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Recent advances in sensing technology have enabled sensor nodes to measure interior angles with
respect to their neighboring nodes. However, it is unknown which combination of angle measurements
is necessary to make a sensor network localizable, and it is also unidentified if there is a distributed
localization algorithm whose required communication only consists of the sensor nodes’ measured
angles and estimated positions. Motivated by these two challenging problems, this paper develops
triangular angle rigidity for those networks consisting of a set of nodes and triangular angle constraints
in 2D. First, we transfer the geometric constraint of each triangle into an angle-induced linear
constraint. Based on the linear constraint, we show that different from angle rigidity, triangular angle
rigidity implies global triangular angle rigidity. More importantly, inspired by Laman’s theorem, we
propose a topological, necessary and sufficient condition to check generic triangular angle rigidity.
Based on the results on triangular angle rigidity, both algebraic and topological localizability conditions
are developed, which are necessary and sufficient when the number of anchor nodes in the network is
two. Both continuous and discrete localization algorithms are proposed, in which only measured angles
and estimated positions are communicated among the sensor nodes. Finally, a simulation example with

Keywords:

Triangular angle rigidity
Sensor network localization
Interior angle measurement
Distributed localization
L-trigraph

32 sensor nodes is used to validate the effectiveness of the proposed approaches.
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1. Introduction

Sensor network localization has been extensively studied due
to its wide applications in, e.g., robotics (Nguyen, Qiu, Nguyen,
Cao, & Xie, 2019). The aim of network localization is to determine
the positions of free nodes using their sensor measurements with
respect to their neighbors and communication information from
their neighbors (Aspnes et al.,, 2006; Mao, Fidan, & Anderson,
2007). Three kinds of measurements are often employed in the
localization of sensor networks, namely, relative positions, dis-
tances, and bearings. When relative position measurements are
available, distributed localization algorithms have been devel-
oped in Lin, Fu, and Diao (2015). Since an inter-node relative
position consists of distance and bearing information, the sensor
measurement cost will be reduced if only one of them is required
for localization. This prompts the development of distributed
localization approaches using distance-only measurements (Diao,
Lin, & Fu, 2014; Han, Lin, Zheng, Han, & Zhang, 2017; Jiang,
Anderson, & Hmam, 2019). Using the localized positions from
distance measurements, formation control algorithms have been
designed to achieve a desired multi-agent formation (Cao, Yu,
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& Anderson, 2011; Jiang, Deghat, & Anderson, 2016; Nguyen
et al.,, 2019). Bearing-only network localization has also received
growing interest since bearing sensing is passive, low-cost and
light-weight (Zhao & Zelazo, 2019). Two types of bearing sensing
have been studied, namely bearing sensing with and without the
alignment of all sensor nodes’ coordinate frames. For the first
type, bearing-only network localization has been studied with
focuses on rigidity-based localizability conditions (Eren, White-
ley, & Belhumeur, 2006; Zhao & Zelazo, 2016b), noisy bearing
measurements (Shames, Bishop, & Anderson, 2012; Ye, Anderson,
& Yu, 2017), and coordinate frame alignment by orientation esti-
mation (Li, Luo, & Zhao, 2019; Trinh, Lee, Ye, & Ahn, 2018), just
name a few. For the second type, localization algorithms have also
been proposed, where the sensor nodes’ coordinate frames can be
chosen with arbitrary orientations (Cao, Han, Lin, & Xie, 2021; Lin,
Han, Zheng, & Fu, 2016).

In addition to these three kinds of measurements, interior
angle measurements within triangles have been becoming ac-
cessible, particularly from the angle of arrival and angle of de-
parture modules embedded in the latest Bluetooth 5.1 technol-
ogy (Cominelli, Patras, & Gringoli, 2019). Thus, it is crucial to
identify angle-only localizability conditions and develop angle-
only localization algorithms, which, however, have not been ade-
quately investigated. To solve these two problems, we choose to
use the tool of rigidity theory since distance rigidity and bearing
rigidity have been used to solve the localization of distance-
constrained networks (Eren et al., 2004; Jiang et al., 2019) and
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bearing-constrained networks (Eren et al., 2006; Zhao & Ze-
lazo, 2016Db), respectively. Thus, to solve the triangular angle-
constrained network localization problem, we propose triangular
angle rigidity, which describes the property that under the given
triangular angle constraints, the network can only translate, ro-
tate or scale when its points are perturbed locally. Based on
the developed results on triangular angle rigidity, the two chal-
lenging problems, namely angle-only localizability and angle-only
localization, are solved.

The paper’s contributions are summarized as follows.

(1) Triangular angle rigidity: Different from angle rigidity
(Chen, Cao, & Li, 2021), triangular angle rigidity implies global
triangular angle rigidity. More importantly, we propose a topolog-
ical, necessary and sufficient condition to check generic triangular
angle rigidity.

(2) Localizability conditions: A new angle-induced linear con-
straint is proposed to identify localizability of triangular angle-
constrained networks. Different from those sufficiently topo-
logical localizability conditions (Cao et al., 2021; Jing, Wan, &
Dai, 2022; Lin et al., 2016) and algebraic localizability condi-
tions (Fang, Li, & Xie, 2020; Jing et al., 2022), both the proposed
algebraic and topological localizability conditions are necessary
and sufficient when the number of anchor nodes is two.

(3) Localization algorithms: Different from those localization
algorithms whose required communication includes measured
bearing vectors (Cao et al, 2021; Jing et al,, 2022; Lin et al,
2016; Zhao & Zelazo, 2016b), our localization algorithms require
the communication of interior angles which are scalars and to-
tally independent of sensor nodes’ coordinate frames. Compared
with the 2D network localization using distance measurements
where each sensor node is required to have at least three neigh-
bors (Diao et al.,, 2014), each sensor node in our localization
algorithms is allowed to have only two neighbors.

The rest of the paper is organized as follows. Section 2 presents
the preliminaries. Section 3 discusses the triangular angle rigidity.
Section 4 presents the localizability conditions. Section 5 pro-
poses localization algorithms. Simulation examples are presented
in Section 6.

2. Preliminaries
2.1. Notations

Consider a 2D static sensor network consisting of n, anchor
nodes and ny free nodes. Let V, = {1,2,...,n,} be the set of
anchor nodes, whose positions, denoted by p, = [py . ..., p, 1" €
R?M, are known by themselves. Let V; = {ng+1, ..., n} be the set
of free nodes with |V;| = nf = n—n,, whose positions, denoted by
pr = Ipy, 10 ---- Py 1" € R*Y, are to be determined. We assume
that no overlapping points exist in p = [p,,p/1" € R*. Let
I, 1, ®, Amax, and Apnin be the 2-by-2 identity matrix, n x 1
column vector of all ones, the Kronecker product, the maximum
eigenvalue, and the minimum eigenvalue of a symmetric real
matrix, respectively. Denote by R(#) the 2D rotation matrix with
rotation angle 6.

2.2. Angle measurements

Let , be the fixed global coordinate frame, and }_; be the
node i’s local coordinate frame for angle measurements, where i €
V,UVy. Let Q; € SO(2) be the unknown rotation matrix from Zg to
> ;- Define the bearing from node i to node j, j € V,UV; in Zg by
byj := (p; — po)/llp; — pill, and in 3, by bj; == (b} — p})/lIpj — pill =
Q;bjj, where pj‘. represents the node j's coordinate in ) ;. Assume
that each node i measures the angle oy; € [0, 27) with respect to
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Fig. 1. Three sensor nodes k, i,j form a triangle.

its neighboring nodes k, j € V, U V; under the counterclockwise

direction, which can be calculated by (Chen et al., 2021)
arccos(b;bik), if b;bi >0,

Qij = T . (1)
27 — arccos(bij bix), otherwise,

where by, = R(Z )by = [95']bi, j. k € N, and A; is node i's

neighbor set. Since bgb}:ﬁ = b;bi and bgb:k = b;b,-k, the angle

measurement o is independent of Zi.

2.3. Triangular angularity and triangular trigraph

First, we recall the definition of angularity from Chen et al.
(2021), which is more efficient than using a graph to describe
a network with triple-vertex angle constraints. For the vertex
set V = {1,2,...,n}, define a three-vertex triplet (k,i,j) to
describe the angle constraint ay;. Then, we define 4 € V x
Vv xV = {kirj),kije V,i #j # k} as an angle set, each
element of which is a triplet. Since constraining ay; is equivalent
to constraining o, we allow (j, i, k) to freely change to (k, i, j) for
a given A. Then, the combination of the vertex set V, the angle set
A and the position configuration p € R?" is called an angularity
which we denote by A(V, A, p). Without p, the combination of the
vertex set V and the angle set A is called a trigraph 7(V, A). We
say A is a triangular angle set if for every (i, j1, k1) € A, there
also exists {(j, k1, i1), (k1, i1,j1)} C .A. Then, a triangular angle
set A can be written in the form of

A={...,>i1j1, k1), (1, ka1, 11), (K1, i1, 50, - - ) (2)

We say A(V, A, p) is a triangular angularity and 7(V, A) a trian-
gular trigraph if A is a triangular angle set. Denote by m(7) € N*
the total number of triangles in 7.

3. Triangular angle rigidity

In this section, we first establish an angle-induced linear con-
straint, and then develop triangular angle rigidity, and finally
discuss a triangular angle rigidity matrix.

3.1. Angle-induced linear constraint in a triangle

Consider three non-collinear nodes k, i, j forming a triangle in
Fig. 1. Denote by bi_piector € R2*! the bearing vector starting
from p; and pointing towards the bisector of the interior angle o;.
Different from Lin et al. (2016) where local bearing measurements
within a triangle are used to establish a complex linear constraint,
we establish the angle-induced linear constraint using the fact
@)Pj—Pi:R(@)Pk—Pi’ 3)
2 lU 2 lik

bi—bisector = R(_
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where I := ||p; — pjll and R(—ay;i/2) = R (a;i/2). Because the
distance information Iy, li; in (3) cannot be obtained from angle
measurements, we use the law of sines in Aijk to describe their
relative magnitude.! Multiplying RT (akij/2)l in both sides of (3)
yields

RW%)@_( (Olku)pj Di R(kau)lﬂkl Pz)
ik

2 li 2
- SlIl(X
=R (c )P — Pi) — —2(py — pi) = O. (4)
sin ok

We say (4) is an angle-induced linear constraint in triangle
Aijk. Since the coefficient matrices in front of p;, p;, px in (4) are
only related to oy, aji; and aji, (4) can be established among
nodes i, j and k using their angle measurements and inter-node
communication. Although Fig. 1 uses the case oy € (0, ), it
can be verified that (4) also holds for the case ay; € (7, 2). By
similarly defining bj_pjsecror and using (3), one also has another
angle-induced linear constraint in Aijk

R (e )(px — pj) — —pj)=0. (5)

Now, we present the relationship between (4) and (5).

(sin ot/ sin e (P

Lemma 1. The angle-induced linear constraints (4) and (5) in Aijk
are interchangeable/linearly dependent.

The proof of Lemma 1 is given in Chen (2022). Lemma 1 im-
plies that each triangle only has one independent angle-induced
linear constraint. In contrast to (4), we now introduce how to ob-
tain the values of the three interior angles from a linear constraint
among three nodes.

Lemma 2. If three unknown points p;, pj, p satisfy R(Q)(pj —pi)—
eix(pk —pi) = 0 where R(0) € SO(2) and &y, is a nonzero scalar, then
the three interior angles in Aijk are uniquely determined.

The proof of Lemma 2 is also given in Chen (2022). Compared
with Fang et al. (2020, Thm 1), the constraints (4) and (5) are
linear.

3.2. Triangular angle rigidity

For the triangular angularity A(V, A, p), denote by o* =
[, oy, oy o - 1" € RMI (i,j, k) € A those constant angle
constraints defined by .4, and p position variables. Given (i, j, k) €
A, define a matrix-weighted vector function of p;, pj, px as

£ p) = AP b+ A (@ gy + AL (o i, (6)

Aijk - .
U e R2x1, and the coefficient matrices

where f;

I — smozu,(R (a,j‘ij)) € R¥*?,

Al Ka*) = (sin @i
A

2T (a*) = sinay R (o) € RP?,
A a*) = —sinagl, € R

are defined according to (4), which satisfy AA”k( )+AAuk( *) 4
A,A"k(a*) = 0. If o, ajy op; are calculated under p, then
fA"k(a*(p) p) = 0. In contrast to (4), (6) is well-defined even
when sin o} = =0.

Remark 1. The reason of constructing such form of f,.Aijk(a*, p)is
that for the static sensor network, those angle measurements are
known and constant, but the nodes’ positions are unknown and
to be determined.

1 This becomes invalid when DPi. bj Pk are collinear.
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We say Aijk is strongly similar to Ai'j’k’ if Aijk is similar to

Ai'jK and no reflection is between them, which we denote by
Adjk >~ A .
Lemma 3. For non-collinear p = |[p; ,p] , Py 7 and p =
T, T, o 1T, i (e (p), ') = AN (o (0))j+A ™ (o (0] +
AkA”k( a*(p))p, = 0 where Af”k(a*(p)) is a 2-by-2 matrix whose
angles o* are calculated under p, then Aijk >~ Ai'jK.

Proof. Since the three points in p are non-collinear, using the def-
initions of AA”" A AT and £ (a*(p), p'), one has
AT p).p),
smajkl

R (a(p))p} — P}) — e p)(pk p;) = 0. Using Lemma 2, one
has o(p) = oi(p’), ]k,(P) = aji(p') and o, (p) = eji(p’)- Since
each angle defined by (1) is calculated under a specific direction,
Aijk is strongly similar to Ai'jk’. O

Lemma 3 provides an algebraic approach to check triangles’
similarities. Now, we define triangular equivalence and triangular
congruence.

Definition 1. A triangular angularlty A'(v, A, p') is triangularly
equivalent to A(V, A, p) if f; Atk (a*(p),p’) =0 for all (i, j, k) € A.

Definition 2. A triangular angularlty A'(v, A, p') is triangularly
congruent to A(V, A, p) 1ffA“ («*(p),p’)=0foralli,j ke Vv,i#
Jj#Ek

When p is generic,? Definition 1 (resp. Definition 2) implies
that A and A’ are triangularly equivalent (resp. congruent) if their
triangles defined in A (resp. all possible triangles) are correspond-
ingly strongly similar.

Definition 3 (Chen et al,, 2021). Triangular angularity A(V, A, p)
is triangularly angle rigid if there exists a constant ¢ > 0 such
that any triangular angularity A’(V, A, p’) which is triangularly
equivalent to A(V, A, p) and satisfies ||[p — p'|| < & is also
triangularly congruent to A(V, A, p).

Definition 4 (Chen et al., 2021). Triangular angularity A(V, A, p)
is globally triangularly angle rigid if any triangular angularity
A'(V, A, p’) which is triangularly equivalent to A(V, A, p) is also
triangularly congruent to A(V, A, p).

Different from using angles separately to define angle rigidity
in Chen et al. (2021, Def 3), triangular angle rigidity defined in
this paper uses one matrix-weighted vector (6) to describe three
interior angles associated within one triangle. Similar to Chen
et al. (2021, Fig. 3), non-generic embedding of 7 also results in
different properties than the triangular angularity with generic
configuration p. For example, any triangular angularity A(V, A, p)
with collinear configuration p and arbitrary nonempty A is glob-
ally triangularly angle rigid. However, the probability that a ran-
domly chosen configuration p is generic is 1 (Connelly & Guest,
2015, Thm 7.2.1), i.e., the density of non-generic configurations
is measure zero in the whole Euclidean space. Therefore, we are
more interested in the properties of the triangular angularity
with generic configuration. Because triangular angle rigidity of
A(V, A, p) with generic p is a property of the trigraph 7(V, A),
we also say that a trigraph 7(V, A) is (generically) triangularly
angle rigid if A(V, A, p) is triangularly angle rigid for generic
configurations p. Then, we have the relationship between angle
rigidity and triangular angle rigidity.

2 The definition of generic here is the same as Chen et al. (2021, Def 4).
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Lemma 4. A (resp. globally) triangularly angle rigid angularity
A(V, A, p) with generic configuration p is (resp. globally) angle rigid.

Proof. Note that if p is generic, none of three points in p will
be collinear. According to Lemma 3, if £°7(a*(p), p') = 0, then
Aijk >~ Ai'j'k" which implies aji(p) = au(p’), @jti(p) = aji(p’)
and ayi(p) = o(p'). Therefore, fA%@*(p),p’) = 0 used in
Definitions 1 and 2 is equivalent to constraining the three angles
separately, which is the case in the definition of angle rigid-
ity (Chen et al., 2021, Def 3). This equivalence implies that the
triangularly angle rigid angularity A is angle rigid. The same case
holds for global angle rigidity. O

The difference between triangular angle rigidity and angle
rigidity is that the angle set A in triangular angle rigidity must
be a triangular angle set, while in angle rigidity it can be non-
triangular.

3.3. Triangular angle rigidity matrix

Since p are variables in (6), for the triangular angularity
A(V, A, p), we can define the triangular angle function

falp) =L (G2 @ p))T

where (iq,j1, k1) € A, and a* in f,.lm“hk1 (a*, p) represents those

RZm(T}

constant angle constraints associated with Aiyjik;. Using the
Taylor series expansion, one has
falp + 86p) = fa(p) + Ra(a™)8p + high order terms, (7)

where R 4(a*) := af*“— e R?™MT)x2n s defined as the triangular
angle rigidity matrzx and d8p is the infinitesimal motion of p.
Because all the coefficient matrices in (6) are constant matrices,
R 4(a*) can be written by

Vertex i Vertex j Vertex k

Ist A
Aijk NI Alj
Ak o AT 0o AT 0o AT o0

m(7T)th A

whose row blocks are indexed by the triangles in .A and column
blocks the vertices. Different from the angle rigidity matrix de-
fined in Chen et al. (2021, Eqn 13), the triangular angle rigidity
matrix R4(«*) is only related to the values of those constrained
angles «* in A but not related to the sensor nodes’ position
information p or inter-node distance information, which plays
an important role in this network localization problem. Define
A* = {(i, ], k), Vi, j,k € V,i # j # k} as the complete angle set,
and R 4+(a*) and R 4(a™*) as the triangular angle rigidity matrices
of triangular angularities A(V, A*, p) and A(V, A, p), respectively,
where @* = [..., oy, . oy - 1T € R (i, k) € A%,
Theorem 1. For the triangular angularity A(V, A, p) with generic
p, one has Span{1, ® L, (I, ® R(Z))p, p} € Null(R4:(a*(p))) S
Null(R 4(«*(p))), and Rank(R4(«*(p))) = Rank(Ra-(a*(p))) =
2n —4.

The proof of Theorem 1 is given in Appendix A. We now
discuss the relationship between triangular angle rigidity and
global triangular angle rigidity.

Theorem 2. A triangular angularity A'(V, A, p’) is triangularly
equivalent to A(V, A, p) if and only if R4 (a«*(p)) p’ = 0. Also, A’
is triangularly congruent to A if and only if R 4« (@*(p))p’ = 0.
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Proof. Note thatin R4 («*(p)), the angles o* are calculated under
p. According to Definitions 1 and 2 and the structure of the tri-
angular angle rigidity matrix R 4, the conclusion can be obtained
straightforwardly by writing all the triangles’ linear constraints
into a compact form. O

Lemma 5. A triangular angularity A(V, A, p) is globally triangu-
larly angle rigid if and only if Null(R 4+(@*(p))) = Null(R 4(a*(p))),
or equivalently Rank(R 4«(a*(p))) = Rank(R 4(a*(p))).

The proof of Lemma 5 is given in Chen (2022), which can also
be obtained by following Zhao and Zelazo (2016a, Thm 2).

Theorem 3. For a triangular angularity A(V, A, p), it is globally
triangularly angle rigid if and only if it is triangularly angle rigid.

The proof of Theorem 3 is given in Appendix B. According
to Chen et al. (2021, Thm 1), angle rigidity does not necessarily
imply global angle rigidity. However, Theorem 3 implies that for
triangular angle rigidity where angle constraints are associated
within triangles in .4, triangular angle rigidity implies global
triangular angle rigidity.

Theorem 4. A trigraph T(v, A) is triangularly angle rigid if and
only if Rank(R 4(a*(p))) = 2n — 4 where p is an arbitrary generic
configuration.

The proof of Theorem 4 is given in Chen (2022), which can
also be obtained by using Lemma 1 and Chen et al. (2021, Thm
2). Different from Chen et al. (2021) where the rank checking
condition for angle rigidity is related to inter-node distances and
bearings, the rank checking condition in Theorem 4 is only related
to the interior angles. We develop localizability conditions for
triangular angle-constrained sensor networks in the next section,
where more results on triangular angle rigidity will be presented.

4. Localizability conditions

If (i, ], k) € A, then we say nodes i, j, k are neighboring nodes
with one another, ie., {j,k} € M, {i,k} C N, and {j,i} C N.
Now, we formulate the angle-only network localization problem.

Problem 1. Consider a 2D triangular sensor network described
by A(v, A, p) with V = V, UV, ns > 2, and generic p. Given
the anchor nodes’ positions p, in ng the aim is to determine
the free nodes’ positions py using the nodes’ angle measurements
and inter-node communication, whose topologies are described
by triangular trigraph 7(V, A).

Denote by p = [p, , p; 1" the estimation of all nodes’ positions.
Since one triangle’s three angle constraints in .4 will give one
angle-induced linear constraint, the localization Problem 1 is
equivalent to finding py subject to

A

FEMa (), B) = AL a* ()i + AT (o ()P
+ AP (PP =0, pi=pp View, ®

where (i,j, k) € A, and A** A A"k AR
since the angles «* and p are constants

are constant matrices

Definition 5. The triangular angularity A(V, A4, p) is said to be
localizable if the solution py to the problem (8) is globally unique

and py = py.

Next, we introduce both algebraic and topological localizabil-
ity conditions for the triangular sensor network A.
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4.1. Algebraic localizability condition

Different from Jing et al. (2022) where the localization prob-
lem is formulated as a nonlinear optimization problem, we trans-
fer the localization problem (8) into a linear least-square opti-
mization problem by defining the cost function

) ik " ik

JEY= Y 1A P+ AT By + AP, 9)
(ij.k)eA

where p; = p;,Vi € V,. Then, we want to know under which

condition the true position py is the unique and global minimizer

of (9), which is the localizability condition. According to the
definition of the triangular angle rigidity matrix, one has

A A

J(B) = PR (" (P)RA(* (P))D- (10)
Let D(e*) := R (a*)Ra(a*) € R2™2". By partitioning matrix
R4 = [R% R/,] into anchor nodes' part RY, € R2™7T)*2ma and
free nodes’ part R, € R*™7)*2  the matrix D(a*) can be written

Dﬂa Daf _ a \T pa
Du Dy , where Doy = (R%) Ry €

R2n0x2na' Daf — (R‘jA)TRf_A c RZnuxanv Dfa — (RfA)TRaA c RanXZHG'
and Dy = (R),)TR/, e R,

in the form of D(a*) =

Lemma 6. Iff)j’f is a minimizer of the cost function (9), then it is
also a global minimizer and fof)}‘ + Dgapa = 0.

Proof. Substituting the matrix D(«™*) into (10) yields
J(ﬁ) :j(f’f) = pgTDaapa +2pIDafﬁf +f’fTfoﬁfv (11)

where we used p, = pg. It follows that any minimizer of (11)
satisfies Vﬁ}e](f)}“) = Dﬂri)}‘ + Dfpa = 0. Then, by following the
same line as Zhao and Zelazo (2016b, Lem 4), [J}‘ is a global
minimizer. O

Theorem 5. A triangular angularity A(V, A, p) with n, > 2 and
generic p is localizable if and only if D is nonsingular. When the
angularity is localizable, the true positions of the free nodes can be
calculated by p; = —Df}lDfapa.

The proof of Theorem 5 can be straightforwardly obtained by
using Lemma 6. The algebraic localizability condition in Theo-
rem 5 is more straightforward than those in Jing et al. (2022).
However, the algebraic localizability condition depends on all the
angle measurements. Next, we develop topological localizability
condition which does not depend on the sensor nodes’ angle
measurements but only depends on the topology 7(V, A).

4.2. Topological localizability condition

Based on Theorem 4, we first show the relationship between
the network localizability and triangular angle rigidity.

Theorem 6. For a triangular angularity A(V, A, p) with n, = 2
and generic p, it is localizable if and only if the trigraph T(V, A) is
triangularly angle rigid.

The proof of Theorem 6 is given in Appendix C. Theorem 6 re-
quires that the number of anchor nodes is 2. We give an example
in Fig. 2 to show that when n, = 3, the necessity of Theorem 6
does not hold. However, the sufficient part of Theorem 6 still
holds for n, > 2. The network in Fig. 2 is unlocalizable under (Jing
et al.,, 2022) since the angle in Jing et al. (2022) is defined without
a direction (its magnitude is in [0, r]), which also indicates that
the localizability condition in Theorem 6 is milder than those in
Jing et al. (2022, Thm 2).
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. Anchor node

O Free node

A={(1,2,3),(2,3,1),(3,1,2),(1,3,4),(3,4,1),
(4,1,3),(4,5,6), (5,6,4),(6,4,5)}

Fig. 2. A localizable but triangularly non-angle rigid angularity A(V, A, p) with
ng = 3.

Although Theorem 6 proposes a rigidity-based condition to
check the localizability, the available checking condition of tri-
graph 7’s generic triangular angle rigidity still relies on algebraic
information according to Theorem 4. Similar cases exist in those
localizability conditions using bearing rigidity (Zhao & Zelazo,
2016b, Thm 3 and Lem 2) and angle-displacement rigidity (Fang
et al., 2020, Thm 6 and Thm 2). Some pure topological localizabil-
ity conditions have been proposed in Jing et al. (2022, Corollary 2)
and Lin et al. (2016, Thm 4.1), which are only sufficient. Different
from these previous works, we aim to propose a pure topological,
necessary and sufficient localizability condition by developing a
topological, necessary and sufficient checking condition for 7°'s
generic triangular angle rigidity. This condition is inspired by
Laman’s theorem (Laman, 1970, Thm 6.5) which is a classic result
on generic distance rigidity and has played a very important role
in the development of rigidity graph theory during the past fifty
years (Connelly & Guest, 2015; Whiteley, 1996). Before giving the
condition, we first present some related definitions.

Definition 6. A triangular trigraph 7(V, A) is minimally and
triangularly angle rigid if 7 is triangularly angle rigid and the
number of triangles m(7) =n — 2.

From Definition 6, the minimum number of triangles in A to
make a triangular trigraph 7 angle rigid is n — 2, which can
be seen from Theorem 4 and the definition of R 4. Inspired by
Laman’s theorem and its proof Laman (1970, Thm 5.6), we define
a special type of trigraph.

Definition 7. A trigraph 7(V, A) is said to be a L-trigraph if it
satisfies the property L: (a) 7 is a triangular trigraph, (b) the
number of triangles m(7) = |V| — 2, and (c) for any subset V'
of V, the induced triangular subtrigraph 7'(V’, A’) of T satisfies
m(7’) < V| - 2.

Now, we present a fact which will be an important foundation
for the follow-up analysis. Note that in an infinitesimally and
minimally distance rigid graph, there must exist a vertex associ-
ated with fewer than 4 edges (Laman, 1970, Prop 6.1). We also
have a similar conclusion for minimally and triangularly angle
rigid trigraphs.

Lemma 7. For a minimally and triangularly angle rigid trigraph
T(V, A), there must exist a vertex associated with 1 or 2 triangles
in A

The proof of Lemma 7 is given in Appendix D. Now, we present
the topological, necessary and sufficient condition for generic
triangular angle rigidity.

Theorem 7. A triangular trigraph T(V, A) is triangularly angle
rigid in 2D if and only if there exists a subtrigraph 7'(V, A’') with
A" C A and T’ being a L-trigraph.
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The proof of Theorem 7 is given in Appendix E. Theorem 7
implies that a trigraph 7 is minimally and triangularly angle rigid
if and only if it is a L-trigraph. Combining Theorems 6 and 7 yields
the topological, necessary and sufficient localizability condition
for a triangular network A(V, A, p) with n, = 2 and generic p.

Remark 2. In Appendix E, three types of triangle deletion opera-
tions are defined. One can also define the reverse of the triangle
deletion operations as triangle addition operations, in which 7y
adds one triangle constraint, and then becomes 7’. Note that
these three types of triangle addition operations in triangular
angle rigidity plays a similar role as the Henneberg construction
in distance rigidity (Henneberg, 1911). In addition, different from
the case in distance rigidity, the condition developed in Theo-
rem 7 is also a topological, necessary and sufficient condition for
generic global triangular angle rigidity according to Theorem 3.

5. Distributed localization

In this section, we design both continuous and discrete local-
ization algorithms to achieve p; — py.

5.1. Continuous localization algorithm

Based on the least-square optimization problem (9), we design
a gradient descent localization algorithm

pr(t) = =V, J(Br) = —Dyps(t) — Dpapas (12)
whose component form for each free node is
léi(t) - _ Z (AiAijlh )Tfilekl(a*, A1)
(ij1.k)eA
- i )

— Z (AiAJZI 2)TfiA]2“2(a*, p(t))

(jp.i,kp)e A
— Z AiAj3k3ifiAj3k3i(a*, f)(t

(3.3, A

), i€V, (13)

where pi(t) = p;, Vj € Vo, 2" (a*, p) = APy, + AP, +
Aéjzllizﬁkz'fiABkgl(a*, p) = A]é]akslﬁh +AAJ3’<3113 +AAJ3k3lf),, anc_l AcC
A, |Al =m(T), and if (i, , k) € A, then {G, 1, k) i,k,j)} ¢ A The
distributed law (13) can be implemented by using node i’s angle
measurements to obtain a;,,, and inter-node communication to
obtain aik,j; » ®jskyir Djs (), Prs(£), s = 1, 2, 3. A detailed and specific
form of (13) under a localizable network with eight sensor nodes
is provided in Chen (2022).

Theorem 8. If A(V, A, p) is triangularly angle rigid and p is
generic, then Problem 1 is solved and py(t) globally and exponentially
converges to py under the distributed and continuous localization
algorithm (13).

Proof. According to Section 4.2, the sensor network is localizable
and Dy is nonsingular and positive definite. Then, consider the
candidate Lyapunov function Vi(t) = 0.5]py — pr(t t)||> whose
time-derivative is Vi(t) = —(pr — py(t)) pf(t) < —Amin(Dg)llpr —
ﬁf(t)||2, where py = —Dﬁc Dfapa. Since Vi(t) is negative definite,
pr(t) converges to py globally and exponentially. O

To tune the convergence rate of the estimation error ||ps —psl,
a positive gain can be added in (12), i.e.,

Br(t) = —ke Vi J(Br) = —ke(Dypr(t) + Dpapa). (14)

where k. > 0. Then, one has ||p; — pi(t)ll < llpr — Dr()ll =
V2VH(E) < /2V(0)e~*<*minPF) In practice, angle measurements
are subjected to noises, whose effects on the estimation error
lpr — prll can be similarly obtained by following Lin et al. (2016,
Thm 4.3).
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5.2. Discrete localization algorithm

Consider that the network localization law (12) is executed
under discrete iteration dynamics. We define the constant sam-
pling period as h > 0 and use the forward Euler approximation
to describe the differential operation in the continuous algorithm
(12). More specifically,

Pr(O)le=kn ~ (Prlk + 11 — pr[k1)/h, k €N, (15)
where ps[k + 1] = pr((k + 1)h) and pr[k] = ps(kh). Under (15),
the continuous localization law (12) becomes

prlk + 11 = py[k] — hDgps (k] — hDgpq, (16)

b, [k]] The component form of

where prlk] = [p, [K]....
(16) can be described by

pilk+11=pIkl—h Y (A

AU1’<1 TfA'h"l( * A[k])

(ij1,k)eA
—h Z Alekz TfﬁlzlkZ( [k])
(jp.i,kp)e A
ksi e Ajsksis x
—h Y APPET e plk). (17)
(j3,k3,i)e A

Defining py[k] := py[k]

Prlk + 11 = (Ian; — hDy)py[K]. (18)

Since Dg is positive definite, all the eigenvalues of (Ian — hDg)
will be in the open unit disk if

— py, one has

h <2 min A7 '(Dy) = 2x,L(Dp). (19)
i=1,..., 2nf
Theorem 9. If A(V, A, p) is triangularly angle rigid, p is generic,

and the sampling period h satisfies (19), then Problem 1 is solved
and py[k] globally converges to py under the discrete localization
algorithm (17).

The condition (19) can be satisfied in practice by, e.g., em-
ploying a distributed algorithm to estimate Dg’s maximum eigen-
value (Lin et al., 2016) or properly using the information of each
node’s associated edges or triangles in the sensor network (Li
et al.,, 2019).

Remark 3. Compared with the bearing-based localization
(Bishop, Anderson, Fidan, Pathirana, & Mao, 2009; Eren et al.,
2006; Li et al., 2019; Shames et al., 2012; Zhao & Zelazo, 2016b),
the angle-based localization laws (13), (17) do not require the
alignment of the nodes’ coordinate frames. The required commu-
nication of the localization laws in Cao et al. (2021), Jing et al.
(2022) and Lin et al. (2016) consists of measured local bearing
vectors and estimated positions, while in (13), (17) only measured
angles and estimated positions. Compared with the distributed
localization in Jing et al. (2022) where the anchors must be
neighboring and the localization topology is sequential, (13), (17)
allow the anchors to be non-neighboring and the localization
topology to be non-sequential.

6. Simulation examples

We use a sensor network with 2 anchors (labeled by 1 and 2)
and 30 free nodes (labeled by 3 ~ 32) to validate Theorem 7 and
the localization laws (14) and (17). The network topology is given
in Fig. 3, which consists of 30 triangles whose detailed forms are
given in Chen (2022). It is verified that the trigraph in Fig. 3 is a
L-trigraph. The fact Rank(R 4(a*(p))) = 60 validates Theorem 7.
According to Theorem 6, the network in Fig. 3 is localizable.
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100
90 — 7
80 7
70 - 7
60 — 7
D50 - -
40+ -
30 7
20 - 7
10 7
0
0 100
Fig. 3. Network topology with 32 nodes and 30 triangles.
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Fig. 4. Position estimation errors in continuous cases.

The changes of position estimation error ||pr — pr|l under
the localization algorithms (14), (17) are shown in Figs. 4, 5,
respectively. Fig. 4 shows that the convergence time is shorter
when k. is larger. Since Amax(D) &~ 4.33, we need to choose
h < 0.462. Fig. 5 shows that more iteration steps are needed for
the convergence when h is smaller.

7. Conclusion

This paper has developed triangular angle rigidity for dis-
tributed localization using angle measurements in 2D. First, we
have shown that triangular angle rigidity implies global triangular
angle rigidity. We have proposed a topological, necessary and
sufficient condition to check generic triangular angle rigidity,
from which a trigraph is minimally and triangularly angle rigid if
and only if it is a L-trigraph. Then, we have developed algebraic
and topological localizability conditions, both of which can be

k[step]

Fig. 5. Position estimation errors in discrete cases.

necessary and sufficient. Moreover, both continuous and discrete
distributed localization algorithms have been proposed, which
only rely on the measured angles and estimated positions. Fu-
ture work will focus on the 3D case, which cannot be obtained
straightforwardly from this 2D case since when a 3D rotation
matrix is used to establish a 3D angle-induced linear constraint
like (4), the 3D rotation matrix will depend on its associated
nodes’ relative positions.

Appendix A. Proof of Theorem 1

The cases 6p = 1, ® b, p = (I, ® R(w/2))p and ép =
p correspond to translation, rotation and scaling motion of A,
respectively. According to (6), one has A% + A% 4+ A2 = ¢
which implies that R 4(a*(p))(1, ® I;) = 0. According to (4), one

has fiA“k(oz*(p),p) = 0, which implies R (a*(p))p = 0. Since
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APR(Z) = R(Z)AP™, one has Ra(a*(p)) (I ® R(w/2))p = O.
These three facts imply that {1, ® I, (I ® R(r/2)) p, p} always
lie in the null space of R4 and R4+. Since R4 is a sub-matrix
of R4+ and they have the same number of columns, one has
Rank(R4) < Rank(R4+) and Null(Rs+) € Null(R4). The inde-
pendence of the four vectors in {1, ® L, (I, ® R(=/2)) p, p} can
be similarly obtained by using Chen et al. (2021, Lem 2), which
implies Rank(R4+) < 2n—4. O

Appendix B. Proof of Theorem 3

The necessity of this theorem is straightforward by following
Definitions 3 and 4. We now prove its sufficiency. Assume that
A(V, A, p) is triangularly angle rigid. According to Definition 3,
any triangular angularity A(V, A, p) satisfying R4(a*(p))p’ = 0
and ||p—p’|| < ¢ has that R 4«(@*(p))p’ = 0. Because R 4(a*(p))p =
0 and R 4+(a*(p))p = 0 using Theorem 1, one has that

Ra(e*(p))dp = 0 = Ru=(a"(p))op = 0, (20)

where 8p = p' — p and ||8p|| < &. Since 8p € R?" is a vector,
the constraint ||8p| < & allow 8p to lie in a 2n-dimensional
ball with §p = 0 as its origin and ¢ as its radius. Therefore,
ks6p will expand the entire Euclidean space when k; € [0, 00).
Moreover, (20) implies that R 4(a*(p))(ks6p) = ksRa(a*(p))ép =
0 = R4+(a™(p))(ks6p) = 0 holds for an arbitrary ks € [0, c0). It
follows that Null(R 4(*)) € Null(R 4+(a*)). Since Null(R 4+(a™)) C
Null(R 4 (™)) according to Theorem 1, one has that Null(R 4+(a*))
= Null(R4(a*)), ie., AV, A, p) is globally triangularly angle
rigid. O

Appendix C. Proof of Theorem 6

Firstly, according to Theorem 5, A is localizable if and only
if Dy is nonsingular. Because Rank(Dy) = Rank(R’ ') and Dy €
R=9x@n=4)" one has that Dy is nonsingular if and only if
Rank(RfA) = 2n — 4. Secondly, by Theorem 4, T is triangularly
angle rigid if and only if Rank(R 4) = 2n — 4. Thus, the statement
of this theorem is equivalent to that Rank(RfA) = 2n — 4 if and
only if Rank(R4) = 2n — 4.

Sufficiency: Since R4p = 0 by Lemma 1, one has

Rap=[Ry R,] [pﬂ = RYpa + R,pr = 0. (21)
Since Rank(R 4) = 2n — 4, the four nonzero linearly independent

vectors span the null space of R4. Then, p = 11, ® [1, 01" +
B21n ® [0, 117 + B3 (I ® R(7/2)) po + Papo, Where B € R, i =

1,...,4,po € R?"is an arbitrary generic realization of those angle
constraints «* among the sensor nodes. When p, € R* is given,
Bi.i = 1,...,4 can be uniquely determined, under which py is

then uniquely determined. According to (21), if R "APf = —R%Dpa
has a unique solution for pf, then Rank(RfA) = 2n — 4 because
RfA € R2M(T)x(2n—4)

Necessity: When Rank(RfA) = 2n — 4, the (2n — 4) columns in
R ', are independent. Since R '+ 1 a sub-matrix of R4 with the
same number of rows, there exist at least (2n — 4) independent
columns in R4, i.e., Rank(R4) > 2n — 4. By Theorem 1, one has
that Rank(R 4) < 2n — 4. Therefore, Rank(R4) = 2n — 4. O

Appendix D. Proof of Lemma 7

We prove this lemma by contradiction. Obviously, it is im-
possible that a triangularly angle rigid trigraph 7 has one vertex
without involving in any triangles in .A. Assume on the contrary
that each vertex in V is associated with at least three triangles
in A. For the triangle Aijk in A, each vertex of i, j, k will show
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thrice in A because {(i, ], k), (j, k, i), (j, i, k)} € A. If one vertex
is associated with 3 triangles in A, it will show 9 times in A.
Therefore, if each vertex of V is associated with at least three
triangles in A, then the total shown times of the vertices of V in
A should be at least 9n. However, a minimally and triangularly
angle rigid trigraph 7 only has 3 % 3 % (n — 2) places in A for all
the vertices, which implies a contradiction with the assumption
because 9n > 9(n — 2). Therefore, there must be at least one
vertex associated with only one or two triangles in A. O

Appendix E. Proof of Theorem 7

To prove the necessity, we need to prove that if 7/(V, A’) with
m(7’) = |V| — 2 is triangularly angle rigid, then any triangular
subtrigraph 77(V", A”) of 77 satisfies m(7”) < |V"|—2. We prove
this by contradiction. Suppose that there exists a subtrigraph 7"
of 7/ with m(7”) > |V"| —2. Let Ry» € RZ™T")x2V"| pe the trian-
gular angle rigidity matrix of 7”. According to Theorem 1, one has
Rank(R 47) < 2|V"| — 4 which implies that there are row depen-
dences in the matrix R4~. Note that [R4r  Oum7yx2vi—pv7p] €
RZMT")*2VI s 3 submatrix of Ry € RVI=9x2VI with the same
number of columns. Then, the row dependences in R 4~ imply row
dependences in R4 . However, 7’ is minimally and triangularly
angle rigid, and thus no row dependences should exist in the
matrix R 4. This contradiction proves that m(7”) < |V"| — 2.

To prove the sufficiency, we need to prove that if 7/(v, A")
is a L-trigraph, then 77 is triangularly angle rigid. We prove
the sufficiency by sequentially removing the nodes in V and
their associated triangles in 7’ until the trigraph ends up with a
single triangle that is itself triangularly angle rigid. This inductive
proof works only when the following two propositions can be
guaranteed at each step (Connelly & Guest, 2015, Thm 7.5.3). The
first is that deleting a selected node from the trigraph 77 will
not change the triangle count condition m(7”) < |V’| — 2 on
any subtrigraphs 7 of 7. The second is that if the trigraph after
the deletion of a selected node is triangularly angle rigid, then
the trigraph before this deletion is triangularly angle rigid. These
indicate the importance of the selection of the node that will be
deleted at each step. According to Lemma 7, there must be at least
one node, which we label by j € V that is only associated with 1
or 2 triangles in 7’. Therefore, we only need to check whether
the two propositions hold when the node j and its associated
triangles are deleted from 7. The following three cases exist for
the deletion of the node j’s associated triangles.

(a) Type-I triangle deletion: If j is only associated with one
triangle3 Aiyi,j in 7(V, A'), we now delete j and the associated
triangle Aiqipj in 77 to get the subtrigraph 7o(Vo, Ag) wWith Vo =
Vv —{j} and Ay = A" — {(j, i1, i2), (i1, ], i), (i1, iz, J)} (see Fig. 6).
Note that the triangle count condition in any subtrigraphs of 7
is unchanged in comparison with that of 77. Then, we prove that
if Tp is triangularly angle rigid, then 77 is triangularly angle rigid.
The triangular angle rigidity matrix of 7 can be written by R y» =

R 0 i

fo aoin | where AjA'“Z’ = —sina};
and * represents a matrix that will not affect the analysis. Then,
one has Rank(R 4/) = Rank(R4,) + Rank(AjA”lz’) = Rank(R4,) +2,
which implies that 7g is triangularly angle rigid if and only if 7~
is triangularly angle rigid.

(b) Type-II triangle deletion: If j is associated with two tri-
angles Ajijip, Ajiziz and three vertices iy, iy, i3 in 7/(V, A’), we
now delete j, Ajiyiy, Ajiriz from 77 and add Aiqiyis into 77 to
get the new trigraph To(Vo, Ag) with Vo = V — {j}, 4g = A —
A1 — Ay + Az, where Ay = {(j, i1, i), (i1, ], I2), (i1, 12, J)}, A2 =

I, # 0 under generic p,

3 The sequence of iy, iz, j in Aiji,j makes no difference.
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Fig. 6. Type-I triangle deletion: Node j is only associated with one triangle Aiyi,j
and two vertices in 7.

Fig. 7. Type-II triangle deletion: Node j is associated with two triangles Ajiqiy,
Ajiris and three vertices in 7.

{U,13,12), (i3,],02), (i3,12,))}, and Az = {(is, i1, i2), (i1, i3, i),
(i1, 12, i3)} (see Fig. 7). To proceed the proof, three parts need to
prove: Aijiyis is addable (i.e., (iy, iz, i3) ¢ A"); the triangle count
condition holds for any subtrigraphs of 7y; and angle rigid 7o=
angle rigid 7.

To prove the first part, suppose on the contrary (i, i, i3) €
A’. Then, for 7”s subtrigraph 73(Vs4, A1 U Ay U A3) with v, =
{j, i1, i2, i3}, one has m(73) = 3 > |V4] — 2 = 2 which contradicts
with the assumption of triangle count condition on subtrigraphs
of 7. Therefore, (i, iz, i3) ¢ A'.

To prove the second part, it is obvious that the triangle count
condition still holds for 7g’s subtrigraphs 7” with {iy, iz, is}ZV".
To prove the remaining case, we consider an arbitrary subtrigraph
T5(Vs, As) of T/ with {iy, i3, i3} € Vs, j ¢ Vs and m(75) < V5| —2
Note that A3 ¢ As since A3 ¢ A’ but A3CAg. Therefore, we
need to prove m(75) < |Vs| — 3, otherwise the triangle count
condition is violated in 75 after Aijiyiz is added. Consider another
new trigraph 75(Vs U j, A5 U Ay U A). Since Tg is a subtrigraph
of 77, one has m(7g) = m(7s) +2 < |Vs| — 2 = |Vs] — 1,
ie, m(7s) < |vs| — 3.

To prove the third part, we only need to prove that row inde-
pendence in R 4, implies row independence in R . The triangular
angle rigidity matrix of 7 is written by

R 4 * * *
Ray = 0 ALisii plhisin sdbisin |0
1 1 13
where Ry, € R2M70>2Ml and Ryr e RAMT0)=Dx2AMol=3) The
triangular angle rigidity matrix of 7’ is written by
R.A” * * * 0
DNipjiq DNipjiq Aijiy
Ry=| 0 A A, 0 A;
0 0 AAizisj AAfzfaf AAfzfaj
i i3 J

Then, we construct the following rigidity matrix P; € R®*® to
describe the triangle constraints Aiyisiy, Aiyjiy, Aiyisj

- T -
I
T Alypizi Alypizi Alpizi
P) Ai231 A_231 A_231 0
T 1 D] 13
3 Aipji Aipji Alpji
P]= — A.ZH A.ZH 0 A‘2/1 ,
ry i i J
Aipisj Aipisj Aipisj
T 0 Ai231 A<23] A.231
5 2 13 J
T
L7

where r; € R®1 i = 1,...,6 and Rank(P;) = 4 according to
Theorem 4. Different from the proof of Laman’s theorem (Laman,
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1970; Whiteley, 1996, Thm 2.2.2), R 4, and R 4/ consist of matrix
blocks instead of row vectors. To prove this part, it is equivalent
to proving that row dependences in R 4 imply row dependences
in R 4,. According to the definitions ofAjA'l’" and AA'2'3J in (6), the
row dependences corresponding to vertex j in matrlx R4 imply
that

N . . sinozi’;ji2
w3 COSQ}; ; — Wa SO — w5 s =0,
20 22
oo (22)
. 13]12
a)3smoz +w4cosoz” —wg=—=2 =0
1 z] Slnotizjil
where w; € R,i = 3,4,5,6 are four scalars describing the

row dependences of rT, rI, rsT ,T4 in matrix R4 . To prove the

existence of row dependences in matrix R4,, we only need to
prove that r; and r, are linearly dependent to rs, 14, I's, g with
the exactly same coefficients ws, w4, ws, wg, respectively, i.e.,

{ 1T + W33 + w4l's + wsT's + wer's = 0, (23)

Wy + w33 + wals + wst's + wers = 0,

where w; # 0 and w; # 0 are two scalars. Note that the
fact Rank(P;) = 4 implies that ry, r, are linearly dependent to
r3, I'4, I's, rs. However, if the coefficients in front of r3, r4, 15, 15
are not exactly ws, w4, ws, wg in these dependences, one can-
not directly conclude the existence of row dependences in R 4.
Therefore, we first calculate w1, w, by using the row dependence
corresponding to vertex iy in Py, i.e.,

+ wssina ],1,2 =0, (24)
+ wy4Sina ],1,2 =0.

w1 sin Ol,3,1,2

wpsine;

Due to the fact that the sum of each row’s elements is zero for

triangular angle rigidity matrices, we do not need to check both

the row dependences corresponding to vertices i, and i3. More
Aipiziy Aipiziy Aipiziy

specifically, since A2 = —A —A;,*"", to prove (23), one

only needs to verify the row dependence correspondmg to vertex

i3 in P;, which can be written by

w1 COS “mzt — wy sin 0‘111213

— w5 COS &
i2i3i1 5 11213) (25)

w1 Sin amz, + wy cos o

i1iziz

isj
= ——2¥ (wg cOS ¢
Slﬂa121311 (U)G
By taking the first equation of (25) as an example, substituting

(22), (24) into the first equation of (25) yields

+ ws sina

lel3 11213 )

7 cosof; . sinaj ; sinaf; ;

_ 11213 Jutz 21301 w3 (26)

sinaf sina; sinaf;
v sinog ;. sinog ;) sinag ;0
w4 =0,
sin oz,3ﬂ2 sina; sinaf; o
where y; = (cos ozﬂ is cosamy - Sll‘l(xﬂ2l3 smamﬂ) X sma?,y
= cosozlml3 smalm] and y, = (cosozj2 x sine; ; + sin o ;,
X cosayg; )sineg; . = sin amm sin 0‘1 isj The coefficient in front
cosaf sina; sina
of ws satisfies ——2L— — — 1123~ Jub bisi =cosaf . ; (,’2’ -
smozi3ji2 smozlzﬁ1 5'“‘)‘131112 11213 % g

z,fﬂ? izg ) = 0, where we used the law of sines. By using similar
cﬁllculatlons the coefficient in front of w4 in (26) also equals zero.
The same case applies for the second equation of (25). Therefore,
no matter what ws, w4 are in (22), (25) always holds, which
implies that (23) holds and row dependences exist in R 4.

(c) Type-IIl triangle deletion: If j is associated with two tri-
angles Ajiyip, Ajisiy and four vertices iy, iz, i3, is in 77(V, A'), we
now remove j, Ajijiy, Ajizis and add one triangle of Aiyiyis,
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Fig. 8. Type-III triangle deletion: Node j is associated with two triangles Aji;is,
Ajisis and four vertices in 7.

Aiqiaig, Aiqisiy, Aiyizis (without loss of genericity, consider that
the added triangle is Aiqipis in the follow-up analysis) to get
the new trigraph 7o(Vo, Ag) with Vp V — {j} and Ay
A/ - Al - -AG + A3v where A] = {(.]v ilv i2)7 (i1’ja iz)v(ilv iz’j)}v
AG {(]7 i3’ i4)! (i3vj7 i4)7 (i3’ i4ﬂj)}v -A3 { (i3, i]v iZ)v
(i1, i3, ip), (i1, 12, i3)} (see Fig. 8). To proceed the proof, three parts
need to prove: Aiqiyiz is addable; the triangle count condition
holds for any subtrigraphs of 75; and angle rigid 7o= angle rigid
T

To prove the first part, we consider 7”'s subtrigraph 73(Vs, A4)
with Vv, = {iy, ia, i3, i4}, A4 consisting of those triangles asso-
ciated with the four vertices, and m(73) < 4 — 2 = 2. Then,
we only need to prove m(7;) < 1, i.e.,, one more triangle can
be added into Ta, which is one of Ai1i2i3, Ai1i2i4, Ai1i3i4, Ai2i3i4.
Suppose on the contrary m(7;) > 2. Consider the subtrigraph
Ts(Vs, As) of T/ with Vs = {j, i1, 12, i3, is} and As = A4 U A U Ag.
It follows that m(75) = m(73) + 2 > 4 > |Vs| — 2 which
violates the triangle count condition on the subtrigraph of 7. This
contradiction implies m(73) < 1.

To prove the second part, we only need to prove that 7”'s
subtrigraph 77(V", A”) with {i1, is,i3,i4} € V" and j ¢ V'
satisfies m(7”) < |V”| — 3 since the triangle count condition
on the other subtrigraphs of 77 directly holds. Considering the
subtrigraph 77(V" U j, A” U A; U Ag) of 77, one has m(77)
m(7")+ 2 < (|V"| + 1) — 2, which implies m(7") < |V’| — 3.

To prove the third part, we also aim to prove that row de-
pendences in R 4 imply row dependences in R 4,. The triangular
angle rigidity matrix of 79 can be written by

R.4r * * * *
R-AO = 0 AAi] ipis3 AAi] ipi3 AAi] ipis 0 ’

I 2 13

where Ry» € R*"4x20—4)_ The triangular angle rigidity matrix
of 77 is written by

R 7 * * * * 0
Aigjiy  Aiyjin Aiyjin
R.A , = 0 Ail Aiz 0 0 Aj

Aigi Algi Aigi:
A 431A 43)A 413]

0 0 0 is i |

Also, we construct the following rigidity matrix P, € RZM+2)x2IVI

with M = m(7’) = n — 2 to describe all the triangle constraints
in 77 and Ailizig

T
P, = [rl, 2, ... Tam—2, Tam—1, Tam> Tom+1, r2M+2]
R a» * * * * 0
Alqjip Aiqjip Aiqjip
0 Ai1 Ai2 0 0 Aj
= Aigizf Aigizj Az | o
0 0 0 Ai3 Ai4 Aj
Alqipiz Alqipiz Alqipiz
0 Ai1 Ai2 Ai3 0 0

where r; € R?VI*1, We remark that the proof of this part is
more challenging than the third part of Type-II triangle dele-
tion since the last six rows of P, are independent. Thus, the
proof of this part needs the involvement of all the triangle con-
strains in 77 and all the vertices. After comparing the structure of
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R4y, R, and P, the aim of this part is to prove that linear depen-
dence of {r{, 15, ..., 2pm_1, 2m} Will imply linear dependence in
{r1,r2, ..., "am—4, Tapm+1, 2m+2}- The row dependence in R4 can
be described by

w1l + wary + - - - + wam—1"2m—1 + waml2m = 0, (27)

where w;, i = 1, ..., 2M are scalars which are not all zeros. Using
the definitions of A]A il A]A 431 the row dependence correspond-
ing to vertex j in Ry is wrltten by

o sin a,3ﬂ4
wym—3 COS a,z,ﬂ WoM—2 SN, 0 = WaM—1 5
sinog ;)
sin 0‘13;14
wom—3 Sin a1211] + wopm—2 COS Ollzlu M =5 — (28)
sino ;.
1Jiz
The row dependence corresponding to vertex i, in Ry is
oiri(n) + - -+ + wam—arom—a(M) = wam—3sineg; ;.
o1r1(n2) + - -+ + wam—aram—4(n2) = wom—2sineg; ;. (29)

where n; = 2|V| — 7, n, = 2|V| — 6, and r{(n;) € R denotes
the nith element of the vector r;. Since the last ten columns of
P, are indexed by iy, iy, i3, i4, j, respectively, r{(ny) and ry(n;) are
vector r1’s two elements corresponding to the vertex i,. The row
dependence corresponding to vertex i3 in R4 can be written by

w1r1(n3) + - - - + wom—arom—4a(N3) + wom—1 Sin 011413] cos 0111413

= wom Sinog ;. sineg; ;.

wir1(ng) + - + woM—aT2m—4(N4) 4 woy—1 Sin 011413] sin 0111413

J— 1 *

= —wom SIN 0 COS & ., (30)

where n3 = 2|V|—5, and ny = 2|V|—4. Also, the row dependence
corresponding to i4 in R 4 can be written by

w1r1(ns) + - - - + wom—aloam—a(ns) + wam— 1AAW3J(1 1)
+ wZMAﬁ’W(z, 1)=0,
o1ri(ng) + -+ + wan—aTam-a(n6) + wam—1A;, (1, 2)

+ oA, *(2,2) =0 (31)
where ns = 2|V| — 3,n5 = 2|V| — 2, and Ail“w(i,j) represents
the element of the ith row and jth column of Aﬁ"”y. Now, we
aim to prove the existence of row dependence in Ry, ie., in
{r1,m2, ..., "am—4, Fam+1, 2m+2}- We consider the first case where
in the row dependence (27), the coefficients in front of roy_1, rom
are zero, i.e.,, wpy—1 = 0 and wyy = 0. Then, according to (28),
one has wyy—3 = 0 and wyy—» = 0 because R(wj,;,;) is a rotation
matrix. This indicates that the row dependences of R ,» must exist
in its first row block, i.e., [R4» * x % %], which is also the first row
block of R 4,. Therefore, row dependences exist in R 4,. Then, we
consider the remaining case where in the row dependence (27),
the coefficients in front of ry,_1, 1oy are not all zero, i.e., at least
one of wyy_1, woy is nonzero. In this case, AA"M AA"“’ in Ry
are involved in the row dependence (27). Accordmg to (28), one
has that at least one of wypy_3, wan—z is Nonzero, i.e., AA”]‘2 ALR
in R4 are also involved in the row dependence (27). Then tﬁere
must exist a subtrigraph 77(Vy, A7) of 77 with {j, i1, i3, i3, i4} <
V7, {A1, As} C A7, and m(77) > |V;| — 2, because the triangular
angle rigidity matrix R4 has row dependences. After the Type-
IIl triangle deletion, 7o must have a subtrigraph 7g(Vs, Ag) with
Vs = V; — {j} and A3 = A; — Ay — Ag + As, which implies
[Vg| = |V7]—1and m(7g) = m(77)— 1. Since m(77) > |V;|—2, one
has m(7g) > |Vg| — 2, which implies that 7g is over-constrained,
i.e., row dependences exist in 7g. Since 7g is a subtrigraph of 7o,
row dependences exist in R 4,. Combining the above two cases
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yields that row dependences in R, implies row dependences
in R 4,. According to Whiteley (1996), one has that independent
R4, = independent R for all generic configurations. Using
Theorem 4, one has that triangularly angle rigid 7= triangularly
angle rigid 77. O

Appendix F. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.automatica.2022.110414.
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