10
RA0 , RA′ , and P2, the aim of this part is to prove that linear depen-
ence of {r1, r2, . . . , r2M−1, r2M} will imply linear dependence in
r1, r2, . . . , r2M−4, r2M+1, r2M+2}. The row dependence in RA′ can
e described by

1r1 + ω2r2 + · · · + ω2M−1r2M−1 + ω2Mr2M = 0, (27)

here ωi, i = 1, . . . , 2M are scalars which are not all zeros. Using
he definitions of A△i1 i2j

j , A△i4i3j
j , the row dependence correspond-

ing to vertex j in RA′ is written by

ω2M−3 cosα∗

i2 i1j − ω2M−2 sinα∗

i2i1j = ω2M−1
sinα∗

i3ji4

sinα∗

i1ji2

,

ω2M−3 sinα∗

i2 i1j + ω2M−2 cosα∗

i2 i1j = ω2M
sinα∗

i3ji4

sinα∗

i1ji2

. (28)

The row dependence corresponding to vertex i2 in RA′ is

ω1r1(n1) + · · · + ω2M−4r2M−4(n1) = ω2M−3sinα∗

ji2 i1 ,

1r1(n2) + · · · + ω2M−4r2M−4(n2) = ω2M−2sinα∗

ji2 i1 , (29)

here n1 = 2|V| − 7, n2 = 2|V| − 6, and ri(n1) ∈ R denotes
he n1th element of the vector ri. Since the last ten columns of
2 are indexed by i1, i2, i3, i4, j, respectively, r1(n1) and r1(n2) are
ector r1’s two elements corresponding to the vertex i2. The row
ependence corresponding to vertex i3 in RA′ can be written by

1r1(n3) + · · · + ω2M−4r2M−4(n3) + ω2M−1 sinα∗

i4i3j cosα∗

ji4 i3

ω2M sinα∗

i4 i3j sinα∗

ji4i3 ,

1r1(n4) + · · · + ω2M−4r2M−4(n4) + ω2M−1 sinα∗

i4i3j sinα∗

ji4 i3

−ω2M sinα∗

i4 i3j cosα∗

ji4i3 , (30)

here n3 = 2|V|−5, and n4 = 2|V|−4. Also, the row dependence
orresponding to i4 in RA′ can be written by

1r1(n5) + · · · + ω2M−4r2M−4(n5) + ω2M−1A
△i4 i3j
i4

(1, 1)

+ ω2MA△i4 i3j
i4

(2, 1) = 0,

1r1(n6) + · · · + ω2M−4r2M−4(n6) + ω2M−1A
△i4 i3j
i4

(1, 2)

+ ω2MA△i4 i3j
i4

(2, 2) = 0 (31)

here n5 = 2|V| − 3, n6 = 2|V| − 2, and A△i4i3j
i4

(i, j) represents
he element of the ith row and jth column of A△i4 i3j

i4
. Now, we

im to prove the existence of row dependence in RA0 , i.e., in
r1, r2, . . . , r2M−4, r2M+1, r2M+2}. We consider the first case where
n the row dependence (27), the coefficients in front of r2M−1, r2M
re zero, i.e., ω2M−1 = 0 and ω2M = 0. Then, according to (28),
ne has ω2M−3 = 0 and ω2M−2 = 0 because R̄(αi2 i1j) is a rotation
atrix. This indicates that the row dependences of RA′ must exist

n its first row block, i.e., [RA′′ ⋆ ⋆ ⋆ ⋆], which is also the first row
lock of RA0 . Therefore, row dependences exist in RA0 . Then, we
onsider the remaining case where in the row dependence (27),
he coefficients in front of r2M−1, r2M are not all zero, i.e., at least
ne of ω2M−1, ω2M is nonzero. In this case, A△i4i3j

i3
, A△i4 i3j

i4
in RA′

re involved in the row dependence (27). According to (28), one
as that at least one of ω2M−3, ω2M−2 is nonzero, i.e., A△i1ji2

i1
, A△i1ji2

i2
n RA′ are also involved in the row dependence (27). Then, there
ust exist a subtrigraph T7(V7,A7) of T ′ with {j, i1, i2, i3, i4} ⊆

7, {A1,A6} ⊆ A7, and m(T7) > |V7| − 2, because the triangular
ngle rigidity matrix RA′ has row dependences. After the Type-
II triangle deletion, T0 must have a subtrigraph T8(V8,A8) with
8 = V7 − {j} and A8 = A7 − A1 − A6 + A3, which implies
V8| = |V7|−1 and m(T8) = m(T7)−1. Since m(T7) > |V7|−2, one
as m(T8) > |V8| − 2, which implies that T8 is over-constrained,
.e., row dependences exist in T8. Since T8 is a subtrigraph of T0,
ow dependences exist in R . Combining the above two cases
A0
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ields that row dependences in RA′ implies row dependences
n RA0 . According to Whiteley (1996), one has that independent
A0 ⇒ independent RA′ for all generic configurations. Using
heorem 4, one has that triangularly angle rigid T0⇒ triangularly

angle rigid T ′. □

Appendix F. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.automatica.2022.110414.
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