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a b s t r a c t

This paper solves the simultaneous localization and formation (SLAF) problem for a multi-agent system
moving in 2D plane. The multi-agent system consists of leaders who have the knowledge of their
absolute positions in the global coordinate frame, and followers who do not know their absolute posi-
tions but have angle-only measurements and communication with respect to their neighboring agents.
The aim of SLAF is to simultaneously localize and control the followers such that a desired formation
among the leaders and followers can be achieved by using locally available sensing and communication
information. To handle the challenging situation where the formation becomes unlocalizable at some
nongeneric configurations, a perturbation-based SLAF algorithm is proposed such that the SLAF task
can be achieved with an asymptotic convergence. To meet different tasks’ requirements, three types
of distributed SLAF algorithms are designed for the followers when the leaders are static, move with
constant, or time-varying velocities, respectively. The effect of measurement noises, extension to other
types of sensor measurements, requirement on agents’ coordinate frames, collision and collinearity
avoidance are also discussed. To validate the theoretical results, simulation examples corresponding
to the discussed scenarios are carried out.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

Motivated by broad applications in multi-robot search and
escue (Shiroma, Chiu, Sato, & Matsuno, 2005), navigation and
utonomy (Ravankar et al., 2018), and swarm intelligence and
pace exploration (Hu, Niu, Carrasco, Lennox, & Arvin, 2020),
wo fundamental problems have been extensively investigated
ecently in the research community of networked multi-agent
ystems, namely network localization and formation shape con-
rol (Han, Guo, Xie, & Lin, 2018). In the network localization
roblem, the multi-agent system consists of leaders who have
he knowledge of their absolute positions in the global coordinate
rame, and followers who do not know their absolute positions
ut have sensor measurements with respect to their neighbors
nd wireless channels to communicate with their neighbors (Lin,
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Han, Zheng, & Yu, 2017; Shames, Bishop, & Anderson, 2012). The
aim of the network localization problem is to determine the posi-
tions of the followers by using their available communication and
measurement information (Zhao & Zelazo, 2016). According to
the categories of sensor measurements, network localization can
be mainly classified into relative position, distance, bearing, and
angle-based localization (Chen, 2022; Diao, Lin, & Fu, 2014; Fang,
Li, & Xie, 2021; Jing, Wan, & Dai, 2021; Lin et al., 2017; Shames
et al., 2012; Zhao & Zelazo, 2016), to name a few. Differently, the
aim of formation shape control is to achieve a prescribed geomet-
ric shape among the agents by using inter-agent communication
and measurements, such as absolute positions, relative positions,
distances, bearings and angles (Ahn, 2020; Anderson, Yu, Fidan, &
Hendrickx, 2008; Chen, Cao, & Li, 2021; Jing, Zhang, Lee, & Wang,
2019; Oh & Ahn, 2013; Oh, Park, & Ahn, 2015; Zhao & Zelazo,
2016).

Since the configuration of a mobile multi-agent network is
dynamic and each agent usually has limited sensing capability,
the localization and formation control of those networked agents
are usually required to be achieved simultaneously in practical
tasks. This motivates the study of simultaneous localization and
formation which aims to simultaneously localize and control
the followers such that a desired formation among leaders and
followers can be achieved. The available information of each
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ollower in the SLAF problem consists of communication infor-
ation from its neighbors and measurement information such as
istances, bearings, relative positions, and angles, with respect
o its neighbors. Recently, some efforts have been made on si-
ultaneous relative localization and formation problem, where

elative positions among neighboring agents are localized using
he measurements of bearing (Ye, Anderson, & Yu, 2017), distance
nd relative velocity (Han et al., 2018), or distance and self-
isplacement (Guo, Li, & Xie, 2019; Nguyen, Qiu, Nguyen, Cao,
Xie, 2019). Although relative localization is adequate for the

chievement of some formation tasks, the awareness of an agent’s
bsolute position in the global coordinate frame is also important,
specially in the execution of practical tasks, such as search and
escue. Motivated by this, simultaneous localization and forma-
ion algorithms have been developed in Guo, Jayawardhana, Lee,
nd Shim (2020) and Huang, Farritor, Qadi, and Goddard (2006)
hich rely on inter-agent relative position measurements or the
nowledge of the global coordinate frame at the initial time.
Unlike the previous works on localization of static networks

Chen, 2022; Diao et al., 2014; Fang et al., 2021; Jing et al.,
021; Lin, Han, & Cao, 2020; Lin, Han, Zheng, & Fu, 2016; Zhao
Zelazo, 2016), formation control (Chen et al., 2021; Hu et al.,

020; Jing et al., 2019; Zhao & Zelazo, 2016), and simultaneous
elative localization and formation (Guo et al., 2020, 2019; Han
t al., 2018; Nguyen et al., 2019), we investigate the simultaneous
ocalization and formation problem where the followers’ absolute
ositions are estimated using their angle-only measurements and
ommunication information with respect to their neighbors. Note
hat angle measurements are more accessible than relative po-
ition measurements, but their nonlinearity makes the estimator
nd control design more challenging. Specifically, the multi-agent
etwork is unlocalizable when they reach a nongeneric config-
ration, such as collinear configuration. In this paper, to meet
ifferent demands during the execution of practical tasks, three
ypes of SLAF algorithms are designed for the followers when
he leaders are static, move with constant velocities, or move
ith time-varying velocities, respectively. The main advantages
f the proposed SLAF approach lie in three aspects. Firstly, the
roposed SLAF algorithms allow the followers to have angle-only
easurements which can be acquired from monocular cameras
nd directional sensor arrays. Secondly, the leaders in the SLAF
roblem can be static, move with constant or time-varying ve-
ocities. For the case of leaders moving with constant velocities,
o reduce communication burden, the estimation of the constant
elocity is avoided in the followers’ SLAF algorithm. Thirdly, to
eal with unlocalizable situations when the multi-agent net-
ork reaches nongeneric configurations, a perturbation-based
lgorithm is proposed to achieve the SLAF task.
The rest of the paper is organized as follows. Section 2 presents

he preliminaries on angle measurements and angle-based local-
zation. Section 3 discusses SLAF for the case of static leaders.
ections 4 and 5 discuss SLAF for the cases of dynamic leaders
oving with constant and time-varying velocities, respectively.
ome further discussion is conducted in Section 6. Simulations
re provided in Section 7.

. Preliminaries on angle measurements and angle-based lo-
alization

.1. Notations

Consider a 2D multi-agent network consisting of nl ≥ 2
eaders and nf > 0 followers. Let Vl = {1, 2, . . . , nl} be the set
f leaders, whose positions, denoted by pl = [p⊤1 , p⊤2 , . . . , p⊤nl ]

⊤
∈

R2nl , are known by themselves. Let Vf = {nl + 1, nl + 2, . . . , n}
e the set of followers with n + n = n, whose positions,
f l

2

denoted by pf = [p⊤nl+1, p
⊤

nl+2
, . . . , p⊤n ]

⊤
∈ R2nf , are unknown.

We assume that no overlapping points exist in p = [p⊤l , p⊤f ]
⊤.

Let I2, 1n, ⊗, λmax, λmin, det() be the 2-by-2 identity matrix,
n × 1 column vector of all ones, the Kronecker product, the
maximum eigenvalue, the minimum eigenvalue of a symmetric
matrix, and the determinant of a square matrix, respectively.

Denote by R̄(θ ) :=
[
cos θ − sin θ

sin θ cos θ

]
∈ SO(2) the 2D rotation

matrix with rotation angle θ ∈ [0, 2π ). To avoid confusion, the
notation of a quantity, e.g., x, represents that it is constant, and
x(t) represents that it is time-varying, and x∗ represents that
it is desired. For x = [x1, . . . , xn]⊤ ∈ Rn and β ∈ R, let
β
= [xβ

1 , . . . , xβ
n ]
⊤ and sigβ (x) = [sigβ (x1), . . . , sigβ (xn)]⊤ where

sigβ (xi) = sgn(xi)|xi|β and sgn(·) represents the signum function.

2.2. Angle measurements and angle-induced linear equations

We introduce angle measurements and their angle-induced
linear equations based on Chen (2022) and Chen et al. (2021).
Note that describing agents’ geometric relationship as a linear
algebraic equation is an efficient way to transfer a nonlinear
localization problem into a linear least-square optimization prob-
lem (Lin et al., 2016; Zhao & Zelazo, 2016).

Similar to Chen et al. (2021), we define the signed interior
angle measurement αkij ∈ [0, 2π ) among agents k, i, j as

αkij :=

{
arccos(b⊤ij bik), if b⊤ij b

⊥

ik ≥ 0,
2π − arccos(b⊤ij bik), otherwise,

(1)

where bij :=
pj−pi
∥pj−pi∥

is the bearing from agent i to agent j, pi ̸=
pj, i, j ∈ Vl ∪ Vf , b⊥ik := R̄( π

2 )bik = [
0 −1
1 0 ]bik. Note that αkij

represents the angle rotating from the bearing direction bik to
the bearing direction bij under the counterclockwise direction. In
△ijk, one has
pj − pi
∥pj − pi∥

= R̄(αkij)
pk − pi
∥pk − pi∥

. (2)

Using the law of sines ∥pk−pi∥
∥pj−pi∥

=
sinαijk
sinαjki

and the fact (2), the angle-

induced linear equation (Chen, 2022) in △ijk can be written as

fijk(α, p) = A△ijki (α)pi + A△ijkj (α)pj + A△ijkk (α)pk = 0, (3)

where the coefficient matrices

A△ijki (α) :=
(
sinαjkiR̄(αkij)− sinαijkI2

)
∈ R2×2,

A△ijkj (α) := sinαijkI2 ∈ R2×2,

A△ijkk (α) := − sinαjkiR̄(αkij) ∈ R2×2

are only related to the measured interior angles αjki, αijk, αkij.
When pi, pj, pk are collinear, the linear Eq. (3) is degraded and
cannot play any role. According to (1), angle measurements are
independent of the orientations of agents’ coordinate frames,
which is an advantage over relative position or bearing measure-
ments.

Remark 1. For a static network with randomly chosen configu-
ration p, the probability of the existence of collinear points in p is
zero (Connelly & Guest, 2015, Thm 7.2.1). However, for dynamic
networks, particularly the multi-agent network conducting the
SLAF task, the chance of collinearity among neighboring agents
is inevitable. Therefore, we will pay special attention to collinear
configurations in the follow-up analysis since they will make the
linear Eq. (3) invalid.
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n

We now introduce the notion of triangular angularity to de-
scribe a multi-agent network with multiple triangles and their
associated angles. For the vertex set V = {1, 2, . . . , n} where
ode i ∈ V corresponds to agent i, define a three-vertex triplet

(i, j, k) to describe the angle αijk. Then, we define A ⊂ V ×
V × V = {(i, j, k), i, j, k ∈ V, i ̸= j ̸= k} as an angle set,
of which each element is a triplet. Since αijk + αkji ≡ 2π ,
constraining αijk is equivalent to constraining αkji. Thus (i, j, k)
and (k, j, i) are interchangeable with each other in A. Then, the
combination of the vertex set V , the angle set A and the position
configuration p ∈ R2n is called an angularity which we denote by
A(V,A, p)(Chen et al., 2021). We say A is a triangular angle set if
for every (i1, j1, k1) ∈ A, there also exists {(j1, k1, i1), (k1, i1, j1)} ⊂
A. The number of triangles in a triangular angle set A is denoted
by m ∈ N+. We say A(V,A, p) is a triangular angularity if A is
a triangular angle set (Chen, 2022). If (i, j, k) ∈ A, then {j, k} ∈
Ni, {i, k} ∈ Nj, {i, j} ∈ Nk where Ni represents i’s neighbor set.

Writing all the angle-induced linear Eqs. (3) from a triangular
angularity A(V,A, p) into a compact form, one has RA(α)p = 0
where RA(α) ∈ R2m×2n is defined as the angle measurement matrix
which can be written as

⎡⎢⎢⎢⎣
··· Vertex i ··· Vertex j ··· Vertex k ···

1st △ · · · · · · · · · · · · · · · · · · · · ·

··· · · · · · · · · · · · · · · · · · · · · ·

△ijk 0 A△ijki 0 A△ijkj 0 A△ijkk 0
··· · · · · · · · · · · · · · · · · · · · · ·

mth △ · · · · · · · · · · · · · · · · · · · · ·

⎤⎥⎥⎥⎦ (4)

whose row blocks are indexed by the triangles in A and column
blocks the vertices in V . According to Chen (2022), Chen et al.
(2021, Lem2), the maximum rank of RA(α) is 2n − 4 since the
kernel of RA(α) always includes translation, rotation and scaling
of p. Although the angle measurement matrix is denoted as RA(α),
it is a function of sin(αjik(p)) and cos(αjik(p)), (j, i, k) ∈ A.

2.3. Localizability conditions and localization law

For a static multi-agent network, the aim of localization can
be formulated as a least-square optimization problem with cost
function (Fang et al., 2021; Zhao & Zelazo, 2016)

J(p̂) = p̂⊤R⊤A(α)RA(α)p̂ (5)

where p̂ = [p⊤l , p̂⊤f ]
⊤
∈ R2n and p̂f ∈ R2nf denotes the

estimates of the followers’ positions pf . If we partition the angle
measurement matrix RA(α) = [Rl

A Rf
A] into leaders’ part Rl

A ∈

R2m×2nl and followers’ part Rf
A ∈ R2m×2nf , we define the matrix

L(α) in the form of

L(α) = R⊤A(α)RA(α) =
[
Lll Llf
Lfl Lff

]
, (6)

where Lll = (Rl
A)⊤Rl

A ∈ R2nl×2nl , Llf = (Rl
A)⊤Rf

A ∈ R2nl×2nf ,
Lfl = (Rf

A)⊤Rl
A ∈ R2nf×2nl , and Lff = (Rf

A)⊤Rf
A ∈ R2nf×2nf is

defined as the angle localization matrix of the network A.

Lemma 1. For a static multi-agent network A, one has (i) Lff pf +
Lflpl ≡ 0; (ii) The network is localizable (p̂f can be uniquely
determined) iff Lff is nonsingular; (iii) If the network is localizable,
then pf can be uniquely calculated by pf = −L−1ff Lflpl; (iv) Lff is
nonsingular if Rank(RA(α(p))) = 2n− 4.

The proof of Lemma 1 is straightforward by following the
results in Chen (2022), Chen et al. (2021), Diao et al. (2014), Fang
et al. (2021), Lin et al. (2016) and Zhao and Zelazo (2016). After

knowing when the network is localizable, we now introduce how

3

to design a distributed position estimator ˙̂pf (t) for the followers
such that p̂f (t)→ pf as t →∞. Define the cost function

J̃(p̂f ) = p̂⊤L(α)p̂ = p⊤l Lll(α)pl + 2p⊤l Llf (α)p̂f + p̂⊤f Lff (α)p̂f .

Following Chen (2022), Fang et al. (2021), Zhao and Zelazo (2016),
a gradient-descent localization law for the followers can be de-
signed as

˙̂pf (t) = −∇p̂f J̃(p̂f ) = −Lff (α)p̂f (t)− Lfl(α)pl (7)

whose component form for each follower i ∈ Vf is

˙̂pi(t) =−
∑

(i,j1,k1)∈Ā

(A△ij1k1i (α))⊤f △ij1k1i (α, p̂(t)) (8)

−

∑
(j2,i,k2)∈Ā

(A△j2ik2i (α))⊤f △j2ik2i (α, p̂(t))

−

∑
(j3,k3,i)∈Ā

(A△j3k3 ii (α))⊤f △j3k3 ii (α, p̂(t)),

where

f △ij1k1i (α, p̂(t)) = A△ij1k1i (α)p̂i(t)+ A△ij1k1j1
(α)p̂j1 (t)

+ A△ij1k1k1
(α)p̂k1 (t),

f △j2ik2i (α, p̂(t)) = A△j2 ik2j2
(α)p̂j2 (t)+ A△j2 ik2i (α)p̂i(t)

+ A△j2 ik2k2
(α)p̂k2 (t),

f △j3k3 ii (α, p̂(t)) = A△j3k3 ij3
(α)p̂j3 (t)+ A△j3k3ik3

(α)p̂k3 (t)

+ A△j3k3 ii (α)p̂i(t),

and {j1, j2, j3, k1, k2, k3} ∈ Ni, p̂j(t) = pj,∀j ∈ Vl, Ā ⊂ A, |Ā| = m
such that if (i, j, k) ∈ Ā, then (j, i, k) /∈ Ā and (i, k, j) /∈ Ā. Since all
agents are static in this localization problem, the constant matrix
A△jiki (α) ∈ R2×2 is only related to the constant interior angles
in △jik. Moreover, (8) is distributed and can be implemented
by using agent i’s one-time angle measurement to obtain αjik,
one-time communication with agent j to obtain αkji and contin-
uous communication with agents j, k to obtain p̂j(t), p̂k(t), where
j ∈ {j1, j2, j3}, k ∈ {k1, k2, k3}. Since Lff (α),Lfl(α) are constant
matrices, it follows straightforwardly from (7) and Lemma 1 that
p̂f (t) → pf globally as t → ∞ if the triangular angularity A is
localizable.

Different from Chen (2022), Fang et al. (2021) and Zhao and
Zelazo (2016) and the localization problem introduced earlier
where all static agents form a static angularity A(V,A, p), the
SLAF problem to be investigated in this paper deals with dynamic
angularity A(V,A, p(t)) since the positions p(t) of the agents are
time-varying. Therefore, one of the main challenges in the SLAF
problem is that the interior angles formed by the agents are
time-varying. According to (4) and (6), the matrices Lff (α(t)) and
Lfl(α(t)) are also time-varying, which makes the control design
and stability analysis challenging due to the existence of high
nonlinearity. The following three sections introduce our solu-
tions to SLAF problems with static leaders, leaders with constant
velocities, and leaders with time-varying velocities, respectively.

3. SLAF for the case of static leaders

In this section, we first formulate the problem mathematically,
then design estimation laws to let the followers know their
desired positions, and finally design estimation laws to localize
them and design control laws to drive them from their initial
positions to their desired positions, respectively.
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Fig. 1. The overall localization and control framework.
w

.1. Problem formulation

Consider a time-varying angularity A(V,A, p(t)) where the
eaders are static, i.e., ṗl(t) = 0 and the followers are dynamic,
.e., ṗf (t) ̸= 0. The desired triangular angularity A∗(V,A, p∗) is lo-
alizable where p∗ denotes the desired positions of all the agents
hich are assumed to be generic (Chen et al., 2021, Def 4), and
∗ are the desired angles defined by A. Denote by p∗l = pl(0) the

leaders’ desired positions which are known by themselves, and p∗f
the followers’ desired positions which are uniquely determined by
p∗l and α∗ according to Lemma 1(iii). Consider that each follower
is governed by the single-integrator dynamics

ṗi(t) = ui(t), i ∈ Vf . (9)

The localization task is to design estimator ˙̂pi(t) such that

lim
t→∞

(p̂i(t)− pi(t)) = 0, i ∈ Vf . (10)

The formation task is to design control input ui(t) such that

lim
t→∞

(pi(t)− p∗i ) = 0, i ∈ Vf . (11)

The aim of SLAF is to simultaneously achieve (10) and (11) for
the followers. We consider the scenario where ˙̂pi, ui,∀i ∈ Vf are
only the functions of αijk(t), αjik(t), α∗ijk, α

∗

jik, p̂i(t), p̂j(t), p̂
∗

i (t), p̂
∗

j (t),
∀j, k ∈ Ni, i.e., the real-time angle measurements and the desired
angles formed with the neighbors, the real-time estimates of own
and the neighbors’ positions, and the real-time estimates of own
and the neighbors’ desired positions. The main strategy of our
solution is to simultaneously estimate each follower’s real-time
position and drive the follower from its current position to its
desired position. Since each follower i does not know its desired
position p∗i but knows the desired angles α∗ijk with respect to
its neighbors j, k, each follower i needs to estimate its desired
position p∗i by using the information of α∗ijk, α

∗

jik firstly.

3.2. Estimation of the followers’ desired positions within finite time

In this subsection, we design estimation law ˙̂p∗i (t) using the
information of α∗ijk, p̂

∗

i (t), p̂
∗

j (t),∀(i, j, k) ∈ A such that each fol-
lower i can obtain p∗i within finite time. Towards this end, we
design the estimation law as
˙̂p∗f (t) = −sig

β1
(
Lff (α∗)p̂∗f (t)+ Lfl(α∗)pl

)
(12)

whose component form for each follower i ∈ Vf is

˙̂p∗i (t) = −sig
β1 [

∑
(i,j1,k1)∈Ā

(A△ij1k1i (α∗))⊤f △ij1k1i (α∗, p̂∗(t))

+

∑
(j2,i,k2)∈Ā

(A△j2 ik2i (α∗))⊤f △j2 ik2i (α∗, p̂∗(t))

+

∑
(j3,k3,i)∈Ā

(A△j3k3ii (α∗))⊤f △j3k3 ii (α∗, p̂∗(t))] (13)

where p̂∗j (t) = p∗j ,∀j ∈ Vl, 0 < β1 < 1, f △ij1k1i (α∗, p̂∗(t)) =
A△ij1k1 (α∗)p̂∗(t) + A△ij1k1 (α∗)p̂∗ (t) + A△ij1k1 (α∗)p̂∗ (t), and p̂∗(t)
i i j1 j1 k1 k1 i

4

denotes agent i’s estimate of p∗i . Since the designed estimation
law (13) only uses the local information of α∗ijk, p̂

∗

i (t) and the
communication information of p̂∗j (t), j ∈ Ni from its neighbor j,
it is distributed and is independent of agents’ real-time positions
p(t). Then, one has the following results.

Theorem 1. If the desired triangular angularity A∗(V,A, p∗) is
localizable, then p̂∗f (t) under (12) converges to p∗f within finite time.

Proof. By using Lemma 1, Lff (α∗) is nonsingular and positive
definite. Design Lyapunov function candidate

V1(t) = 0.5p̃∗⊤f (t)Lff (α∗)p̃∗f (t), (14)

where p̃∗f (t) = p̂∗f (t)−p∗f . Taking the time-derivative of (14) yields

V̇1(t) =p̃∗⊤f (t)Lff (α∗) ˙̂p∗f (t)

=− p̃∗⊤f (t)Lff (α∗)sigβ1
(
Lff (α∗)p̂∗f (t)+ Lfl(α∗)pl

)
=− p̃∗⊤f (t)Lff (α∗)sigβ1

(
Lff (α∗)p̃∗f (t)

)
, (15)

where we have used the fact p∗f = −L
−1
ff (α∗)Lfl(α∗)pl by following

Lemma 1. It follows that

V̇1(t) = −(Lff (α∗)p̃∗f (t))
⊤sigβ1

(
Lff (α∗)p̃∗f (t)

)
≤ −c1V

β1+1
2

1 (t),

here c1 = 2
β1+1

2 (λβ1+1
min (Lff (α∗))/λ

β1+1
2

max (Lff (α∗))) > 0, 0 <
β1+1

2 < 1. According to Hong, Huang, and Xu (2001, Lemma1),

one has that there exists a settling time T1 = 2
c1(1−β1)

V
1−β1

2
1 (0)

such that for ∀t > T1, V1(t) = 0, i.e., p̂∗f (t) = p∗f . □

After the followers have the knowledge of their desired po-
sitions by (12), we then design position estimation laws and
formation control laws to simultaneously achieve (10) and (11).
The overall localization and control framework is shown in Fig. 1.

Remark 2. In this SLAF problem, the leaders are required to know
their absolute positions in the global coordinate frame, which can
be fulfilled by equipping GPS receivers. In the case where GPS
signal is unavailable, the leaders can establish a temporary global
coordinate frame using local relative position measurements with
respect to some common environmental landmarks, by which the
leaders can obtain their coordinates with respect to the tempo-
rary global coordinate frame. In addition, according to (4) and
Lemma 1, the minimum number of angle constraints inA to make
A∗ localizable is 2n − 4, which is also the minimum number of
required angle measurements to conduct the SLAF task.

3.3. Simultaneous localization and formation

Without requiring the knowledge of agents’ absolute positions
or relative positions with respect to their neighbors, we design
the simultaneous localization and formation algorithm for the
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f

p

ollowers as
˙̂
f (t) =− Lff (α(t))p̂f (t)− Lfl(α(t))pl

+ uf (t)− k1(p̂f (t)− p̂∗f (t)), (16)

ṗf (t) =uf (t) = −k1(p̂f (t)− p̂∗f (t)), (17)

where k1 is a positive scalar, α(p(t)) is abbreviated as α(t), and
p̂∗f is governed by (12). Since pf (t) is time-varying under (16) and
(17), the angles α(t) among the leaders and the followers and the
matrices Lff (α(t)),Lfl(α(t)) are all time-varying. The component
form of the simultaneous localization and formation algorithm
(16) and (17) can be written as

˙̂pi(t) = −
∑

(i,j1,k1)∈Ā

(A△ij1k1i (α(t)))⊤f △ij1k1i (α(t), p̂(t))

−

∑
(j2,i,k2)∈Ā

(A△j2 ik2i (α(t)))⊤f △j2 ik2i (α(t), p̂(t))

−

∑
(j3,k3,i)∈Ā

(A△j3k3ii (α(t)))⊤f △j3k3 ii (α(t), p̂(t))

+ ui(t)− k1(p̂i(t)− p̂∗i (t)), (18)

ṗi(t) = ui(t) = −k1(p̂i(t)− p̂∗i (t)), i ∈ Vf , (19)

where f △ij1k1i (α(t), p̂(t)) = A△ij1k1i (α(t))p̂i(t)+ A△ij1k1j1
(α(t))p̂j1 (t)+

A△ij1k1k1
(α(t))p̂k1 (t) and p̂j(t) = p∗j ,∀j ∈ Vl. According to the

component form of the SLAF algorithm for agent i, one can see
that (18) and (19) only need the angle measurement information
αjik(t), αijk(t) and the communication information p̂j(t), ∀j ∈ Ni.
Therefore, the simultaneous localization and formation algorithm
(16) and (17) is distributed and can be implemented using local
angle measurements with respect to neighbors and communica-
tion information from neighbors. Before giving stability analysis,
we need an assumption such that (16) is well-defined.

Assumption 1. No collision occurs among neighboring agents,
i.e., pi(t) ̸= pj(t), pj(t) ̸= pk(t) and pi(t) ̸= pk(t) for ∀(j, i, k) ∈ A
and t ≥ 0.

Due to the absence of inter-agent distance measurements,
Assumption 1 is a common assumption required also in other
bearing-only or angle-only formation control problems (Chen
et al., 2021; Zhao, Li, & Ding, 2019; Zhao & Zelazo, 2016). Given a
specific formation control law, inter-agent collision is determined
by the initial formation (Zhao et al., 2019). In this paper, we will
also present sufficient conditions on the agents’ initial states to
guarantee both collision avoidance and system convergence.

Now, we conduct the stability analysis for (16) and (17). First,
we aim to obtain that ˙̂pf (t), uf (t) are bounded for t ≤ T1. Accord-
ing to the proof of Theorem 1, p̂∗f (t) is always bounded for ∀t ≤
T1 since its evolution is independent of (16)–(17). Then, under
Assumption 1 and bounded initial states p̂f (0), pf (0), one has that
˙̂pf (t), uf (t) in (16)–(17) are bounded for t ≤ T1. This is because
Lff (α(t)),Lfl(α(t)) are functions of sinαjik(t) and cosαjik(t), (j, i, k)
∈ A, which are bounded for any angles αjik(t) satisfying Assump-
tion 1. Therefore, pf (t), p̂f (t) will not diverge for t ≤ T1. In the
following, we analyze the stability of (16)–(17) for t > T1, in
which p̂∗f (t) = p∗f . Define p̃f (t) := (pf (t) − p∗f ) ∈ R2nf as the
position-based formation error, and p̃ef (t) := (p̂f (t)−pf (t)) ∈ R2nf

as the position estimation error. The dynamics of p̃f (t) and p̃ef (t)
under the algorithms (16) and (17) can be written as[
˙̃pef (t)
˙

]
= −

[
Lff (α(t))+ k1I2nf k1I2nf

k I k I

][
p̃ef (t)
p̃ (t)

]
, (20)
p̃f (t) 1 2nf 1 2nf f

5

where we have used the facts that Lff (α(t))pf (t)+Lfl(α(t))pl = 0
and p̂f (t) − p∗f = p̃f (t) + p̃ef (t). Compared to the localization
dynamics (7) for static angularities, the simultaneous localiza-
tion and formation dynamics (20) for dynamic angularities are
more complicated because the system matrix in (20) is state-
dependent and highly nonlinear. Now, we present the results on
the closed-loop dynamics (20).

Theorem 2. Consider a multi-agent system consisting of static
leaders and dynamic followers governed by (9). Suppose that each
follower i ∈ Vf has angle measurements αjik(t) and the informa-
tion p̂∗j (t), p̂j(t), αijk(t) obtained from the communication with its
neighbor j ∈ Ni. Under the SLAF algorithms (16)–(17), if Assump-
tion 1 holds and the desired triangular angularity A∗(V,A, p∗) is
localizable, then the following conclusions hold:

(i) The equilibrium set of the dynamics (20) is

Ωes = {(p̃ef , p̃f )| R
f
A(α)p̃ef = 0, p̃ef + p̃f = 0}

= {(p̃ef , p̃f )| R
f
A(α)(pf − p∗f ) = 0, p̂f = p∗f } (21)

Moreover, no matter what the initial states p̃ef (0), p̃f (0) are, the
closed-loop dynamics (20) always converge to the set Ωes.

(ii) The desired equilibrium Ωes1 = {(p̃ef , p̃f )| p̃ef = 0, p̃f = 0}
of (20) is locally and exponentially stable.

(iii) The desired equilibrium of the closed-loop dynamics (20) is
exponentially stable iff there exist some positive scalars T2, γ1, γ2
such that for ∀t > 0

γ1I2nf ≤
∫ t+T2

t

[ Lff (α(τ ))+k1I2nf k1I2nf
k1I2nf k1I2nf

]
dτ ≤ γ2I2nf . (22)

Moreover, if no collinearity occurs ∀t > 0 for all the triangles defined
in A, then the desired equilibrium of (20) is asymptotically stable.

Proof of Theorem 2. (i): Letting ˙̃pef = 0, ˙̃pf = 0 in (20), one has
that{
Lff (α)p̃ef + k1p̃ef + k1p̃f = 0
k1p̃ef + k1p̃f = 0

(23)

which implies that p̃ef + p̃f = p̂f − p∗f = 0 and Lff (α)p̃ef = 0.
According to (6), one has p̃⊤efLff (α)p̃ef = (Rf

A(α)p̃ef )⊤R
f
A(α)p̃ef = 0

which implies that Rf
A(α)p̃ef = 0. To prove that the solutions of

(20) starting from arbitrary initial conditions will converge to Ωes,
we design the Lyapunov function candidate as

V2(t) = 0.5p̃⊤ef (t)p̃ef (t)+ 0.5p̃⊤f (t)p̃f (t) (24)

which is positive definite and radially unbounded. Taking the
time-derivative of V2(t) along the closed-loop dynamics (20)
yields

V̇2(t) = p̃⊤ef (t) ˙̃pef (t)+ p̃⊤f (t) ˙̃pf (t) (25)

= −p̃⊤ef (t)Lff (α(t))p̃ef (t)− k1p̃⊤ef (t)p̃ef (t)

− 2k1p̃⊤ef (t)p̃f (t)− k1p̃⊤f (t)p̃f (t)

= −p̃⊤ef (t)Lff (α(t))p̃ef (t)− k1∥p̃ef (t)+ p̃f (t)∥2 ≤ 0

where we have used the fact that Lff (α(t)) is positive semi-
definite for any p(t) ∈ R2n satisfying Assumption 1. Since V2(t) >

0, V̇2(t) ≤ 0, according to LaSalle’s invariance principle (Khalil,
2002, Corollary 4.2), one has that all the solutions of (20) con-
verge to the set {(p̃ef , p̃f )| V̇2(t) = 0} = {(p̃ef , p̃f )| R

f
A(α)p̃ef =

0, p̃ef + p̃f = 0}. □

Proof of Theorem 2. (ii): To conduct linearization for local sta-
bility analysis, we consider U = {Y |∥Y∥ ≤ re} as the small
neighborhood of the desired equilibrium Y = [p̃⊤ , p̃⊤]⊤ = 0,
ef f
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here re is chosen to be small such that inside U, there are no
onfigurations with inter-agent collinearity or collision. Note that
uch kind of re always exists because Y = 0 corresponds to the
esired formation configuration (which is generic, i.e., without
nter-agent collinearity and collision) and an arbitrary configu-
ation in U is close to the desired configuration. Since V̇2(t) ≤ 0
or all Y ∈ U, U is a positively invariant set under (20). When
(0) ∈ U, linearizing ˙̃pf in (20) around the desired equilibrium
es1 yields

˙̃
f (t) =

[
∂(−k1p̃ef (t)− k1p̃f (t))

∂ p̃ef (t)
|p̃ef (t)=0,p̃f=0

]
p̃ef (t)

+

[
∂(−k1p̃ef (t)− k1p̃f (t))

∂ p̃f (t)
|p̃ef (t)=0,p̃f=0

]
p̃f (t)

=− k1p̃ef (t)− k1p̃f (t). (26)

ince ∂ cosαjik
∂pi

=
∂(b⊤ij bik)

∂pi
=

bTik(I2−bijb
⊤
ij )

∥pi−pj∥
+

bTij(I2−bikb
⊤
ik )

∥pi−pk∥
and ∂ sinαjik

∂pi
=

∂(b⊤ikb
⊥
ij )

∂pi
=

b⊥Tij (I2−bikb⊤ik )

∥pi−pk∥
+

bTik(I2−b
⊥
ij b
⊥⊤
ij )

∥pi−pj∥
, the partial derivatives of

the elements in Lff (α(t)) with respect to pf are well-defined and
ontinuous for all Y ∈ U. Following Khalil (2002, Section4.3), the
inearized dynamics of ˙̃pef is

˙̃
ef (t) = −Lff (α∗)p̃ef (t)− k1p̃ef (t)− k1p̃f (t), (27)

here we have also used the fact Lff (α(t))|p̃ef (t)=0,p̃f=0 = Lff (α∗).
Writing (26)–(27) into a compact form yields[
˙̃pef (t)
˙̃pf (t)

]
= −

[
Lff (α∗)+ k1I2nf k1I2nf

k1I2nf k1I2nf

][
p̃ef (t)
p̃f (t)

]
. (28)

he characteristic polynomial of (28) is

et[(λI2nf + Lff (α∗)+ k1I2nf )(λ+ k1)− k21I2nf ]

=

2nf∏
i=1

(
λ2
+ (2k1 + λi(Lff (α∗)))λ+ k1λi(Lff (α∗))

)
= 0 (29)

here λi(Lff (α∗)) denotes the ith eigenvalue of Lff (α∗), 1 ≤ i ≤
nf in a descending order. Since Lff (α∗) is positive definite, all the
olutions of (29) are negative. Following the Lyapunov analysis in
he proof of Khalil (2002, Theorem 4.7), one has that the desired
quilibrium of (20) is locally and exponentially stable. □

To prove Theorem 2. (iii), we first introduce a lemma about
he persistent excitation condition which is similarly used in Ye
t al. (2017) and Han et al. (2018).

emma 2 (Anderson (1977)). Let W (·) : R+ → Rm×r be regulated.
hen, the equilibrium of

˙(t) = −W (t)W⊤(t)x(t) (30)

s globally and exponentially stable iff there exist positive scalars
2, γ1, γ2 such that for ∀t > 0, γ1Im×m ≤

∫ t+T2
t

(
W (τ )W⊤(τ )

)
dτ ≤

2Im×m. □

roof of Theorem 2. (iii): Note that
[
Lff (α(t))+ k1I2nf k1I2nf

k1I2nf k1I2nf

]
[
(Rf

A(α(t)))⊤
√
k1I2nf

0
√
k1I2nf

][
(Rf

A(α(t)))⊤
√
k1I2nf

0
√
k1I2nf

]⊤
. Using

emma 2, the desired equilibrium of (20) is globally and expo-
entially stable iff (22) holds. Moreover, if no collinearity occurs
t > 0 for all the triangles defined in A, then Lff (α(t)) is always
ositive definite for ∀t > 0 since A∗ is localizable. Therefore,
˜⊤ (t)L (α(t))p̃ (t) > 0 and V̇ (t) < 0 by using (25). It follows
ef ff ef 2

6

rom Khalil (2002, Theorem 4.1) that the desired equilibrium of
20) is asymptotically stable. □

The overall equilibrium set Ωes in (21) consists of not only the
desired equilibrium set Ωes1 where the followers reach their tar-
get positions, but also the undesired equilibrium set Ωes2 = Ωes−

Ωes1 = {(p̃ef , p̃f )| R
f
A(α)(pf − p∗f ) = 0, pf ̸= p∗f , p̂f = p∗f } where

the followers become static but they have not reached their target
positions. Clearly, Ωes2 is much larger than Ωes1, which makes its
analysis vital. Now, consider in the system evolution of (20) that
[p̃⊤ef , p̃

⊤

f ]
⊤ falls into Ωes2. According to the facts Rf

A(α)(pf−p∗f ) = 0
and pf ̸= p∗f in the definition of Ωes2, one has Rank(Rf

A(α)) < 2nf .
Since Rank(Lff (α)) = Rank(Rf

A(α)), Lff (α(p)) is singular and the
whole angularity becomes unlocalizable when [p̃⊤ef , p̃

⊤

f ]
⊤
∈ Ωes2.

ince the leaders are static and A∗ is localizable, at least one
riangle defined in A is degenerate Chen (2022), i.e., collinear,
hen [p̃⊤ef , p̃

⊤

f ]
⊤ reaches one of those undesired equilibrium in

Ωes2. Next, we use a perturbation-based approach to drive the
system away from Ωes2 when the system reaches an undesired
equilibrium, i.e., [p̃⊤ef (t), p̃

⊤

f (t)]
⊤
∈ Ωes2, at some time instants t .

3.4. Perturbation-based simultaneous localization and formation
with asymptotic convergence

Inspired by Trinh, Zelazo, and Ahn (2019), we design a
perturbation-based algorithm such that the system can escape
away from collinear or unlocalizable configurations when they
reach Ωes2. Towards this end, we modify the SLAF algorithm
(18)–(19) into

˙̂pi(t) = −
∑

(i,j1,k1)∈Ā

(A△ij1k1i (α(t)))⊤f △ij1k1i (α(t), p̂(t))

−

∑
(j2,i,k2)∈Ā

(A△j2 ik2i (α(t)))⊤f △j2 ik2i (α(t), p̂(t))

−

∑
(j3,k3,i)∈Ā

(A△j3k3ii (α(t)))⊤f △j3k3 ii (α(t), p̂(t))

+ ui(t)− k1(p̂i(t)− p∗i )− ei(t)
(
sgn(p̂i(t)− p∗i )− δi(t)

)
, (31)

˙ i(t) = ui(t) = −k1(p̂i(t)− p∗i ) (32)
− ei(t)

(
sgn(p̂i(t)− p∗i )− δi(t)

)
, i ∈ Vf

where ei =
∑

(j4,i,k4)∈A
|αj4 ik4 (t)− α∗j4 ik4 | ≥ 0 is the sum of the

absolute values of the angle errors associated with agent i, and
the perturbation term δi(t) = [δi1(t), δi2(t)]⊤ ∈ R2 is a continuous
time-varying vector satisfying ∥δi(t)∥ < 1, and we considered
t > T1.

Theorem 3. Consider a multi-agent system consisting of static lead-
ers and followers governed by (9). Suppose that each follower i ∈ Vf
has angle measurements αjik(t) and the information p̂∗j (t), p̂j(t), αijk
(t) obtained from the communication with its neighbor j ∈ Ni.
nder the simultaneous localization and formation algorithm (31)
nd (32), if Assumption 1 holds and the desired triangular an-
ularity A∗(V,A, p∗) is localizable, then the multi-agent system
symptotically converges to the desired equilibrium Ωes1.

roof. Since the right sides of (31)–(32) are discontinuous, we
onsider the solutions p̂f (t), pf (t) of (31)–(32) in the Filippov
ense. Because the signum function is measurable and locally
ssentially bounded, the Filippov solutions of (31)–(32) exist (Fil-
pov, 1988). Consider the same Lyapunov function candidate V2(t)
or (31) and (32), which is continuously differentiable and radially
nbounded. Then, V̇ (t) exists almost everywhere (abbreviated as
2
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.e.) and V̇2 ∈
a.e. ˙̃V2 where ∈ represents the differential inclusion

ere, and
˙̃
2(t) = p̃⊤ef ˙̃pef + p̃⊤f ˙̃pf (33)

= −p̃⊤ef (t)Lff (α(t))p̃ef (t)− k1∥p̃ef (t)+ p̃f (t)∥2

−

na+nf∑
i=na+1

ei(t)(p̂i(t)− pi(t))⊤
(
K [sgn](p̂i(t)− p∗i )− δi(t)

)
−

na+nf∑
i=na+1

ei(t)
(
pi(t)− p∗i )

⊤(K [sgn](p̂i(t)− p∗i )− δi(t)
)
.

and K [f ](x) represents the Filippov set-valued mapping of a vec-
tor function f (x) (Trinh et al., 2019). Note that the last two
components in (33) can be rewritten as

−

na+nf∑
i=na+1

ei(t)(p̂i(t)− p∗i )
⊤(K [sgn](p̂i(t)− p∗i )− δi(t))

= −

na+nf∑
i=na+1

ei(t)(∥p̂i(t)− p∗i ∥1 − (p̂i(t)− p∗i )
⊤δi(t))

≤ −

na+nf∑
i=na+1

ei(t)∥p̂i(t)− p∗i ∥1 (1− ∥δi(t)∥) ≤ 0 (34)

where we have used the facts that ei ≥ 0 is a scalar, (p̂i(t) −
∗

i )
⊤K [sgn](p̂i(t)− p∗i ) = ∥p̂i(t)− p∗i ∥1 (Filipov, 1988; Trinh et al.,

019), and (p̂i(t) − p∗i )
⊤δi(t) ≤ ∥p̂i(t) − p∗i ∥2∥δi(t)∥2 ≤ ∥p̂i(t) −

∗

i ∥1∥δi(t)∥2. Substituting (34) into (33) yields

˙̃
2(t) ≤ −p̃⊤ef (t)Lff (α(t))p̃ef (t)− k1∥p̃ef (t)+ p̃f (t)∥2

hich implies that the solutions of (31) and (32) will converge to
he set Ωes = Ωes1 ∪ Ωes2. Now, we prove that a state in Ωes2 is
ot an equilibrium of (31)–(32). If an arbitrary state [p̃⊤ef , p̃

⊤

f ]
⊤
∈

es2, then the formation configuration of this state has at least
ne degenerate triangle. Therefore, ∃i ∈ Vf such that ei ̸= 0.

Since δi(t) is a time-varying perturbation, ei
(
sgn(p̂i − p∗i )− δi

)
̸=

which implies ṗi ̸= 0, ˙̂pi ̸= 0, i.e., an arbitrary state in
Ωes2 is not an equilibrium of (31)–(32). However, Ωes1 is still an
equilibrium of (31)–(32). Using LaSalle’s invariance principle for
nonsmooth systems (Fischer, Kamalapurkar, & Dixon, 2013; Trinh
et al., 2019), the state under (31)–(32) asymptotically converges
to the desired equilibrium Ωes1. □

Remark 3. Compared to Trinh et al. (2019) where the pertur-
bation is pair-wise, the perturbation δi(t) we used in (31)–(32)
can be selected individually in each agent. Although the pertur-
bation δi(t) has positive effect of driving the system away from
unlocalizable configurations, it may have negative effect on the
system’s convergence rate. To keep the perturbation sufficiently
small when it is unnecessary, one can choose δi(t) = e−γ3t

[
cos t
sin t

]
where γ3 is a positive scalar. In addition, according to (3), Lff (α(t))
n (20) is a function of sinαjik(p(t)) and cosαjik(p(t)), (j, i, k) ∈ A,
hich implies that Lff (α(t)),Lfl(α(t)) are state-dependent, well-

defined, and continuous even when a collinearity occurs among
neighboring agents. Therefore, if Assumption 1 holds, the systems
(16)–(17) and (31)–(32) have solutions.

4. SLAF for the case of leaders with constant moving velocities

In this section, we consider that the leaders are dynamic and
move with constant velocities, i.e., ṗ∗i (t) = v∗c ̸= 0, t ≥ 0, i ∈ Vl

∗ 2
where vc ∈ R is a constant.

7

4.1. Problem formulation

Consider that the desired angularity A∗(V,A, p∗(t)) is time-
varying where p∗(t) denotes the desired positions of all the
agents, and α∗ are the desired constant angles defined by A, and
the desired formation shape is specified by α∗. Then, the leaders’
desired positions p∗l (t) can be written as

p∗l (t) = pl(t) = p∗l (0)+ (1nl ⊗ v∗c )t, ∀t ≥ 0 (35)

where v∗c ∈ R2 is the constant velocity of the leaders. Our aim
still consists of simultaneously achieving localization (10) and for-
mation (11) using the information of αijk(t), α∗ijk, p̂i(t), p̂j(t), p̂

∗

i (t),
p̂∗j (t),∀(i, j, k) ∈ A.

4.2. Estimation of the followers’ desired positions

To obtain the followers’ desired positions, we design the esti-
mation law as
˙̂p∗f (t) = −β2sgn

(
Lff (α∗)p̂∗f (t)+ Lfl(α∗)p∗l (t)

)
, (36)

where β2 >
√
nf ∥v

∗
c ∥ and p̂∗f (t) denotes the followers’ estimation

of p∗f (t). According to the component form (13), each follower
i under the designed estimation law (36) only uses the desired
information α∗ijk, α

∗

kij, the communication information p̂∗j (t), j ∈
Ni from its neighbors, the upper bound of the desired moving
velocity v∗c , and the number of the followers. Then, one has the
following results.

Theorem 4. If the desired triangular angularity A∗(V,A, p∗(t)) is
localizable, then p̂∗f (t) under (12) converges to p∗f (t) within finite
time.

Proof. According to Lemma 1. (i), one has that p∗f (t) can be
calculated by p∗f (t) = −L

−1
ff (α∗)Lfl(α∗)p∗l (t). Then, we design the

Lyapunov function candidate as

V3(t) = 0.5p̃∗⊤f (t)Lff (α∗)p̃∗f (t) (37)

where p̃∗f (t) = p̂∗f (t)−p∗f (t). Similar to Theorem 3, for the Filippov

solution of (36), one has V̇3 ∈
a.e. ˙̃V3 where

˙̃V3(t) = p̃∗⊤f (t)Lff (α∗) ˙̂p∗f (t)− p̃∗⊤f (t)Lff (α∗)ṗ∗f (t)

= −β2p̃∗⊤f (t)Lff (α∗)K [sgn]
(
Lff (α∗)p̃∗f (t)

)
+ p̃∗⊤f (t)Lfl(α∗)(1nl ⊗ v∗c ). (38)

Using the facts that Lfl(α∗)(1nl ⊗v∗c )+Lff (α∗)(1nf ⊗v∗c ) = 0 Chen
(2022), x⊤K [sgn](x) = ∥x∥1 and ∥x∥1 ≥ ∥x∥2 for an arbitrary
vector x = [x1, . . . , xn]⊤, one has
˙̃V3(t) ≤ −(β2 −

√
nf ∥v

∗

c ∥2)∥Lff (α∗)p̃∗f (t)∥2 (39)

≤ −
√
2(β2 −

√
nf ∥v

∗

c ∥2)
λmin(Lff (α∗))√
λmax(Lff (α∗))

(V3(t))
1
2

where
√
2(β2 −

√
nf ∥v

∗
c ∥2)

λmin(Lff (α∗))√
λmax(Lff (α∗))

> 0. According to Hong

et al. (2001, Lemma1), there exists a settling time T3 =
√
2
√

λmax(Lff (α∗))
(β2−
√nf ∥v∗c ∥2)λmin(Lff (α∗))

V
1
2
3 (0) such that for ∀t > T3, V3(t) = 0,

.e., p̂∗f (t) = p∗f (t). □

.3. Simultaneous localization and formation

After the followers know their desired time-varying positions
y (36), we now design a position estimator for each follower
o obtain its real-time position in the global coordinate frame,
nd design a position-based formation control law such that
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ach follower can move from its current position to its desired
osition. Different from the case of static leaders in Section 3, we
esign a SLAF algorithm for the followers as
˙̂
f (t) =− Lff (α(t))p̂f (t)− Lfl(α(t))pl(t)+ uf (t)

− k2(p̂f (t)− p̂∗f (t)), (40)

˙ f (t) =− k2(p̂f (t)− p̂∗f (t))−
∫ t

0
(p̂f (τ )− p̂∗f (τ ))dτ (41)

here k2 > 1 is a scalar. Similar to (18)–(19), one can also have
he component form of the SLAF algorithm (40)–(41), from which
ne can see that each follower i needs the angle measurement
nformation αkij(t), αijk(t), (i, j, k) ∈ A and the communication
nformation p̂j(t),∀j ∈ Ni. Therefore, the simultaneous localiza-
tion and formation algorithm (40)–(41) is distributed. Since the
states in (40)–(41) are bounded for t ∈ [0, T3], we conduct the
stability analysis of the dynamics (40) and (41) for t > T3. First, by
defining an auxiliary variable ξ̃f (t) =

∫ t
0 (p̂f (τ )− p∗f (τ ))dτ − ṗ∗f (t),

the closed-loop dynamics of (40) and (41) can be written as⎡⎢⎣
˙̃pef (t)
˙̃pf (t)
˙̃
ξf (t)

⎤⎥⎦ = −
⎡⎢⎣Lff (α(t))+ k2I2nf k2I2nf 0

k2I2nf k2I2nf I2nf
−I2nf −I2nf 0

⎤⎥⎦
⎡⎢⎣p̃ef (t)

p̃f (t)

ξ̃f (t)

⎤⎥⎦ (42)

here ṗ∗f (t) = −L
−1
ff (α∗)Lfl(α∗)ṗ∗l (t) = −L

−1
ff (α∗)Lfl(α∗)(1nl ⊗ v∗c )

s constant and we have used the fact p̈∗f (t) = 0. Due to the
xistence of the integration term in (41), the SLAF dynamics (42)
or the case of constant-velocity leaders is different from the
LAF dynamics (20) for the case of static leaders, even when the
elocity v∗c in (35) is zero. Now, we present the results about (42).

heorem 5. Consider a multi-agent system consisting of constant-
elocity leaders and followers governed by (9). Suppose that each
ollower i ∈ Vf has angle measurements αjik(t) and the informa-
tion p̂∗j (t), p̂j(t), αijk(t) obtained from the communication with its
neighbor j ∈ Ni. Under the simultaneous localization and forma-
tion algorithm (40)–(41), if Assumption 1 holds and the desired
triangular angularity A∗(V,A, p∗) is localizable, then the following
conclusions hold:

(i) The equilibrium set of the dynamics (42) is

Ωed = {(p̃ef , p̃f , ξ̃f )| R
f
A(α)p̃ef = 0, p̃ef + p̃f = 0, ξ̃f = 0}

={(p̃ef , p̃f , ξ̃f )| R
f
A(α)(pf − p∗f ) = 0, p̂f = p∗f , ξ̃f = 0}.

(ii) The desired equilibrium {p̃ef = 0, p̃f = 0, ξ̃f = 0} of the
dynamics (42) is locally and exponentially stable.

(iii) The desired equilibrium of the closed-loop dynamics (42) is
asymptotically stable if for ∀t > 0,

(12k22 − 8)Lff (α(t))− k32Lff (α(t))Lff (α(t))− 4k2I2nf > 0. (43)

Proof of Theorem 5. (i): Letting ˙̃ξf = 0, one has p̃f + p̃ef = 0.
Further letting ˙̃pef = 0, ˙̃pf = 0, it follows that ξ̃f = 0 and
Lff (α)p̃ef = 0 which imply Rf

A(α)p̃ef = 0. By using the definition
of p̃ef and p̃f , the equilibrium set of (42) can be written as Ωed. □

Proof of Theorem 5. (ii): Note that the closed-loop system (42)
is an autonomous system. By following the linearization steps
given in (26), one has that the linearized dynamics of (42) can
be written as⎡⎢⎣
˙̃pef (t)
˙̃pf (t)
˙̃

⎤⎥⎦ = −
⎡⎢⎣Lff (α∗)+ k2I2nf k2I2nf 0

k2I2nf k2I2nf I2nf
−I −I 0

⎤⎥⎦
⎡⎢⎣p̃ef (t)

p̃f (t)

ξ̃ (t)

⎤⎥⎦ . (44)
ξf (t) 2nf 2nf f w

8

Then, the characteristic polynomial of the system matrix of (44)
can be written as

λ−2nf

⏐⏐⏐⏐λ(λI2nf + Lff (α∗)+ k2I2nf ) λk2I2nf
(k2λ+ 1)I2nf (λ2

+ k2λ+ 1)I2nf

⏐⏐⏐⏐
=

2nf∏
i=1

(
λ3
+ [2k2 + λi(Lff (α∗))]λ2

+[k2λi(Lff (α∗))+ 1]λ+ λi(Lff (α∗))
)
= 0 (45)

here Lff (α∗) is positive definite and can be written by Lff (α∗) =
1diag{[λ1(Lff (α∗)), . . . , λ2nf (Lff (α∗))]}P−11 where P1 ∈ R2nf×2nf

s a nonsingular matrix. Using the checking condition for three-
rder characteristic polynomial (Chang & Chen, 1974), all the
nf solutions of (45) have negative real parts because (2k2 +
i(Lff (α∗)))(k2λi(Lff (α∗)) + 1) − λi(Lff (α∗)) > 0,∀i = 1, . . . , 2nf .
hen, the equilibrium of the linearized system (44) is exponen-
ially stable. When the initial state of (42) lies in a neighborhood
f the desired equilibrium {p̃ef = 0, p̃f = 0, ξ̃f = 0}, one has that
he desired equilibrium of (42) is locally and exponentially stable
y following the Lyapunov analysis in Khalil (2002, Theorem
.7). □

roof of Theorem 5. (iii): Construct the Lyapunov function can-
idate as

4(t) = X⊤(t)P2X(t) (46)

here P2 =

⎡⎢⎢⎣
I2nf 0

k2 I2nf
2

0 I2nf
k2 I2nf

2
k2 I2nf

2

k2 I2nf
2 k22I2nf

⎤⎥⎥⎦ , X(t) =

[
p̃ef (t)
p̃f (t)
ξ̃f (t)

]
. According to

Schur complement theorem (Gallier et al., 2010), since k22I2nf > 0

and
[
I2nf 0
0 I2nf

]
−

[
0.25I2nf 0.25I2nf
0.25I2nf 0.25I2nf

]
> 0, one has that P2 is

ymmetric and positive definite. It follows that V4(t) is positive
efinite. Taking the time-derivative of (46) along (42) yields

˙3(t) = X⊤(t)(P2A1(t)+ A⊤1 (t)P2)X(t) = −X
⊤(t)Q (t)X(t)

here A1(t) is the system matrix of (42), and

(t) =

⎡⎣ 2Lff (α(t))+k2I2nf k2I2nf
k2Lff (α(t))

2
k2I2nf k2I2nf I2nf

k2Lff (α(t))
2 I2nf k2I2nf

⎤⎦ .

According to Lyapunov theorem for nonlinear autonomous sys-
tems, if Q (t) > 0, then the nonlinear dynamics (42) are globally
stable. Since k2I2nf is invertible and positive definite, one has that
Q (t) > 0 iff[ 2Lff (α(t))+k2I2nf k2I2nf

k2I2nf k2I2nf

]
−

[
k2Lff (α(t))Lff (α(t))

4
Lff (α(t))

2
Lff (α(t))

2 1/k2I2nf

]

=

[
2Lff (α(t))+k2I2nf −

k2Lff (α(t))Lff (α(t))
4 k2I2nf −

Lff (α(t))
2

k2I2nf −
Lff (α(t))

2 (k2−1/k2)I2nf

]
> 0 (47)

ote that since (k2 − 1/k2)I2nf is invertible and positive definite,
sing Schur complement theorem (Gallier et al., 2010) again, one
as that (47) holds iff

Lff (α(t))+ k2I2nf −
k2Lff (α(t))Lff (α(t))

4

>
k2(k2I2nf −

Lff (α(t))
2 )(k2I2nf −

Lff (α(t))
2 )

k22 − 1
(48)

hich is equivalent to the condition (43). □
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emark 4. In the SLAF algorithm (40)–(41), the leaders’ mov-
ing velocity v∗c is neither directly known nor estimated by the
ollowers. Therefore, (40)–(41) requires less global information
nd has less communication burden than some other existing
ormation or localization algorithms which need the knowledge
f v∗c or its distributed estimation (Guo et al., 2020). In addition,
43) is equivalent to requiring that ∀y ∈ R2nf with ∥y∥ = 1,
(12k22 − 8)y⊤Lff (α(t))y− k32y

⊤Lff (α(t))Lff (α(t))y > 4k2.

5. SLAF for the case of leaders with time-varying moving ve-
locities

Different from Section 4, the leaders in this section move with
time-varying velocities, i.e., ṗ∗i (t) = v∗i (t) ̸= 0, t ≥ 0, i ∈ Vl
where v∗i (t) ∈ R2 is time-varying and is not necessarily equal
to v∗j (t), i ̸= j ∈ Vl.

5.1. Problem formulation

Consider the desired triangular angularity A∗(V,A, p∗(t)) is
time-varying where p∗(t) denotes the desired positions of all the
agents. Note that the interior angles among the agents are invari-
ant to the formation’s translation, rotation and scaling. Therefore,
if α∗ are constant and A∗ is localizable, [p∗⊤l (t), p∗⊤f (t)]⊤ must
be the combination of the continuous translation, rotation, and
scaling of [p∗⊤l (0), p∗⊤f (0)]⊤(Chen, 2022; Chen et al., 2021; Jing
et al., 2019). More specifically,

p∗l (t) = κ(t)[Inl ⊗ R̄(θ (t))]p∗l (0)+ 1nl ⊗W(t), t ≥ 0

here κ(t) ∈ R is a nonzero scale factor, R̄(θ (t)) ∈ SO(2) is a ro-
tation matrix with rotation angle θ (t), W(t) ∈ R2 is a translation
vector, and κ(t), R̄(θ (t)),W(t) are all continuous and differential
functions. Therefore, one can properly select W(t), θ (t), and κ(t)
to perform desired translational, rotational and scaling formation
maneuvering, respectively. For example, selecting θ (t) = θ (0) +
ω1t and constant ω1, κ,W will give circular formation motion,
while selectingW(t) = W(0)+

[
a1 cosω2t
b1 sinω2t

]
, nonzero |a1| ̸= |b1| and

constant ω2, κ, θ will give elliptical formation motion. First, we
give an assumption on the leaders’ moving velocities v∗i (t) = ṗ∗i
and acceleration v̇∗i (t), i ∈ Vl.

Assumption 2. The leaders’ desired positions p∗l (t) are contin-
uous and twice differentiable, and ṗ∗l (t) = v∗l (t) is bounded by
∥v∗l (t)∥ ≤ vmax, and v̇∗l (t) is bounded by ∥v̇∗l (t)∥ ≤ amax where
vmax, amax are positive constants and known by the followers.

5.2. Estimation of the followers’ desired positions and velocities

Instead of only estimating the desired positions, the desired
moving velocities also need to be estimated when the leaders
move with time-varying velocities v∗l (t) = [v

∗⊤

1 (t), . . . , v∗⊤nl (t)]⊤

∈ R2nl . We design desired position and velocity estimators as
˙̂p∗f (t) = −β3sgn

(
Lff (α∗)p̂∗f (t)+ Lfl(α∗)p∗l (t)

)
, (49)

˙̂v∗f (t) = −β4sgn
(
Lff (α∗)v̂∗f (t)+ Lfl(α∗)v∗l (t)

)
(50)

where β3 > ∥L−1ff (α∗)Lfl(α∗)∥vmax ≥ ∥v
∗

f (t)∥, β4 > ∥L−1ff (α∗)
Lfl(α∗)∥amax ≥ ∥v̇∗f (t)∥, v∗f (t) = −L−1ff (α∗)Lfl(α∗)v∗l (t) =
[v∗⊤nl+1 (t), . . . , v

∗⊤
n (t)]⊤ ∈ R2nf represents the followers’ desired

velocities, and the component forms of (49)–(50) can be similarly
obtained by following (13). The designed position estimation law
(49) needs the desired angle information α∗ijk, α

∗

kij, the communi-
cation information p̂∗j (t), j ∈ Ni from its neighbors, and the upper
bound of the desired moving velocity v∗(t).
f

9

Theorem 6. If the desired triangular angularity A∗(V,A, p∗(t)) is
localizable, then p̂∗f (t) and v̂∗f (t) under (49)–(50) converge to p∗f (t)
and v∗f (t), respectively, within finite time.

Proof. For the estimation of p̂∗f (t) in (49), note that (37)–(38) still
holds. It follows that in this case one has
˙̃V3(t) = −β3∥Lff (α∗)p̃∗f (t)∥1 + p̃∗⊤f (t)Lff (α∗)v∗f (t)
≤ −(β3 − ∥v

∗

f (t)∥)∥Lff (α∗)p̃∗f (t)∥2.

Following (39), p̃∗f (t) converges to zero within finite time. For the
estimation of v̂∗f (t), design the Lyapunov function candidate as
V5(t) = 0.5ṽ∗⊤f (t)Lff (α∗)ṽ∗f (t) where ṽ∗f (t) = v̂∗f (t)−v∗f (t). Similar
to (38) and (39), for the Filippov solution of (50), one has V̇5 ∈

a.e.

˙̃V5 where ˙̃V5(t) = −β4∥Lff (α∗)ṽ∗f (t)∥1 + ṽ∗⊤f (t)Lff (α∗)v̇∗f (t) ≤

−
√
2(β4−||v̇

∗

f (t)||)
λmin(Lff (α∗))√
λmax(Lff (α∗))

(V5(t))
1
2 which implies that ṽ∗f (t)

converges to zero within finite time. □

5.3. Simultaneous localization and formation

After having the knowledge of p∗f (t), v
∗

f (t), we now design
osition estimator ˙̂pf (t) to localize the followers in the global co-
rdinate frame, and design formation control law uf (t) such that
he followers converge to their desired time-varying positions.
owards this end, we design a SLAF algorithm as

˙̂pf (t) =− Lff (α(t))p̂f (t)− Lfl(α(t))pl(t)+ uf (t)

− k1(p̂f (t)− p̂∗f (t))− uaux(t), (51)

f (t) = v̂∗f (t)− k1(p̂f (t)− p̂∗f (t))− uaux(t), (52)

where uaux(t) = diag{[enl+1(t)I2, . . . , en(t)I2]}(sgn(p̂f (t)− p∗f (t))−
δf (t)) ∈ R2nf , and δf = [δ

⊤

nl+1
(t), . . . , δ⊤n (t)]⊤ ∈ R2nf , and ei, δi, i ∈

Vf have the same definitions as those in (31)–(32). Different from
(41), the followers’ formation control law (52) has a feedforward
term v̂∗f (t). Since the states in (51)–(52) are bounded within the
finite time required by the convergence of (49)–(50), we can
similarly replace v̂∗f , p̂

∗

f by v∗f , p
∗

f , respectively after the finite time.
Then, the component form of the SLAF algorithm (51) and (52) for
each follower i ∈ Vf can be written as

˙̂pi(t) = −
∑

(i,j1,k1)∈Ā

(A△ij1k1i (α(t)))⊤f △ij1k1i (α(t), p̂(t))

−

∑
(j2,i,k2)∈Ā

(A△j2 ik2i (α(t)))⊤f △j2 ik2i (α(t), p̂(t))

−

∑
(j3,k3,i)∈Ā

(A△j3k3 ii (α(t)))⊤f △j3k3 ii (α(t), p̂(t))

+ ui(t)− k1(p̂i(t)− p∗i (t))

− ei(t)
(
sgn(p̂i(t)− p∗i (t))− δi(t)

)
, (53)

ṗi(t) = ui(t) = v∗i (t)− k1(p̂i(t)− p∗i (t))

− ei(t)
(
sgn(p̂i(t)− p∗i (t))− δi(t)

)
(54)

where we have used p̂∗i = p∗i , v̂
∗

i = v∗i . Now, we give the results
about the stability of (51)–(52).

Theorem 7. Consider a multi-agent system consisting of lead-
ers with time-varying velocities v∗l (t) and followers governed by
(9). Suppose that each follower i ∈ Vf has angle measurements
α (t) and the information p̂∗(t), v̂∗(t), p̂ (t), α (t) obtained from
jik j j j ijk
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he communication with its neighbors j ∈ Ni. Under the simultane-
us localization and formation algorithm (51)–(52), if Assumption 1

holds and A∗(V,A, p∗) is localizable, then the closed-loop system
asymptotically converges to the desired equilibrium Ωes1.

Proof. Similar to Theorem 3, one has that Ωes1 is the only equilib-
rium of (51)–(52). Using the same Lyapunov functions V2(t) and
Ṽ2(t) for (51)–(52), one has
˙̃V2(t) = −p̃⊤ef (t)Lff (α(t))p̃ef (t)− k1∥p̃ef (t)+ p̃f (t)∥2

−

na+nf∑
i=na+1

ei(t)(p̂i(t)− pi(t))⊤
(
sgn(p̂i(t)− p∗i (t))− δi(t)

)
−

na+nf∑
i=na+1

ei(t)
(
pi(t)− p∗i (t))

⊤(sgn(p̂i(t)− p∗i (t))− δi(t)
)

≤ −p̃⊤ef (t)Lff (α(t))p̃ef (t)− k1∥p̃ef (t)+ p̃f (t)∥2 ≤ 0

which implies that the solution of (51)–(52) converges to Ωes. Fol-
lowing the proof of Theorem 3 for nonsmooth system (51)–(52),
the closed-loop system asymptotically converges to Ωes1. □

Remark 5. When the leaders have time-varying velocities, an
additional velocity estimator v̂∗f (t) is designed in (50), which
needs more communication resources and computations than the
SLAF algorithm (40)–(41) designed for constant-velocity leaders
and (16)–(17) designed for static leaders. Therefore, the SLAF
algorithm (40)–(41) is not the special case of (51)–(52) or general
case of (16)–(17). Due to the existence of an integral term in
(41), even by adding a perturbation into (40)–(41), we have
not proved its asymptotic stability. Therefore, compared to (40)–
(41), the advantage of (51)–(52) and (16)–(17) is the asymptotic
convergence. Although the information of nf , vmax, amax and L(α∗)
is required in the estimation laws (36),(49),(50), they are usually
known in the design stage or one can select sufficiently large
βi, i = 2, 3, 4 such that the corresponding conditions hold.

6. Further discussion on sensor measurements and conver-
gence properties

This section investigates the effect of angle measurement
noises, the extension to other sensor measurements, require-
ment on orientations of agents’ coordinate frames, collision and
collinearity avoidance. We only focus on the case that the leaders
are static since the cases that the leaders are dynamic can be
similarly obtained.

6.1. Effect of sensor measurement noises

Firstly, we consider that angles are measured by cameras.
According to (1), the angle αkij(t) is calculated by using bij(t) =[

cosφij(t)
sinφij(t)

]
and bik =

[
cosφik(t)
sinφik(t)

]
where φij(t) ∈ [0, 2π ) is the

bearing angle rotating from the X-axis of agent i’s coordinate
frame to the bearing direction

−→
ij under the counterclockwise

direction. Assume that agent i’s all bearing angle measurements
10
are obtained from its onboard camera’s images which subject
to the same additive noise ω3(t) ∈ R. Then, those noisy bear-
ings can be described by b̃ij(t) =

[
cos(φij(t)+ω3(t))
sin(φij(t)+ω3(t))

]
and b̃ik(t) =[

cos(φik(t)+ω3(t))
sin(φik(t)+ω3(t))

]
. Since the matrices Lff (α(t)), Lfl(α(t)) in (16) are

only related to the interior angles α(t), we need to analyze the
change of these matrices under the existence of noise ω3(t).
Defining α̃kij(t) as the angle that is calculated by noisy b̃ik(t), b̃ij(t),
it can be verified that α̃kij(t) = αkij(t), which implies that the
existence of ω3(t) has no effect on α(t), and thus has no effect
on Lff (α(t)), Lfl(α(t)) and the proposed SLAF algorithms.

Secondly, we consider that angles are measured by directional
antenna arrays, under which bearing angle measurements φij
and φik subject to different additive noises, i.e., α̃kij(t) ̸= αkij(t).
According to Fig. 2(a) and the angle-induced linear Eq. (3) in
△ijk, if pi, pj are known, pk can be uniquely localized as pk =
R̄⊤(αkij)
sinαjki

[
(
sinαjkiR̄(αkij)− sinαijkI2

)
pi+ sinαijkpj]. However, if mea-

surement noises exist in the angle measurements αjki, αkij, αijk,
then the true position pk calculated from noiseless angle mea-
surements is different from p̃k =

R̄⊤(α̃kij)
sin α̃jki

[
(
sin α̃jkiR̄(α̃kij)− sin α̃ijkI2

)
i + sin α̃ijkpj] obtained from noisy angle measurements, see
ig. 2(b). Worse still, as shown in Fig. 2(c), if pi, pj are known and
ll the angle measurements are noisy, then there is no feasible
olution for pk, pm under the angle measurements in triangles
ijk,△jmk,△imk (this is because there are 2 unknown position

variables pk, pm, but 3 angle-induced linear equations). In this
case, there does not exist an equilibrium for the four agents to
achieve a desired or biased formation.

Therefore, to guarantee that the localization process under
the existence of noises has at least a feasible solution, we must
ensure ᾱjki(α̃jki, α̃kij, α̃ijk)+ ᾱkij(α̃jki, α̃kij, α̃ijk)+ ᾱijk(α̃jki, α̃kij, α̃ijk) =

(only discuss the case αjki ∈ (0, π )) where ᾱjki(α̃jki, α̃kij, α̃ijk)
epresents the angle that agent k will use for localization, which
orresponds to αjki and is a function of the measured noisy angles
˜ jki, α̃kij, α̃ijk. To also minimize the negative effect of measurement
oises, according to Lin et al. (2020), one can calculate ᾱkij by
sing ᾱkij = α̃kij −

π−(α̃jki+α̃kij+α̃ijk)
3 . Then, if pi, pj are known,

there at least exists p̄k such that
(
sin ᾱjkiR̄(ᾱkij)− sin ᾱijkI2

)
pi +

in ᾱijkpj − sin ᾱjkiR̄(ᾱkij)p̄k = 0. Moreover, if noises are bounded
nd sufficiently small (so that the angles ᾱjki are still generic,

i.e., not being 0 and π ), then ∥pk − p̄k∥ should be bounded,
i.e., there exists at least a biased formation for the agents to
achieve. Therefore, for a network with multiple triangles, if more
angle measurements are given, the negative effect of noises can
be lessened by using some geometric properties existing in the
network.

6.2. Extension to other types of sensor measurements

We extend the designed SLAF algorithms to the cases with
distance or bearing measurements by establishing their corre-
sponding measurement-induced linear equations.

(a) Distance measurements: Let dij := ∥pj − pi∥ be the dis-
tance between agents i and j. According to Diao et al. (2014),
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he barycentric coordinates can be used to establish a distance-
nduced linear equation among four agents. To avoid singularities
f the barycentric coordinates at collinear or unlocalizable con-
igurations, we use barycentric-modified matrices to establish a
istance-induced linear equation in quadrilateral ijkh

f dlijk(d, p) = Q ijkh
l (d)pl + Q ijkh

i (d)pi

+ Q ijkh
j (d)pj + Q ijkh

k (d)pk = 0 (55)

where Q ijkh
l (d) = S△ijkI2 ∈ R2×2,Q ijkh

i (d) = −S△ljkI2,
Q ijkh

j (d) = −S△lkiI2, Q ijkh
k (d) = −S△lijI2, and S△ljk, S△lki,

S△lij, S△ijk are the signed area of the corresponding triangles
△ljk,△lki,△lij,△ijk, respectively. The value of S△ljk, S△lki, S△lij,
S△ijk can be calculated by Cayley–Menger determinant and sign
determination formulas in Diao et al. (2014), which are only
related to inter-node distances. If three points of pi, pj, pk, pl
are collinear, (55) is still well-defined but the remaining non-
collinear point will not be shown in (55).

(b) Bearing measurements: According to Zhao and Zelazo
(2016), the bearing-induced linear equation between agents i and
j can be described as

f bij (b, p) = (I2 − bijb⊤ij )(pi − pj) = 0 (56)

Writing all the induced linear Eqs. (55) or (56) from the multi-
agent network into a compact form, the corresponding mea-
surement and localization matrices can be similarly defined for
network localizability and localization. Also, SLAF algorithms in
Sections 3, 4, 5 can be similarly developed.

6.3. Requirement on orientations of agents’ coordinate frames

Consider that each agent holds a sensor measurement co-
ordinate frame and a control execution coordinate frame. The
proposed SLAF strategies require the orientations of the agents’
control execution coordinate frames to be aligned with the global
coordinate frame, but has no requirement on the orientations of
the agents’ sensing coordinate frames. Moreover, given the avail-
able angle measurements and wireless communication among
the agents, the relative orientation from each agent’s local coor-
dinate frame to the global coordinate frame can be approximately
determined at the initial stage, which can be used to align agents’
local coordinate frames with the global coordinate frame. More
specifically, at the initial stage where all the agents are static,
by running the angle-only localization algorithm (8), agent i’s
estimated position p̂i will converge to its absolute position pi(0)
in the global coordinate frame

∑
g at an exponential convergent

rate (assume that the agents’ initial configuration is localizable).
Then, by communicating with agent k ∈ Ni, agent i knows the
estimated relative position p̂ik = p̂k − p̂i which exponentially
converges to pik(0). At the same time, if agent i can measure the
relative bearing biik with respect to agent k in its local coordinate
frame

∑
i, then the relative orientation Rg

i (θ ) ∈ SO(2) from∑
i to

∑
g can be approximately determined by using the fact

pik(0)/∥pik(0)∥ = bik(0) ≈ b̂ik =
p̂k−p̂i
∥p̂k−p̂i∥

= Rg
i (θ )b

i
ik.

6.4. Collision avoidance

Now, we relax Assumption 1 by constraining agents’ initial
states. Suppose that the initial formation is close to the target
formation. For any two agents i, j ∈ V in Section 3, one has
pi(t)−pj(t) = pi(t)−p∗i − (pj(t)−p∗j )+p∗i −p∗j . According to Zhao
et al. (2019, Eq. (16)), one has

∥pi(t)− pj(t)∥ ≥ ∥p∗i − p∗j ∥ − ∥pi(t)− p∗i ∥ − ∥pj(t)− p∗j ∥

≥ ∥p∗i − p∗j ∥ −
√
nf ∥Y (t)∥ (57)
11
We consider the evolution of (20) is from t = 0, which can be
fulfilled by running (12) for more than T1 seconds at the initial
stage.

Corollary 1. Suppose that γ is the desired minimum separation
between any two agents during the formation evolution of (20)
and satisfies 0 < γ < mini,j∈V ∥p∗i − p∗j ∥. If ∥Y (0)∥ ≤ ε :=
1
√nf

(
mini,j∈V ∥p∗i − p∗j ∥ − γ

)
, then ∥pi(t) − pj(t)∥ ≥ γ , for all

t > 0.

roof. For t = 0, substituting the condition on γ into (57)
yields ∥pi(0)− pj(0)∥ ≥ γ > 0 which implies no collision among
agents at the initial time. Suppose the first case that no collision
occurs among agents for t > 0. Since V̇2(t) ≤ 0 as shown in
(25), according to (57), one has ∥pi(t) − pj(t)∥ ≥ ∥p∗i − p∗j ∥ −√
nf ∥Y (0)∥ ≥ γ . Suppose the second case that there exists a

collision at t = T4 between agents i and j during the evolution.
Then, there must exist an escape time T5 > 0 such that 0 < T5 ≤
T−4 , ∥Y (T5)∥ = ε and V̇2(T5) > 0. This contradicts with the fact
V̇2(t) ≤ 0 for t ∈ [0, T−4 ]. As a result, ∥pi(t) − pj(t)∥ ≥ γ holds
∀t > 0. □

The above conclusion also holds for Section 3.4, and Sec-
tion 5.3 if one replaces p∗i − p∗j with p∗i (t)− p∗j (t) in (57).

6.5. Collinearity avoidance

In Theorem 2. (iii), the asymptotic stability is obtained if no
collinearity among neighboring agents occurs. Now, we aim to
avoid collinearity by constraining agents’ initial states. Note that

pi(t)− pi(0) = pi(t)− p∗i − (pi(0)− p∗i ) (58)

Considering the evolution of (20) also from t = 0, if there is no
collision ∀t ≥ 0 (can be guaranteed by Corollary 1), (20) has a
solution. Then, one has

∥pi(t)− pi(0)∥ ≤ ∥pi(0)− p∗i ∥ + ∥pi(t)− p∗i ∥
≤ ∥pi(0)− p∗i ∥ +

√
nf ∥p̃f (t)∥ ≤ ∥pi(0)− p∗i ∥ +

√
nf ∥Y (t)∥

≤ ∥pi(0)− p∗i ∥ +
√
nf ∥Y (0)∥ (59)

where we have used the facts that V̇2(t) ≤ 0 and ∥Y (t)∥ is non-
increasing. Then, each agent i’s movement from t = 0 to +∞
is within the circular region Ri = {pi ∈ R2

| ∥pi − pi(0)∥ ≤
∥pi(0) − p∗i ∥ +

√
nf ∥Y (0)∥}. Now, we discuss the collinearity

issue within △ijk, (i, j, k) ∈ A. To get a sufficient condition
guaranteeing no collinearity among i, j, k, we first draw the region
Rij that

←−−−→
pi(t)pj(t) will cover, where we require Ri ∩ Rj = ∅

(otherwise a collinearity already occurs). As shown in Fig. 3, for
two circular regions Ri,Rj, we can draw two external tangent
lines

←→
i′j′ ,
←→
i′′j′′ , and also two internal tangent lines

←→
i′′′j′′′,

←−→
i′′′′j′′′′.

Denote by I1, I3, J1, J3 the intersections of these four tangent lines.
Denote by I2 a point that lies in the ray

−→
J3I1 but I2 /∈ J3I1. The same

definition applies for I4, J2, J4, see Fig. 3. Then, Rij represents the
open region between the border J2J1I1I2 and the border J4J3I3I4. It
an be verified that if Rij ∩ Rk = ∅, then three arbitrary points
ying in these three circular regions Ri,Rj,Rk, respectively, will
not be collinear, i.e., no collinearity will occur among i, j, k. Using
similar definitions, if Ri ∩ Rj = ∅ and Rij ∩ Rk = ∅ holds
for every (i, j, k) ∈ A, then no collinearity will occur among
all the neighboring agents. Combining the collision analysis in
Section 6.4 and the collinearity analysis in this section, the set
U mentioned in the proof of Theorem 2. (ii) can be described by
U = {Y (0)

⏐⏐⏐∥Y (0)∥ ≤ mini,j∈V ∥p∗i −p
∗
j ∥

2√nf
,Ri ∩ Rj = ∅,Rij ∩ Rk =

∅,∀(i, j, k) ∈ A}, where R ,R ,R ,R are functions of Y (0) and
i j k ij
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Fig. 3. Geometric interpretation for collinearity avoidance.

we selected γ =
mini,j∈V ∥p∗i −p

∗
j ∥

2√nf
. Since the radius of Ri,Rj and Rk

s proportional to ∥Y (0)∥ according to (59), the above described
is indeed a small neighborhood of the equilibrium Y = 0.

. Simulation examples

This section presents four simulation examples to validate
heorems 2, 3, 5, 7 respectively. The multi-agent network is
hown in Fig. 4, which contains 6 triangles: △234,△346,△467,
457,△578,△167. Note that the two leaders are non-
eighboring, which is designed in this way to demonstrate the
dvantages of the SLAF algorithms over sequential formations
r localization algorithms which require leaders to be neighbors
o one another (Chen et al., 2021; Jing et al., 2021). The ini-
ial positions of the agents are: p1(0) = [0.5;−4.1], p2(0) =
−2.3; 6.1], p3(0) = [−18.84;−11.04], p4(0) = [−15.6;−13.2],
5(0) = [−12.84;−12.6], p6(0) = [−18;−13.92], p7(0) =
−14.88;−12.48], p8(0) = [−15.36;−11.28]. For the case of
tatic leaders, the followers’ desired positions are p∗3 = [−4.2; 1.3]
∗

4 = [−0.4; 1.5], p
∗

5 = [0.8; 1.3], p∗6 = [−2.1; 0.2], p∗7 =
0.1;−0.1], p8 = [2.3; 0.1]. The initial estimates p̂f (0) = 1.5pf (0),
and k1 = k2 = 10. The video showing dynamical formation
trajectories of these four cases is uploaded to https://youtu.be/
r5PbTUJ7UzE.

7.1. Case 1: SLAF when leaders are static

Under the SLAF law (16)–(17), Figs. 5–6 show the formation
errors and trajectories where a collinearity occurs. Note that if the
initial formation is close to the desired formation, no collinearity
usually will occur. To show possibilities of collinearity at the
evolution of the formation, the initial formation is far away from
the desired formation in this case.

7.2. Case 2: Perturbation-based SLAF when leaders are static

Under the SLAF law (31)–(32), Figs. 7–8 show the formation
errors and trajectories where the collinearity is avoided and the
perturbation in the control law is chosen as δi = [0.5 cos(200π t);
0.5 sin(200π t)], i = 3, . . . , 8. Due to the convergence of the angle
errors, the effect of the added perturbation on the convergence of
formation errors is limited.
12
Fig. 4. Network topology among 2 leaders and 6 followers.

Fig. 5. Formation errors in Case 1.

Fig. 6. Formation trajectories in Case 1.

https://youtu.be/r5PbTUJ7UzE
https://youtu.be/r5PbTUJ7UzE
https://youtu.be/r5PbTUJ7UzE
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Fig. 7. Formation errors in Case 2.

Fig. 8. Formation trajectories in Case 2.

.3. Case 3: SLAF when leaders move with constant velocity

Under the SLAF law (40)–(41), the formation errors and tra-
ectories are given in Figs. 9–10, where the desired formation
s achieved and the formation finally translates at the desired
elocity. Note that the convergence speed in this case is not very
ast. This is because the desired moving velocity is unknown for
ll the followers and they can only use the integration term in the
ontrol law (41) to compensate for the formation errors, which
sually costs some time.

.4. Case 4: SLAF when leaders move with time-varying velocity

First, we simulate the SLAF algorithm (51)–(52) without per-
urbation, i.e., letting uaux = 0. The formation errors and trajec-
ories are given in Figs. 11 and 13, in which a collinearity occurs.
hen, we simulate (51)–(52) with perturbation term, i.e., uaux ̸= 0.

The formation errors and trajectories are given in Figs. 12 and 14,
in which the collinearity is avoided.
13
Fig. 9. Formation errors in Case 3.

Fig. 10. Formation trajectories in Case 3.

Fig. 11. Formation errors in Case 4 under uaux = 0.
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Fig. 12. Formation errors in Case 4 with uaux ̸= 0.

Fig. 13. Formation trajectories in Case 4 under uaux = 0.

Fig. 14. Formation trajectories in Case 4 with uaux ̸= 0.

. Conclusion and future work

This paper has proposed SLAF algorithms for 2D multi-agent
ystems where the followers achieve a desired formation un-
er the condition that they only have angle measurements and
ommunication with their neighbors. Three SLAF algorithms have
een proposed when the leaders are static, moving with constant
14
velocities, and moving with time-varying velocities, respectively.
To handle the situation where some agents are collinear such that
the multi-agent system becomes unlocalizable during evolution,
a perturbation-based algorithm has been proposed to achieve the
SLAF task with an asymptotic convergence.

To make the proposed SLAF algorithms more applicable to
engineering practices, there is still a wide range of problems
worthy of further investigation. We have special interests in two
of them. The first is the extension of this work to 3D scenario such
that the SLAF algorithms are applicable for a swarm of drones.
The main challenge is to establish a new angle-induced linear
equation in 3D since Eq. (2) cannot be used directly in 3D. The
other is on sensor measurement noises, such as explicit analysis
of the effect of stochastic noises, and the methods to mitigate the
negative effect of noises.
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