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Angle Rigidity and Its Usage to Stabilize
Multiagent Formations in 2-D

Liangming Chen , Member, IEEE, Ming Cao , Senior Member, IEEE, and Chuanjiang Li

Abstract—Motivated by the challenging formation stabi-
lization problem for mobile robotic teams wherein no dis-
tance or relative position measurements are available but
each robot can only measure some of relative angles with
respect to its neighbors in its local coordinate frame, we
develop the notion of “angle rigidity” for a multipoint frame-
work, named “angularity”, consisting of a set of nodes em-
bedded in a Euclidean space, and a set of angle constraints
among them. Different from bearings or angles defined
in a global frame, the angles we use do not rely on the
knowledge of a global frame, and are signed according to
the counter-clockwise direction. Here, angle rigidity refers
to the property specifying that under proper angle con-
straints, the angularity can only translate, rotate, or scale
as a whole when one or more of its nodes are perturbed lo-
cally. We first demonstrate that this angle rigidity property,
in sharp comparison to bearing rigidity or other reported
rigidity related to angles of frameworks in the literature, is
not a global property since an angle rigid angularity may
allow flex ambiguity. We then construct necessary and suf-
ficient conditions for infinitesimal angle rigidity by check-
ing the rank of an angularity’s rigidity matrix. We develop a
combinatorial necessary condition for infinitesimal minimal
angle rigidity. Using the developed theories, a formation
stabilization algorithm is designed for a robotic team to
achieve an angle rigid formation, in which only angle mea-
surements are needed. Simulation examples demonstrate
the advantages of the proposed angle-only formation con-
trol approach.

Index Terms—Angle/bearing measurements, angle rigid-
ity, formation control, angularity, multiagent systems.

I. INTRODUCTION

OVER the past decades, distance rigidity has been inten-
sively investigated both as a mathematical topic in graph
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theory [1], [2] and an engineering problem in applications in-
cluding formations of multiagent systems [3], mechanical struc-
tures [4], and biological materials [5]. Distance rigidity [6] is de-
fined using the property of distance preservation of translational
and rotational motions of a multipoint framework. To determine
whether a given framework is distance rigid, two methods have
been reported. The first is to test the rank of the distance rigidity
matrix which is derived from the infinitesimally distance rigid
motions [7]. The second is enabled by Laman’s theorem, which
is a combinatorial test and works only for generic frameworks.
More recently, bearing rigidity has been investigated, in which
the shape of a framework is prescribed by the interpoint bearings
or directions [8], [9]. By defining the bearing as a unit vector in
a given global coordinate frame, bearing rigidity can be defined
accordingly [9], [10]. To check whether a framework is bearing
rigid, conditions similar to those for distance rigidity have been
discussed [9]–[12].

Distance constraints in determining distance rigidity are in
general quadratic in the associated end points’ positions. While
a bearing constraint is always linear in the associated end point’s
position, the description of bearings directly depends on the
necessity of a global coordinate frame or a coordinate frame in
SE(2) or SE(3) [13], [14]. Different from distance and bearing
rigidity,1 in this study, we aim at presenting angle rigidity theory
for multipoint frameworks accommodating angle constraints as
either linear or quadratic constraints on the end points’ positions
without relying on a global coordinate frame. Different from the
usual definition for a scalar angle [15], [16], the angle defined
in this article is signed. By defining the counter-clockwise
direction to be each angle’s positive direction, angle rigidity
is defined for an angularity which consists of vertices and angle
constraints among them. We show that the planar angle rigidity
is a local property because of the existence of flex ambiguity. To
check whether an angularity is angle rigid, angle rigidity matrix
is derived based on the infinitesimally angle rigid motions.
Then, the angle rigidity of an angularity can be determined by
testing the rank of its angle rigidity matrix. Also, we develop
a combinatorial necessary condition to test the angle rigidity
of an angularity. We underline that the Laman’s theorem and
Henneberg’s construction method do not apply directly to angle
rigidity, which makes our results crucial. Using the defined
signed angles, we further propose the construction methods for
angle rigid and globally angle rigid angularities.

1Only refer to bearing rigidity in IR2 in the following.
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Besides its mathematical importance, angle rigidity is closely
related to the application in multiagent formation control for
robotic transportation [17], search and rescue of drones [18],
and satellite formation flying [19]. Sensors used in formation
stabilization mainly include GPS receivers, radars, and cam-
eras, which can acquire absolute positions, interagent relative
positions, or angles/bearings [3], [20]. In particular, angle mea-
surements are becoming cheaper, more reliable, and accessible
than absolute or relative position measurements [12], [20]. Angle
information can be easily obtained by a passive sonar, camera,
or sensor array in its local coordinate frame [17]. Using angle
rigidity developed in this article, we show how to stabilize a pla-
nar formation by using only local angle measurements. Different
from the designed bearing-based formation control algorithms
in [9], [21] where all agents’ local coordinate frames are re-
quired to be aligned, the proposed angle-only formation control
algorithm does not require the alignment of agents’ coordinate
frames since the angle described in different planar coordinate
frames remains the same. We acknowledge that in [15], planar
angle rigidity is established by employing the cosine of an
angle formed by two joint edges as the angle constraint. The
formation stabilization algorithm constructed in [15] requires
that each agent can sense the relative positions with respect to
its neighbors. Different from [15], in this article, the desired
formation shape is realized using only angle measurements. In
addition, weak rigidity with mixed distance and angle constraints
has been investigated in [22]–[24], under which the formation
control algorithms are also designed for agents by using the
measurements of relative position.

The rest of this article is organized as follows. Section II
gives the definition of an angularity and its rigidity. Section III
introduces infinitesimal angle rigidity. In Section IV, the applica-
tion in multiagent planar formations is investigated. Simulation
examples are provided in Section V.

II. ANGULARITY AND ITS ANGLE RIGIDITY

Graphs have been used dominantly in rigidity theory for
multipoint frameworks under distance constraints since an edge
of a graph can be naturally used to denote the existence of a
distance constraint between the two points corresponding to
the vertices adjacent to this edge. However, when describing
angles formed by rays connecting points, to use edges of a
graph becomes inappropriate because an angle constraint always
involves three points. For this reason, instead of using graphs
that relate pairs of vertices as the main tool to define rigidity, we
define a new combinatorial structure “angularity” that relates
triples of vertices to develop the theory of angle rigidity. In all
the following discussions, we confine ourselves to the plane.

A. Angularity

We use the vertex set V = {1, 2, . . . , N} to denote the set of
indices of the N ≥ 3 points of a framework in the plane. As
shown in Fig. 1, to describe the signed angle from the ray j − i
to ray j − k, one needs to use the ordered triplet (i, j, k), and,
obviously, the two angles corresponding to (i, j, k) and (k, j, i)

Fig. 1. Signed angle used in defining angle rigidity.

are different, and in fact are called explementary or conjugate an-
gles. Here, following convention, the angle �ijk for each triplet
(i, j, k) is measured counter-clockwise in the range [0, 2π).
We use A ⊂ V × V × V = {(i, j, k), i, j, k ∈ V, i �= j �= k} to
denote the angle set, each element of which is an ordered triplet.
We denote the number of elements |A| of the angle set A by
M . Throughout this article, we assume that no pair of triplets
in A are explementary to each other. Now consider the embed-
ding of the vertex set V in the plane IR2 through which each
vertex i is associated with a distinct position pi ∈ IR2 and let
p = [pT

1, . . . , p
T
N ]T ∈ IR2N . We assume there is no overlapping

points inp, i.e.,pi �= pj for i �= j and i, j ∈ {1, 2, . . . , N}. Then,
the combination of the vertex set V , the angle set A, and the
position vector p is called an angularity, which we denote by
A(V,A, p). Actually, given nonoverlapping positions pi, pj , and
pk, the angle �ijk ∈ [0, 2π) can be uniquely calculated from

�ijk =

{
arccos(zT

jizjk) if z⊥ji · zjk ≥ 0

2π − arccos(zT
jizjk) otherwise

(1)

where zji =
pi−pj

‖pi−pj‖ , zjk =
pk−pj

‖pk−pj‖ , z⊥ji = Q0zji =[
0 −1

1 0

]
zji is the vector obtained by rotating zji counter-

clockwise by π
2 , and · denotes the dot product.

B. Angle Rigidity

We first define what we mean by two equivalent or congruent
angularities.

Definition 1 (Equivalency and congruency): We say two an-
gularities A(V,A, p) and A′(V,A, p′) with the same V and A
are equivalent if

�ijk(pi, pj , pk) = �ijk(p′i, p′j , p′k) for all (i, j, k) ∈ A. (2)

We say they are congruent if

�ijk(pi, pj , pk) = �ijk(p′i, p′j , p′k) for all i, j, k ∈ V. (3)

From the equivalent and congruent relationships, it is easy to
define global angle rigidity.

Definition 2 (Global angle rigidity): An angularity
A(V,A, p) is globally angle rigid if every angularity that
is equivalent to it is also congruent to it.

When such a rigidity property holds only locally, one has
angle rigidity.

Definition 3 (Angle rigidity): An angularity A(V,A, p) is
angle rigid if there exists an ε > 0 such that every angularity
A′(V,A, p′) that is equivalent to it and satisfies ‖p′ − p‖ < ε is
congruent to it.

Definition 3 implies that every configuration which is suffi-
ciently close to p and satisfies all the angle constraints formed

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 20,2022 at 11:43:21 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: ANGLE RIGIDITY AND ITS USAGE TO STABILIZE MULTIAGENT FORMATIONS IN 2-D 3669

Fig. 2. Flex ambiguity in angle rigid angularity.

by A has the same magnitudes of the angles formed by any three
vertices in V as the original configuration at p.

As is clear from Definitions 2 and 3, global angle rigidity
always implies angle rigidity. A natural question to ask is
whether angle rigidity also implies global angle rigidity. In fact,
for bearing rigidity, it has been shown that indeed global bearing
rigidity and bearing rigidity are equivalent [9], [10]. However,
this is not the case for angle rigidity.

Theorem 1 (Nonequivalence between angle rigidity and
global angle rigidity): An angle rigid angularity A(V,A, p) is
not necessarily globally angle rigid.

We prove this theorem by providing the following example.
Fig. 2 shows an angularity withV = {1, 2, 3, 4}, and its elements
in the set A = {(3, 2, 1), (1, 3, 2), (2, 3, 4), (1, 4, 2)} take the
values

�321 = arccos

(
4
√
3− 2

2
√

17− 4
√
3

)
≈ 39.07◦ (4)

�132 = arccos

(
19− 8

√
3√

25− 12
√
3
√
17− 4

√
3

)
≈ 37.88◦ (5)

�234 = 30◦ (6)

�142 = 45◦ (7)

and its p is shown as in the coordinates of the vertices. We first
show A(V,A, p) is angle rigid, and then show A(V,A, p) is not
globally angle rigid.

Now first look at the triangle formed by 1, 2, and 3. Since
two of its angles �321 and �132 have been constrained, the re-
maining �213 is uniquely determined to be π − �321− �132,
no matter how p is locally perturbed. The constraint on �234
requires 4 must lie in the ray starting from 3 and rotating from
ray 32 counter-clockwise by 30◦; at the same time, the constraint
on �142 requires 4 must lie on the arc passing through 1 and
2 such that the inscribed angle �142 is 45◦. No matter how
p is locally perturbed, there is only one unique position for
4 in the neighborhood of its current given coordinates because
the two intersection points between the ray and the arc are not
in the same local neighborhood. This local uniqueness implies
that this four-vertex angularity is angle rigid (when 4’s position

Fig. 3. Nongeneric p changes rigidity. (a) Not rigid when ∠213 = π
3 .

(b) Angle rigid when ∠213 = 0. (c) Globally angle rigid when ∠213 = π.

is uniquely determined, any angle associated with it is also
uniquely determined).

Now we show A(V,A, p) is not globally angle rigid. Note
that there is the other intersection point 4′ as shown in Fig. 2
satisfying the angle constraints given in A, which implies that
this angularity is not globally angle rigid because A(V,A, p′) is
equivalent to A(V,A, p), but they are not congruent.

We provide the following further insight to explain this sharp
difference between the angle rigidity that we have defined and
the bearing rigidity that has been reported in the literature. Bear-
ing rigidity as defined in [9], [10] is a global property because
the bearing constraints always represent linear constraints in the
end point’s position (similar to the angle constraint �234 = 30◦

in the form of the ray from 3 to 4 in the above example) and
two noncollinear rays have at most one intersection. In contrast,
our angle constraint can be either linear constraint in p when
it requires the corresponding vertex to be on a ray or quadratic
in p when it restricts the corresponding vertex to be on an arc
passing through other vertices. The possible nonlinearity in the
angle constraints gives rise to potential ambiguity of the vertices’
positions under the given angle constraints.

Note that the embedding of p in the plane may affect the
rigidity of A. Consider the 3-vertex angularity as embedded in
three different situations in Fig. 3 when its angle set A contains
only one element (2,1,3). Fig. 3(a) shows that 1, 2, and 3 are
not collinear, and then this angularity is in general not rigid
since if we perturb point 1 in an arc with 2 and 3 as the arc’s
ending points, �213 can be the same while angles �123 and
�132 change. In Fig. 3(b), 1, 2, and 3 are collinear and 1 is
on one side; in this case, if the angle constraint happens to be
�213 = 0, then one can check the angularity becomes angle
rigid, although it is not globally rigid since the angle of �132
changes by 180 degree if we swap 2 and 3. In Fig. 3(c), 1, 2, and 3
are collinear and 1 is in the middle; when the constraint becomes
�213 = π, one can check that the angularity is not only rigid,
but also globally rigid (swapping of 2 and 3 in this case does
not change the resulting angles �132,�123 being zero). So the
angularity A({1, 2, 3}, {(2, 1, 3)}, p) is generically not rigid, but
rarely rigid depending on p. To clearly describe this relationship
between angle rigidity and p, like in standard rigidity theory, we
define what we mean by generic positions.

Definition 4 (Generic position): The position vector p is
said to be generic if its components are algebraically indepen-
dent [25]. Then, we say an angularity is generically (respectively
globally) angle rigid if its p is generic and it is (respectively
globally) angle rigid.

An example for nongeneric positions is the case when three
points are collinearly positioned. Note that angle rigidity for
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A(V,A, p) with generic p represents the common property of
the combination (V,A) from a topological perspective, which
is also referred to as generic angle rigidity. For convenience,
we also say an angularity is generic if its p is generic. Now
we provide some sufficient conditions for an angularity to be
globally angle rigid. Towards this end, we need to introduce
some concepts and operations. For two angularities A(V,A, p)
and A′(V,′ A,′ p′), we say A is a subangularity of A′ if V ⊂ V′,
A ⊂ A′ and p is the corresponding subvector of p′. We first
clarify that for the smallest angularities, namely those that
contain only three vertices, there is no gap between angle rigidity
and global angle rigidity assuming generic positions.

Lemma 1: For a 3-vertex angularity, if it is generically angle
rigid, it is also generically globally angle rigid.

Proof: For this 3-vertex angularity A(V,A, p), since it is
angle rigid andp is generic,Amust contain at least two elements,
or said differently, two of the interior angles of the triangle
formed by the three vertices are constrained. Again since p is
generic, the sum of the three interior angles in this triangle has to
be π, and thus the magnitude of this triangle’s remaining interior
angle is uniquely determined too. Therefore, A is generically
globally angle rigid. �

Now, we define linear and quadratic constraints.
Definition 5 (Linear and quadratic constraints): For a given

angularity A(V,A, p), a new vertex i positioned at pi is linearly
constrained with respect to A if there is j ∈ V such that pi �= pj
and pi is constrained to be on a ray starting from pj ; we also
say i is quadratically constrained with respect to A if there are
j, k ∈ V such that {pi, pj , pk} is generic and pi is constrained
to be on an arc with pj and pk being the arc’s two ending points.
Correspondingly, we call i’s constraint in the former case a
linear constraint and in the latter case a quadratic constraint
with respect to A.

As shown in Fig. 2, �234 = 30◦ is a linear constraint for the
end vertex 4 since p4 is constrained to be on a ray starting from
p3, while �142 = 45◦ is a quadratic constraint for 4 because p4
is constrained to be on the major arc

�
12.

Similar to Henneberg’s construction in distance rigidity, in
the following, we define two types of vertex addition operations
in angle rigidity to demonstrate how a bigger angularity might
grow from a smaller one, which are shown in Fig. 4.

Definition 6 (Type-I vertex addition): For a given angularity
A(V,A, p), we say the angularity A′ with the augmented vertex
set {V ∪ {i}} is obtained from A through a Type-I vertex addi-
tion if the new vertex i’s constraints with respect to A contain
at least one of the following.

Case 1) two linear constraints, not aligned, associated with
two distinct vertices in V (one vertex for one constraint and the
other vertex for the other constraint).

Case 2) one linear constraint and one quadratic constraint
associated with two distinct vertices in V (one for the former
and both for the latter).

Case 3) two different quadratic constraints associated with
three vertices in V (two for each and one is shared by both), and
the positions of i and these three vertices are generic.

Definition 7 (Type-II vertex addition): For a given angularity
A(V,A, p), we say the angularity A′ with the augmented vertex

Fig. 4. Type-I vertex addition and Type-II vertex addition. (a) Case 1 in
Type-I vertex addition. (b) Case 2 in Type-I vertex addition. (c) Case 3 in
Type-I vertex addition. (d) Case 1 in Type-II vertex addition. (e) Case 2
in Type-II vertex addition.

set {V ∪ {i}} is obtained from A through a Type-II vertex
addition if the new vertex i’s constraints with respect to A
contain at least one of the following:

Case 1) one linear constraint and one quadratic constraint
associated with three distinct vertices in V (one for the former
and the other two for the latter);

Case 2) two different quadratic constraints associated with
four vertices in V (two for the former and the other two for the
latter), and the positions of i and these four vertices are generic.

Remark 1: Although the types of constraints are similar be-
tween Case 2 of Definition 6 and Case 1 of Definition 7, the
numbers of vertices involved in Case 2 of Definition 6 and Case
1 of Definition 7 differ in these two types of vertex addition
operations. Similarly, those in Case 3 of Definition 6 and Case 2
of Definition 7 are also different.

Remark 2: Note that in these two vertex addition operations,
the involved vertices are required to be in generic positions.
However, the overall angle rigid angularity A′ constructed
through a sequence of vertex addition operations is not nec-
essarily generic, and an example is given in Fig. 5.

Now we are ready to present a sufficient condition for global
angle rigidity using Type-I vertex addition.

Proposition 1 (Sufficient condition for global angle rigidity):
An angularity is globally angle rigid if it can be obtained through
a sequence of Type-I vertex additions from a generically angle
rigid 3-vertex angularity.
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Fig. 5. Overall angularity is not necessarily generic. (a) Point 4 is
unique when {1,3,4} are generic. (b) Point 4 is not unique when {1,3,4}
are not generic. (c) {2,3,5} are not generic but angularity is rigid.

Proof: According to Lemma 1, the generically angle rigid
3-vertex angularity is globally angle rigid. Consider the three
conditions in the Type-I vertex addition. If case 1 applies,
then the position pi of the newly added vertex i is unique
since two rays, not aligned, starting from two different points
may intersect only at one point; if case 2 applies, pi is again
unique since a ray starting from the end point of an arc may
intersect with the arc at most at one other point; and if case
3 applies, pi is unique since two arc sharing one end point on
different circles can only intersect at most at one other point.
Therefore, pi is always globally uniquely determined. After pi
is globally uniquely determined, all the angles associated with
pi are also globally uniquely determined. Because each Type-I
vertex addition operation can guarantee a unique adding point
pi, we conclude that the obtained angularity after a sequence of
Type-I vertex additions is globally angle rigid. �

In comparison, Type-II vertex additions can only guarantee
angle rigidity, but not global angle rigidity.

Proposition 2 (Sufficient condition for angle rigidity): An an-
gularity is angle rigid if it can be obtained through a sequence of
Type-II vertex additions from a generically angle rigid 3-vertex
angularity.

The proof can be easily constructed following similar argu-
ments as those for Proposition 1. The only difference is that pi
now may have two solutions and is only unique locally.

After having presented our results on angularity and angle
rigidity, in the following section, we discuss infinitesimal angle
rigidity, which relates closely to infinitesimal motion.

III. INFINITESIMAL ANGLE RIGIDITY

Analogous to distance rigidity, infinitesimal angle rigidity can
be characterized by the kernel of a properly defined rigidity
matrix. Towards this end, we first introduce the following angle
function. For each angularity A(V,A, p), we define the angle
function fA(p) : IR2N → IRM by

fA(p) := [f1, . . . , fM ]T (8)

where fm : IR6 → [0, 2π), m = 1, . . . ,M , is the mapping from
the position vector [pT

i , p
T
j , p

T
k]

T of the mth element (i, j, k) in
A to the signed angle �ijk ∈ [0, 2π). Using this angle function,
one can define A’s angle rigidity matrix.

A. Angle Rigidity Matrix

We consider an arbitrary element (i, j, k) in A and denote
the corresponding angle constraint by �ijk(pi, pj , pk) = β ∈
[0, 2π), or in shorthand �ijk = β. From the definition of the

dot product, one has

cosβ =
(pi − pj)

T

‖pi − pj‖
(pk − pj)

‖pk − pj‖ = zT
jizjk (9)

where ‖ · ‖ denotes the Euclidean vector norm and we have used
cosβ = cos(2π − β) according to (1). Differentiating both sides
of (9) with respect to time leads to

(− sinβ)β̇ = żT
jizjk + zT

jiżjk

=

[
Pzji

lji
(ṗi − ṗj)

]T

zjk + zT
ji

Pzjk

ljk
(ṗk − ṗj)

(10)

where ljk = ‖pj − pk‖, Pzji = I2 − zjiz
T
ji, I2 denotes the 2×

2 identity matrix, and we have used the fact that for x ∈ IR2, x �=
0, d

dt (
x
‖x‖ ) =

Px/‖x‖
‖x‖ ẋ. By rearranging (10), one obtains

dβ
dt

=
∂β

∂pi
ṗi +

∂β

∂pj
ṗj +

∂β

∂pk
ṗk

= Nkjiṗi − (Nkji +Nijk)ṗj +Nijkṗk (11)

where Nkji = − zT
jkPzji

lji sinβ ∈ IR1×2, Nijk = − zT
jiPzjk

ljk sinβ ∈ IR1×2,
and we have assumed sinβ �= 0, i.e., no collinearity among
pi, pj , and pk. For each (i, j, k) in A, we obtain an equation
in the form of (11), and then one can write such M equations
into the matrix form

dfA(p)
dt

=
∂fA(p)
∂p

ṗ = Ra(p)ṗ (12)

where Ra(p) ∈ IRM×2N is called the angle rigidity matrix,
whose rows are indexed by the elements of A and columns the
coordinates of the vertices

Ra(p) =
∂fA(p)
∂p

= (13)

⎡
⎢⎢⎢⎢⎣

··· Vertex i ··· Vertex j ··· Vertex k ···
Angle 1 · · · · · · · · · · · · · · · · · · · · ·

··· · · · · · · · · · · · · · · · · · · · · ·
�ijk 0 Nkji 0 −Nkji −Nijk 0 Nijk 0
··· · · · · · · · · · · · · · · · · · · · · ·

Angle M · · · · · · · · · · · · · · · · · · · · ·

⎤
⎥⎥⎥⎥⎦

For an angularity, its angle preservation motions satisfy ḟA =
Ra(p)ṗ = 0 which include translation, rotation, and scaling.
One may rightfully expect that such motions are captured by the
null space of the angle rigidity matrix, which always contains
the following four linearly independent vectors:

q1 = 1N ⊗
[
1

0

]
, q2 = 1N ⊗

[
0

1

]
(14)

q3 =
[
(Q0p1)

T, (Q0p2)
T, . . . , (Q0pN )T

]T
(15)

q4 =
[
(κp1)

T, (κp2)
T, . . . , (κpN )T

]T
(16)

where κ ∈ IR is a nonzero scaling factor, ⊗ represents the
Kronecker product, and 1N denotes the N × 1 column vector
of all ones. Note that q1 and q2 correspond to translation, q3
rotation, and q4 scaling. We state this fact as a lemma.
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Lemma 2 (Rank of angle rigidity matrix): For an angle rigid-
ity matrix Ra(p), it always holds that Span{q1, q2, q3, q4} ⊆
Null(Ra(p)) and correspondingly Rank(Ra(p)) ≤ 2N − 4.

Proof: Because each row sum of Ra(p) equals zero, one has
Ra(p)q1 = 0 andRa(p)q2 = 0. Taking an arbitrary row�ijk in
Ra(p) as an example, one has the corresponding row inRa(p)q3

NkjiQ0(pi − pj) +NijkQ0(pk − pj)

=
zT
jkPzjiQ0zji + zT

jiPzjkQ0zjk

− sinβ

=
zT
jkQ0zji + zT

jiQ0zjk

− sinβ
= 0 (17)

where we have used the fact that QT
0 = −Q0 and zT

jiQ0zji = 0.
Similarly, for Ra(p)q4, one has

κNkji(pi − pj) + κNijk(pk − pj)

= κ
zT
jkPzjizji + zT

jiPzjkzjk

− sinβ
= 0 (18)

where we have used the fact that Pzjizji = 0. Therefore,
Span{q1, q2, q3, q4} ⊆ Null(Ra(p)).

Since p has no overlapping elements, one has that q3 and
q4 are linearly independent to q1 and q2. Because qT

1q2 =
0 and qT

3q4 = 0, one has that q1, q2, q3, and q4 are linearly
independent. �

Obviously the row rank of the angle rigidity matrix, or equiv-
alently its row linear dependency, is a critical property of an
angularity. We capture this property by using the notion of
“independent” angles.

Definition 8 (Independent angles): For an angularity
A(V,A, p), we say its angles in fA(p) are independent if its
angle rigidity matrix Ra(p) has full row rank.

Since rank is a generic property of a rigidity matrix, one may
wonder whether it is possible to disregard p of A and check
generic angle rigidity only using (V,A). This is indeed doable
as what we will show in the following subsection. Note that
2N − 4 is the maximum rank that Ra(p) can have. When p is
generic, the exact realization of p is not important for (V,A), and
when checking the angle rigidity matrix’s rank, one can replace
p by a random generic realization.

Using the notion of infinitesimal motion, checking the rank
of the rigidity matrix can also enable us to check “infinitesimal”
angle rigidity.

B. Infinitesimal Angle Rigidity

To consider infinitesimal motion, suppose that eachpi, ∀i ∈ V
of A(V,A, p) is on a differentiable smooth path. We say the
whole path p(t) is generated by an infinitesimally angle rigid
motion of A if on the path fA(p) remains constant. We say such
an infinitesimally angle rigid motion p(t) is trivial if it can be
given by [26]

pi(t) = κ(t)Q(t)pi(t0) +W(t), ∀i ∈ V, t ≥ t0 (19)

where κ(t) �= 0 is a scalar scaling factor, Q(t) ∈ IR2×2 is
a rotation matrix, W(t) ∈ IR2 is a translation vector, and
κ(t),Q(t),W(t) are all differentiable smooth functions. Since

Fig. 6. Types of dependent triplet elements in A. (a) Cycle. (b) Triplets
with the same middle vertex. (c) Overly constrained angle subset.

all pi(t), ∀i ∈ V , share the same κ(t),Q(t),W(t), it follows:

p(t) = {IN ⊗ [κ(t)Q(t)]}p(t0) + 1N ⊗W(t), t ≥ t0. (20)

Now we are ready to define infinitesimal angle rigidity.
Definition 9 (Infinitesimal angle rigidity): An angularity

A(V,A, p) is infinitesimally angle rigid if all its continuous
infinitesimally angle rigid motion p(t) are trivial.

In fact, a motion satisfying (20) is always an infinitesimally
angle rigid motion because the combination of translation, ro-
tation, and scaling preserves all the angle constraints. However,
the converse does not necessarily hold, e.g., nontrivial infinites-
imally angle rigid motion exists when only point 1 moves along
line 12 in Fig. 3(b). We formalize these remarks in the following
theorem.

Theorem 2 (Sufficient and necessary condition for infinitesi-
mal angle rigidity): An angularity A(V,A, p) is infinitesimally
angle rigid if and only if the rank of its angle rigidity matrix
Ra(p) is 2N − 4.

Proof: In view of the definition, A is infinitesimally angle
rigid if and only if all its infinitesimally angle rigid motions are
trivial. That is to say, these infinitesimally angle rigid motions
p(t), t ∈ [t0, t1]maintaining the angle constraints are exactly the
combination of translation, rotation, and scaling with respect to
the initial configuration p(t0), which are precisely captured by
the four linearly independent vectors q1, q2, q3, and q4, which
in turn is equivalent to the fact that the rigidity matrix’s null
space is precisely the span of {q1, q2, q3, q4}. The conclusion
then follows from the fact that such a specification of the null
space holds if and only if the rank of the rigidity matrix reaches
its maximum 2N − 4. �

Note that this theorem implies that A(V,A, p) is infinitesi-
mally angle rigid if and only if there are 2N − 4 independent
angles in fA(p). We want to further remark that no matter what p
is, if one of the following three combinatorial structures appears
in A, then the angles are always dependent.

1) A cycle formed by the triplets inAandM=N . For exam-
ple,A={(i, j, k), (j, k,m), (k,m, n), (m,n, l), (n, l, i), (l, i, j)}
[see Fig. 6(a)].

2) Triplets with the same middle vertex and M = N − 1. For
example, A = {(i,m, j), (j,m, k), (k,m, i)} [see Fig. 6(b)].

3) An angle subset A′ ⊂ A such that the number N ′ of
the involved vertices in A′ satisfies |A′| > 2N ′ − 4. For
example, A = {(i,m, j), (m, j, i), (i, k, j), (i, j, k), (k,m, j),
(n, i,m), (n,m, i)} and A′ = {(i,m, j), (m, j, i), (i, k, j),
(i, j, k), (k,m, j)}, and thus N ′ = 4, |A′| = 5 in Fig. 6(c).

If A contains one of the above three combinatorial structures,
we say the triplet elements in A are dependent; otherwise, they
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are independent. One can further quantify the number of triplet
elements such that the angularity is infinitesimally angle rigid.

Theorem 3 (Combinatorial necessary condition for infinites-
imal angle rigidity): For an angularity A(V,A, p), if it is in-
finitesimally angle rigid, then it has 2N − 4 independent triplet
elements in A.

Proof: From Theorem 2, we know A has2N − 4 independent
angles infA(p). First, we prove that dependent triplet elements in
A imply dependent angles in fA(p). Using geometric transfor-

mation, one has NT
kji =

(ljk cos�ijk)zji−(pk−pj)
ljiljk sin�ijk = − (pi−pj)

⊥

l2ij
.

Then, by taking the dependent triplet elements in Fig. 6(a) as an
example, it can be verified that[

1 1 1 1 1 1
]
Ra(p) = 0 (21)

which implies the row dependence in Ra(p) and dependent
angles in fA(p). The cases in Fig. 6(b) and (c) can be similarly
obtained. Now, one has that dependent triplet elements in A
⇒ dependent angles in fA(p), which implies that independent
angles in fA(p) ⇒ independent triplet elements in A. So its
angle set A has 2N − 4 independent triplet elements. �

Now we show the relationship between angle rigidity and
infinitesimal angle rigidity.

Theorem 4 (Relationship between infinitesimal angle rigidity
and angle rigidity): If an angularity A(V,A, p) is infinitesi-
mally angle rigid, then it is angle rigid.

Proof: From Definition 9, we know that if A(V,A, p) is
infinitesimally angle rigid, then all the continuous infinitesimally
angle rigid motion p(t) are trivial, which are the combination
of translation, rotation, and scaling of A. Consider another
angularity A′(V,A, p′) with ε > 0 and ‖p′ − p‖ < ε, which is
equivalent to A(V,A, p). Then, the continuous motion from p to
p′ maintaining fA(p) is the combination of translation, rotation,
and scaling of A(V,A, p), which are angle-preserving motions,
i.e., (3) holds. Therefore, A(V,A, p′) is congruent to A(V,A, p),
which implies that A(V,A, p) is angle rigid. �

For infinitesimally angle rigid angularities, we now discuss
when its number of angles inA becomes the minimum. Towards
this end, we need to clarify what we mean by minimal angle
rigidity.

Definition 10 (Minimal angle rigidity): An angularity
A(V,A, p) is minimally angle rigid if it is angle rigid and fails to
remain so after removing any element inA, and is infinitesimally
minimally angle rigid if it is infinitesimally angle rigid and
minimally angle rigid.

Since Rank[Ra(p)] ≤ 2N − 4, the minimum number of angle
constraints in fA(p) to maintain infinitesimal angle rigidity is
exactly 2N − 4. So we immediately have the following lemma.

Lemma 3: An angularity A(V,A, p) is infinitesimally mini-
mally angle rigid if and only if it is infinitesimally angle rigid
and |A| = 2N − 4.

For an infinitesimally minimally distance rigid framework,
there must exist a vertex associated with fewer than 4 dis-
tance constraints [27], [28]; otherwise, the total number of
distance constraints will be at least 2N and thus greater than
the minimum number 2N − 3. This property is critical for
the success of the Henneberg construction method in order to

Fig. 7. All vertices are involved in 5 angle constraints in an infinitesi-
mally minimally angle rigid angularity.

generate an arbitrary infinitesimally minimally distance rigid
framework [27], [29]. However, for an infinitesimally minimally
angle rigid angularity, the situation is more challenging, which
in fact prevents drawing similar conclusions as the Henneberg
construction does for distance rigidity. To be more precise, we
have the following lemma.

Lemma 4: For an infinitesimally minimally angle rigid an-
gularity A(V,A, p) with |A| = 2N − 4, it must have a vertex
involved in more than one but fewer than 6 angle constraints.

Proof: If every vertex is involved in at least 6 angle con-
straints, then the total number of angle constraints is at least
|A| ≥ 6N

3 = 2N , which contradicts Lemma 3. Then, for that
vertex, which has fewer than 6 angle constraints, if it is involved
in only one angle constraint, then it is not infinitesimally rigid
with respect to the rest of the angularity, which contradicts the
property of infinitesimal angle rigidity. So there must be at least
one vertex that is involved in 2, 3, 4, or 5 angle constraints. �

In Fig. 7, we show an infinitesimally minimally angle rigid
angularity whose vertices are all involved in 5 angle constraints.

Note that if an angularity A(V,A, p) is infinitesimally mini-
mally angle rigid, then |A| = 2N − 4, and more importantly, the
triplet elements in A need to be independent; this also implies
that those situations listed in Fig. 6, namely cyclic triplets,
triplets with the same middle vertex, and overly constrained
angle subsets, cannot show up in A, which is a necessary
combinatorial condition for infinitesimal minimal angle rigidity.
In the following section, we show how to apply the angle rigidity
theory we have developed for multiagent formation control.

IV. APPLICATION IN MULTIAGENT PLANAR FORMATIONS

To achieve a planar formation by a group of mobile robots,
many formation control algorithms have been designed, most
of which require the measurement of relative positions [15],
[30], [31] or aligned bearings [9], [32], or communication [15],
[33]. Note that in [15], a gradient-based formation stabilization
control law is designed to achieve an infinitesimally angle rigid
formation, in which the measurements of relative position and
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Fig. 8. Agent i’s angle measurements.

wireless communication of neighbors’ angle error information
are both needed. In this section, we demonstrate how to stabilize
a multiagent planar formation using only local angle measure-
ments with the help of the angle rigidity theory that we have just
developed.

For an agent i moving in the plane, we consider its dynamics
are governed by single-integrator

ṗi = ui, i = 1, . . . , N (22)

where pi ∈ IR2 denotes agent i’s position,ui ∈ IR2 is the control
input to be designed, andN is the number of agents in the group.
Agent i can only measure angles; to be more specific, it can only
measure the angle φij ∈ [0, 2π) with respect to another agent j
evaluated counter-clockwise from the X-axis of its own local
coordinate frame of choice that is fixed to the ground.

To avoid confusion in the stability analysis, we first describe
all variables in a global coordinate frame and finally we demon-
strate that this global coordinate frame is unnecessary. Now we
define the bearing zij ∈ IR2 to be the unit vector pointing from
agent i to j, i.e.,

zij =
pj − pi
‖pj − pi‖ =

[
cosφij

sinφij

]
(23)

where φij determines uniquely zij when pi �= pj . Therefore,
when φij can be measured, zij is known. In the triangle �ijk
shown in Fig. 8, the interior angle αi can be computed by

αi = �kij = arccos(zT
ijzik) (24)

using bearings zij and zik. Note that the X-axes of agents i, j,
and k do not need to align, and the angle to be controlled is not
the measured angle φij , but the relative angle αi.

We construct the desired planar formation through a sequence
of Type-I vertex additions (Case 3) from a generically angle
rigid 3-vertex angularity, which is globally angle rigid according
to Proposition 1. First, in an N -agent formation, we label the
agents by 1–N . Then, agents 1, 2, and 3 aim at forming the first
triangular shape, and each of agents 4–N aims at achieving two
desired angles formed with other three agents (see Fig. 9). By
repeatedly adding new agents through the Type-I vertex addition
operation, the aim is to achieve the desired angle rigid formation
specified as follows. For agents 1–3

limt→∞ e1(t) = limt→∞(α312(t)− α∗
312) = 0 (25)

limt→∞ e2(t) = limt→∞(α123(t)− α∗
123) = 0 (26)

limt→∞ e3(t) = limt→∞(α231(t)− α∗
231) = 0 (27)

Fig. 9. Constructing desired formation by using Case 3 of Type-I vertex
addition starting from �123.

where α∗
jik ∈ (0, π), i, j, k ∈ {1, 2, 3} denote agent i’s desired

angle formed with agents j, k. For agents 4–N

limt→∞ ei1(t) = limt→∞(αj1ij2(t)− α∗
j1ij2

) = 0 (28)

limt→∞ ei2(t) = limt→∞(αj2ij3(t)− α∗
j2ij3

) = 0 (29)

where i = 4, . . . , N , j1 < i, j2 < i, j3 < i, and α∗
j1ij2

∈
(0, π), α∗

j2ij3
∈ (0, π) denote agent i’s two desired angles

formed with agents j1, j2, j3 ∈ {1, 2, . . ., i− 1}, j1 �= j2 �= j3.
Therefore, the angle-only formation control problem to be
solved in this section is formally described below.

Problem 1: Given feasible desired angles fA =
{α∗

312, α
∗
123, α

∗
231, α

∗
241, α

∗
342, . . . , α

∗
i1Ni2

, α∗
i2Ni3

}, design
control law ui by only using angle measurements φij to achieve
(25)–(29).

Remark 3: One may also choose other cases in Type-I and
Type-II vertex addition operations to construct the desired for-
mations. However, the constructed formations are not globally
angle rigid or the realization depends on the knowledge of the
neighbors’ angle error, which are the drawbacks of the other
cases when they are applied to formation control. For example, in
Case 1 of Type-II vertex addition [Fig. 4(d)], Proposition 2 shows
that the constructed formation is only angle rigid which may
cause ambiguity; moreover, the angle αk1j1i cannot be obtained
by agent i’s local angle measurements.

A. Triangular Formation Control for Agents 1–3

To achieve the desired angles for agents 1–3, we design their
formation control laws

ui = − (αi − α∗
i )(zi(i+1) + zi(i−1)) (30)

where i ∈ {1, 2, 3}, zi(i+1) = z31 when i = 3 and zi(i−1) = z13
when i = 1, and αi represents α(i−1)i(i+1) for conciseness.

To obtain the convergence of the angle errors, we first analyze
the dynamics of the angle errors ei(t), i = 1, 2, 3. Different
from [34], we use the dot product of two bearings to obtain
the angle error dynamics. According to (10), agent 1’s angle
error dynamics can be obtained by

α̇1 = −
[

Pz13

l13 sinα1
(ṗ3 − ṗ1)

]T

z12 − zT
13

Pz12

l12 sinα1
(ṗ2 − ṗ1).

(31)
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By following the calculation in Appendix A, one has the first
three agents’ angle error dynamics

ėf = [α̇1 α̇2 α̇3]
T = F (ef )ef

=

⎡
⎢⎣−g1 f12 f13

f21 −g2 f23

f31 f32 −g3

⎤
⎥⎦
⎡
⎢⎣α1 − α∗

1

α2 − α∗
2

α3 − α∗
3

⎤
⎥⎦ (32)

where ef = [α1 − α∗
1 α2 − α∗

2 α3 −α∗
3]

T , gi = (sinαi)
(1/li(i+1) + 1/li(i−1)), fij = (sinαj)/lij .

To guarantee that the triangular formation system under the
control law (30) is well defined, we first prove that no collinearity
and collision will take place under (32) if the formation is not
collinear initially.

Lemma 5 (No collinearity): For the three-agent formation, if
the initial formation is not collinear, it will not become collinear
for t > 0 under the angle error dynamics (32).

Proof: Consider the manifold Ma = {(α1,
α2, α3)|α1 + α2 + α3 = π, 0 < α1 < π, 0 < α2 < π, and0 <
α3 < π} which is an open set. To show Ma is positively
invariant, we show that for any (α1, α2, α3) ∈ Ma it is
impossible for αi, i = 1, 2, 3 to escape Ma under (32).
Consider the boundary states αi(t) = π − ε1 with ε1 = 0+,
αi+1(t) = ε2 = 0+, αi−1(t) = ε3 = 0+, ε1 = ε2 + ε3.

According to (32), one has

ėi = −giei + fi(i+1)ei+1 + fi(i−1)ei−1. (33)

Since 0 < α∗
i < π and α∗

i is bounded away from 0 and π, one
has

giei = gi(αi − α∗
i ) > 0 (34)

fi(i+1)ei+1 = fi(i+1)(αi+1 − α∗
i+1) < 0 (35)

fi(i−1)ei−1 = fi(i−1)(αi−1 − α∗
i−1) < 0 (36)

which implies that ėi(t) < 0. Thus, when αi(t) is close
to π, αi(t) will decrease, which implies that Ma is posi-
tively invariant, i.e., trajectories starting from Ma remains in
Ma. �

Lemma 6 (No collision): For the three-agent formation, if the
initial angles αi(0) �= 0, i = 1, 2, 3, no collision will take place
for t > 0 under the formation control law (30).

Proof: Suppose on the contrary that collision may happen
between agents i and j at t = t1. Then, one of the following two
cases shown in Fig. 10 will take place.

For the first case, ṗi(t1) = −γṗj(t1), where γ is a positive
constant. Note that the moving direction of agent i under the
control law (30) is always the bisector of the interior angle
αi. According to Lemma 5, no collinearity will happen for
t > 0 which implies that zik(t) �= −zjk(t) for t > 0. According
to the control law (30), ṗi(t1) = −γṗj(t1) requires zik(t1) =
−zjk(t1), which is impossible for t > 0.

For the second case, since agents i and j move toward the
inside of the triangle, it follows from the control law (30)
that π

2 − ε1 = αi(t
−
1 ) < α∗

i and π
2 − ε2 = αj(t

−
1 ) < α∗

j , where
ε1 = 0+ and ε2 = 0+. Then, α∗

i + α∗
j + α∗

k = π > π + α∗
k −

ε1 − ε2, which contradicts the fact that α∗
k is bounded away

from 0. �

Fig. 10. Collision cases.

Now, we give the main result for the convergence of the
triangular formation.

Theorem 5 (Stability of the first three agents): For the trian-
gular formation under the control law (30), if αi(0) �= 0 and
the initial angle errors ei(0), i = 1, 2, 3 are sufficiently small,
the angle errors ei and agents’ control input ui(t) converge
exponentially to zero.

Proof: From Lemmas 5 and 6, no collinearity and collision
will take place since sinαi �= 0, lij �= 0, ∀i, j = 1, 2, 3, which
guarantees that the closed-loop system under the control law (30)
is well defined. Since e1 + e2 + e3 =

∑3
i=1 αi −

∑3
i=1 α

∗
i ≡

0, the angle error dynamics (32) can be reduced to

ės =

[
ė1

ė2

]
=

[
−(g1 + f13) f12 − f13

f21 − f23 −(g2 + f23)

][
e1

e2

]
= Fs(es)es.

(37)

Let U2 ∈ IR2 denote a neighborhood of the origin {e1 = e2 =
0}, in which we investigate the local stability of (37). Linearizing
(37) around the origin, we obtain

ės = L1(α
∗)es (38)

where L1(α
∗) = Fs(es)|es=0. Then, one has

tr(L1(α
∗)) = −g∗1 − f ∗

13 − g∗2 − f ∗
23 < 0 (39)

det(L1(α
∗)) = (g∗1 + f ∗

13)(g
∗
2 + f ∗

23)− (f ∗
21 − f ∗

23)(f
∗
12 − f ∗

13)

> g∗1f
∗
23 + g∗2f

∗
13 + f ∗

21f
∗
13 + f ∗

12f
∗
23 > 0 (40)

where g∗i = gi|es=0, f ∗
ij = fij |es=0, and tr() and det() denote the

trace and determinant of a square matrix, respectively, and we
have used g∗1g

∗
2 > f ∗

21f
∗
12. According to (39) and (40), one has

that L1(α
∗) is Hurwitz. According to the Lyapunov Theorem

[35, Theorem 4.6], there always exists positive definite matri-
ces P1 ∈ IR2×2 and Q1 ∈ IR2×2 such that −Q1 = P1L1(α

∗) +
LT
1(α

∗)P1. Design the Lyapunov function candidate as

V1 = eT
sP1es. (41)

Taking the time-derivative of V1 yields

V̇1 = −eT
sQ1es ≤ −λmin(Q1)

λmax(P1)
V1 (42)

which implies that V1(t) ≤ V1(0)e
− λmin(Q1)

λmax(P1)
t where λmax and

λmin denote the maximum and minimum eigenvalues of a real
symmetric matrix, respectively. Since P1 > 0, one has

e21 + e22 = ‖es‖2 ≤ V1

λmin(P1)
≤ V1(0)

λmin(P1)
e
− λmin(Q1)

λmax(P1)
t
. (43)

Also, one has

e23 = e21 + e22 + 2e1e2 ≤ 2(e21 + e22) ≤
2V1(0)

λmin(P1)
e
− λmin(Q1)

λmax(P1)
t
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which implies that ei under the dynamics (32) is exponentially
stable when the initial states lie in U2. According to (30),
‖ui‖ ≤ 2|ei| also converge to zero at an exponential rate, which
implies that pi, i = 1, 2, 3 will converge to fixed points and the
orientation and scale of the formation will then be fixed. �

Remark 4: With noncollinear initial positions, the first three
agents’ angle error dynamics ės = Fs(es)es are globally sta-
ble, as a consequence of the Poincare–Bendixson theorem [35,
Lemma 2.1] employed in [34, Theorem 6]. The difference be-
tween the angle error dynamics ės = Fs(es)es and the dynamics
given in [34] is that sinαi shown in gi, fij in (32) is replaced by
sin αi

2 in [34]. However, for a triangular formation, it holds that
sin αi

2 > 0 and sinαi > 0 for allαi ∈ (0, π). Therefore, one can
similarly obtain the almost global stability of ės = Fs(es)es by
following [34, Th. 6].

After proving that the first three agents converge to the desired
formation, we now look at the remaining agents.

B. Adding Agents 4 to N in Sequence

In this subsection, we consider that agent i, i = 4, . . ., N ,
are added to the formation through the Type-I vertex addition
operation with two desired angles. For agents i = 4, . . ., N , the
control algorithm is designed to be

ui = − (αj1ij2 − α∗
j1ij2

)(zij1 + zij2)

− (αj2ij3 − α∗
j2ij3

)(zij2 + zij3) (44)

where α∗
j1ij2

∈ (0, π) and α∗
j2ij3

∈ (0, π), j1 < i, j2 < i, j3 <
i, j1 �= j2 �= j3 are the two desired angles. Different from the
first three agents, the bearing measurement topology from agents
4 to N becomes directed, which is also similarly employed
in [16].

To prove the stability from agents 4 to N , we use induction.
Toward this end, we need to first prove that the 4-agent formation
of 1–4 converges to the desired shape exponentially. For the
4-agent formation, the control algorithm (44) can be written as

u4 = − (α241 − α∗
241)(z41 + z42)

− (α342 − α∗
342)(z42 + z43). (45)

Then, one has the following result.
Lemma 7 (Stability of agent 4): Suppose ei(0), i = 1, 2, 3 are

sufficiently small and the subformation of 1, 2, and 3 is governed
by (30). Under the control algorithm (45) for agent 4, if the initial
distances l4i(0) are sufficiently bounded away from zero, the
initial angle errors e41(0) and e42(0) are sufficiently small and
α∗
341 = α∗

241 + α∗
342, sinα∗

124 > sinα∗
412, sinα∗

423 > sinα∗
234,

then e41(t) and e42(t) converges to zero exponentially.
Proof: To analyze the stability of the angle errors e41 and

e42 under the control algorithm (45), we first calculate the angle
error dynamics of e41 and e42. According to the calculation in
Appendix B, one has the following angle error dynamics:

ė4 = [α̇241 α̇342]
T = F4(e4)e4 +W (e4)es

=

[
j11 j12

j21 j22

][
e41

e42

]
+

[
w11 w12

w21 w22

][
e1

e2

]
(46)

where j11 = − sinα241

l41
− sinα241

l42
, j22 = − sinα342

l43

− sinα342

l42
, j12 = − (sinα241)+(sinα341)

l41
+ sinα342

l42
, j21 =

− (sinα342)+(sinα341)
l43

+ sinα241

l42
, w11 =

zT
42Pz41

(z12+z13)

l41 sinα241
,

w12 =
zT
41Pz42

(z21+z23)

l42 sinα241
, w21 = − zT

42Pz43
(z31+z32)

l43 sinα342
, w22 =

zT
43Pz42

(z21+z23)

l42 sinα342
− zT

42Pz43
(z31+z32)

l43 sinα342
.

Now, by conducting linearization towards (46) in a small
neighborhood of the origin {e1 = 0, e2 = 0, e41 = 0, e42 = 0},
one has

ė4 = L2(α
∗)e4 + W̄es (47)

whereL2(α
∗) = F4(e4)|es=0,e4=0 and W̄ = W (e4)|es=0,e4=0.

Then, one has

tr(L2(α
∗)) = (j11 + j22)|es=0,e4=0 < 0 (48)

det(L2(α
∗))

= (j11j22 − j12j21)|es=0,e4=0

=
l∗41(sinα

∗
241 sinα

∗
342 + sin2 α∗

342 + sinα∗
342 sinα

∗
341)

l∗41l
∗
42l

∗
43

+
l∗43(sinα

∗
241 sinα

∗
342 + sin2 α∗

241 + sinα∗
241 sinα

∗
341)

l∗42l
∗
41l

∗
43

− l∗42(sinα
∗
241 sinα

∗
341 + sinα∗

341 sinα
∗
342 + sin2 α∗

341)

l∗41l
∗
42l

∗
43

(49)

where l∗ij is the distance between agents i and j in the desired
formation. Therefore, if det(L2(α

∗)) > 0, one has that L2(α
∗)

is Hurwitz. By using the law of Sines, sinα∗
124 > sinα∗

412 and
sinα∗

423 > sinα∗
234 imply l∗41 > l∗42 and l∗43 > l∗42, respectively.

Then, one can check that det(L2(α
∗)) > 0 if l∗41 > l∗42 and l∗43 >

l∗42 hold because, on the one hand

l∗43 sinα
∗
241 sinα

∗
341 > l∗42 sinα

∗
241 sinα

∗
341 (50)

l∗41 sinα
∗
341 sinα

∗
342 > l∗42 sinα

∗
341 sinα

∗
342 (51)

and, on the other hand

sin2 α∗
341 = [sinα∗

241 cosα
∗
342 + cosα∗

241 sinα
∗
342]

2

= sin2 α∗
241 cos

2 α∗
342 + cos2 α∗

241 sin
2 α∗

342

+ 2 sinα∗
241 cosα

∗
342 cosα

∗
241 sinα

∗
342 (52)

and l∗41 sin
2 α∗

342 > l∗42 sin
2 α∗

342 cos
2 α∗

241, l∗43 sin
2 α∗

241 >
l∗42 sin

2 α∗
241 cos

2 α∗
342 and l∗41 sinα

∗
241 sinα

∗
342 +

l∗43 sinα
∗
241 sinα

∗
342 > 2l∗42 sinα

∗
241 sinα

∗
342 >

2l∗42 sinα
∗
241 cosα

∗
342 cosα

∗
241 sinα

∗
342. By combining (38)

and (47) together, one has the overall linearized 4-agent angle
error dynamics

˙̄e4 =

[
ės

ė4

]
= L4(α

∗)ē4 =

[
L1(α

∗) 0

W̄ L2(α
∗)

][
es

e4

]
(53)

WhenL1(α
∗) andL2(α

∗) are Hurwitz, one has thatL4(α
∗) is

also Hurwitz. When L4(α
∗) is Hurwitz, for an arbitrary positive

definite matrix Q2 ∈ IR4×4, there always exists positive definite
matrix P2 ∈ IR4×4 such that −Q2 = P2L4(α

∗) + LT
4(α

∗)P2.
Design the Lyapunov function candidate as

V2 = ēT
4P2ē4. (54)

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on December 20,2022 at 11:43:21 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: ANGLE RIGIDITY AND ITS USAGE TO STABILIZE MULTIAGENT FORMATIONS IN 2-D 3677

Taking the time-derivative of V2 along (53) yields

V̇2 = −ēT
4Q2ē4 ≤ −λmin(Q2)‖ē4‖2 ≤ −λmin(Q2)

λmax(P2)
V2. (55)

Then, one has

‖e4‖2 ≤ ‖ē4‖2 ≤ V2

λmin(P2)
≤ V2(0)

λmin(P2)
e
−(

λmin(Q2)

λmax(P2)
)t
. (56)

which implies that the agent 4’s angle error e4 also converges
to zero at an exponential rate. To guarantee that ‖W (e4)‖ is
bounded and control law (45) is well defined, the collision
between agent 4 and agents 1–3 should be avoided. Taking agent
1 as an example, one has

‖p4(t)− p1(t)‖

= ‖p4(0) +
∫ t

0

u4(s)ds− p1(0)−
∫ t

0

u1(s)ds‖

≥ ‖p4(0)− p1(0)‖ −
∫ t

0

‖u1(s)− u4(s)‖ds

≥ l14(0)− 2

∫ t

0

(|e1(s)|+ |e41(s)|+ |e42(s)|)ds.
Since l14(0) is sufficiently bounded away from zero, there
always exists a finite time T such that in the time interval
[0, T ], there is no collision between agent 4 and agent 1. Then,
according to (43) and (56), one has

‖p4(T )− p1(T )‖

≥ l14(0)− 2

∫ T

0

(|e1(s)|+ |e41(s)|+ |e42(s)|)ds

≥ l14(0)− 4

[
λmax(P1)

λmin(Q1)

√
V1(0)

λmin(P1)
(1− e

− λmin(Q1)

2λmax(P1)
T
)

+
λmax(P2)

λmin(Q2)

√
2V2(0)

λmin(P2)
(1− e

−(
λmin(Q2)

2λmax(P2)
)T
)

]
(57)

where we have used the fact that |e41|+ |e42| ≤√
2(e241 + e242) =

√
2‖e4‖. Since V1(0) and V2(0) are

sufficiently small and l14(0) is sufficiently bounded away
from zero, one has ‖p4(T )− p1(T )‖ > 0 since l14(0) >

4[ λmax(P1)
λmin(Q1)

√
V1(0)

λmin(P1)
+ λmax(P2)

λmin(Q2)

√
2V2(0)

λmin(P2)
]. Then, we extend

T to infinity. Because e
− λmin(Q1)

2λmax(P1)
t
> 0 and e

−(
λmin(Q2)

2λmax(P2)
)t
>

0, ∀t > 0, one has that l41(t) = ‖p4(t)− p1(t)‖ > 0 for t > 0.
On the other hand, since the initial angle errors e41(0) and
e42(0) are sufficiently small and e1(t), e2(t), e41(t) and e42(t)
converge at an exponential speed, α241(t) and α342(t) will be
bounded away from 0 and π. Therefore, ‖W (e4)‖ is bounded
and (46) is well defined. The proof for 4-agent formation is
completed. �

Now, we present the main result for agents 4 to N .
Theorem 6 (Stability of all the agents): Consider a formation

of N > 3 agents, each of which is governed by (22). Suppose
ei(0), i = 1, 2, 3 are sufficiently small and the subformation of
1, 2, 3 is governed by (30). For agent i, 4 ≤ i ≤ N , if the initial
distances lij1(0), lij2(0), and lij3(0) are sufficiently bounded
away from zero, the initial angle errors ei1(0) and ei2(0)

are sufficiently small and α∗
j3ij1

= α∗
j2ij1

+ α∗
j3ij2

, sinα∗
j1j2i

>
sinα∗

ij1j2
, sinα∗

ij2j3
> sinα∗

j2j3i
, then under (44), the formation

achieves its desired shape exponentially.
Proof: From Lemma 7, 4-agent formation achieves the de-

sired shape exponentially. Suppose for a 4 < k < N , thek-agent
formation converges to the desired shape exponentially. We
need to prove that for (k + 1)-agent formation, the relative
angle errors e(k+1)1 = αj1(k+1)j2 − α∗

j1(k+1)j2
and e(k+1)2 =

αj2(k+1)j3 − α∗
j2(k+1)j3

converge to zero exponentially. Similar
to the proof from (45) to (55), one has that the angle errors
e(k+1)1 and e(k+1)2 exponentially converge to zero. Therefore,
the control algorithm (44) can locally stabilize the agent k + 1,
i.e., the (k + 1)-agent formation converges to the desired shape
exponentially. So, from induction,N -agent formation converges
to the desired formation shape exponentially. The proof for
Theorem 6 is completed. �

Remark 5: Note that the control laws (30) and (44) can be
described by a unified form

ui = −
∑

(j,i,k)∈A (αjik − α∗
jik)(zij + zik) (58)

where A = {(1, 2, 3), (2, 3, 1), (3, 1, 2), (1, 4, 2), (2, 4, 3), . . . ,
(j1, k, j2), (j2, k, j3), . . . , (i1, N, i2), (i2, N, i3)}, j1<k, j2<
k, j3 < k, j1 �= j2 �= j3. Therefore, the unified control
algorithm (58) can locally stabilize the angle rigid formation
constructed through a sequence of Type-I vertex additions
(Case 3) from a triangular shape. Because we aim at obtaining
local stability for multiagent formations in Section IV, we only
consider the range of the desired angles belonging to (0, π)
in (25)–(29), and the case of αi(0) ∈ (π, 2π), α∗

i ∈ (π, 2π)
can be similarly obtained. However, to achieve a general
infinitesimally and minimally angle rigid formation, one can
use the gradient-based control law

ṗ = u = −
(
∂V3

∂p

)T

= −RT
a (p)(α− α∗) (59)

where V3 = 0.5(α− α∗)T(α− α∗), p, u, α are the stack vec-
tors of pi, ui, αjik, respectively. It follows that V̇3 = −(α−
α∗)TRa(p)R

T
a (p)(α− α∗). Because Ra(p)R

T
a (p) is positive

definite when p is in a small neighborhood of the desired
formation, one has the local convergence of (α− α∗).

Remark 6: Although each agent’s position in (22) is described
in the global coordinate frame, it is not required in the imple-
mentation of control algorithm (58). The control algorithm (58)
can be realized in each agent’s local coordinate frame since (58)
can be equivalently written in agent i’s local coordinate frame

Rb
gui = −

∑
(j,i,k)∈A (αjik − α∗

jik)R
b
g(zij + zik) (60)

where Rb
g ∈ SO(2) is the rotation matrix from the global co-

ordinate frame to agent i’s local coordinate frame, Rb
gui is

the controller input in agent i’s local coordinate frame, and
Rb

gzij , R
b
gzik are the local bearings measured in agent i’s local

coordinate frame. Since (αjik − α∗
jik) is a scalar and αjik is

the same under different coordinate frames, (60) and (58) are
equivalent.
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Fig. 11. Desired planar formation. (a) Angle-based. (b) Bearing-
based.

Fig. 12. Formation trajectories under angle rigidity-based control law
with misalignment in agents’ coordinate frames.

V. SIMULATION EXAMPLES

In this section, we first provide a simulation example to
validate the effectiveness of the proposed angle rigidity-based
control law (58). Then, we compare the angle rigidity-based
formation control law with bearing rigidity-based formation
control law. To begin with, we give the desired formation shape
in Fig. 11.

A. Angle Rigidity-Based Control Law

Consider five agents in the plane with the following initial
positions:

p1(0) = [0.8, 0.2]T, p2(0) = [0.1, 1.4]T, p3(0) = [−1.4, 0.3]T,

p4(0) = [0.1, 2.3]T, p5(0) = [−1.7, 1.6]T

which are also used for other simulation examples. According
to the form of A in (58), we consider the desired angles shown
in Fig. 11(a) as

α∗
213 = π/4, α∗

132 = π/4, α∗
321 = π/2, α∗

342 = arctan(0.5)

α∗
241 = arctan(

1

2
), α∗

254 = arctan(
1

2
), α∗

152 = arctan(
3√
10

)

which leads to a globally infinitesimally angle rigid formation
according to Proposition 1 and Theorem 2. To demonstrate
the coordinate-independent property illustrated in Remark 6,
we introduce a misalignment θ1 = 5◦ in agent 1’s coordinate

frame R1(θ) =
[
cos θ1 − sin θ1
sin θ1 cos θ1

]
, and the other agents’ coordi-

nate frames are the same as the XOY shown in Fig. 11.
Under the control law (58), the simulation results are given in

Figs. 12 and 13.

Fig. 13. Angle errors under angle rigidity-based control law with mis-
alignment in agents’ coordinate frames.

Fig. 14. Formation trajectories under bearing-based control without
misalignment.

Fig. 15. Bearing errors under bearing-based control without misalign-
ment.

B. Bearing Rigidity-Based Control Law

According to [9], a bearing rigidity-based control law is
described by

ṗi = −
∑

j∈Ni

Pzijz
∗
ij (61)

where the desired bearing constraints in this simulation are
defined as

z∗31 = [1, 0]T, z∗21 = [

√
2

2
,−

√
2

2
]T, z∗32 = [

√
2

2
,

√
2

2
]T

z∗42 = [0,−1]Tz∗41 = [

√
5

5
,
−2

√
5

5
]T, z∗43 = [

−√
5

5
,−2

√
5

5
]T

z∗54 = [
2
√
5

5
,

√
5

5
]T, z∗52 = [1, 0]T, z∗51 = [

3
√
10

10
,
−√

10

10
]T.

Then, we introduce the same misalignment into agent 1’s
coordinate frame. By defining ‖zij − z∗ij‖ as bearing error, the
simulation results are given in Figs. 14–17.
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Fig. 16. Formation trajectories under bearing-based control with mis-
alignment in agents’ coordinate frames.

Fig. 17. Bearing errors under bearing-based control with misalignment
in agents’ coordinate frames.

According to the above simulation results, one has that the
angle rigidity-based formation control algorithms do not require
the alignment of all agents’ coordinate frames, while bearing
rigidity-based control law in [9] does.

VI. CONCLUSION AND DISCUSSION

A. Conclusion

In this article, we have proposed the angle rigidity theory for
the stabilization of planar formations. The notion of angularity
has been first defined to describe the multipoint framework with
angle constraints. The established angle rigidity has shown to
be a local property because of the existence of flex ambiguity.
The infinitesimal angle rigidity has been developed based on
the trivial motions of the angularity. A sufficient and necessary
condition for infinitesimal angle rigidity has been investigated
by checking the rank of the angle rigidity matrix. Based on
the developed angle rigidity theory, we have also demonstrated
how to stabilize a multiagent planar formation using only angle
measurements, which can be realized in each agent’s local coor-
dinate frame. The exponential convergent rate of angle errors has
also been proved. Future work will focus on the necessary and
sufficient conditions for global angle rigidity and the combinato-
rial necessary and sufficient conditions for infinitesimal minimal
angle rigidity. For the angle-only formation control, we are also
interested in designing effective laws to ensure global stability.

B. Discussion

This article has investigated angle rigidity in 2-D by using
signed angle constraints, which eliminates the flip ambiguity
and some flex ambiguity, allowing the defined vertex-addition

operations to be used to construct an angle rigid or globally angle
rigid angularity. One may suggest to replace signed angles in 2-D
by signed volumes in 3-D, in order to eliminate possible flip
ambiguity. However, this turns out not to be the case. Therefore,
angle rigidity cannot be straightforwardly extended from 2-D to
3-D and this is a future research.
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APPENDIX A

In view of (30), it follows

ż12 =
Pz12

l12
(u2 − u1)

=
Pz12

l12
[−(α2 − α∗

2)(z23 + z21) + (α1 − α∗
1)(z13 + z12)].

(62)

So

żT
12z13

= [(α1 − α∗
1)(z13 + z12)− (α2 − α∗

2)(z23 + z21)]
T Pz12

l12
z13

=
(sin2 α1)(α1 − α∗

1)− (cosα3 + cosα1 cosα2)(α2 − α∗
2)

l12
.

(63)

Since

cosα3 + cosα1 cosα2 = − cos(α1 + α2) + cosα1 cosα2

= sinα2sinα1 (64)

it follows

żT
12z13 =

sinα1

l12
[(α1 − α∗

1)(sinα1)− (α2 − α∗
2) sinα2].

Similarly, one gets

zT
12ż13 =

sinα1

l13
[(α1 − α∗

1)(sinα1)− (α3 − α∗
3) sinα3].

By using (31), agent 1’s closed-loop angle dynamics are

α̇1 = − (sinα1)(
1

l12
+

1

l13
)(α1 − α∗

1)

+
sinα2

l12
(α2 − α∗

2) +
sinα3

l13
(α3 − α∗

3). (65)

Similarly,

α̇2 = − (sinα2)(
1

l21
+

1

l23
)(α2 − α∗

2)

+
sinα1

l21
(α1 − α∗

1) +
sinα3

l23
(α3 − α∗

3) (66)

α̇3 = − (sinα3)(
1

l31
+

1

l32
)(α3 − α∗

3)

+
sinα1

l31
(α1 − α∗

1) +
sinα2

l32
(α2 − α∗

2). (67)

Writing (65) and (66) into a compact form, one has the closed-
loop triangular formation dynamics given in (32).
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APPENDIX B

Since
d(cosα241)

dt
= −(sinα241)α̇241 =

d(zT
41z42)

dt

= (ż41)
Tz42 + (z41)

Tż42 (68)

and similarly

ż41 =
Pz41

l41
(ṗ1 − ṗ4) =

Pz41

l41
u1 − Pz41

l41
u4 (69)

we have

(ż41)
Tz42

= − uT
4

l41
(I2 − z41z

T
41)z42 + uT

1

Pz41

l41
z42

= − [(α241 − α∗
241)(cosα241 + cos2 α241)]

l41

− [(α342 − α∗
342)(cos

2 α241 + cosα241 cosα341)]

l41

+
[(α241 − α∗

241)(cosα241 + 1)]

l41

+
[(α342 − α∗

342)(1 + cosα342)]

l41
− zT

42

Pz41

l41
(z12 + z13)e1

=
(α241 − α∗

241) sin
2 α241

l41
− zT

42

Pz41

l41
(z12 + z13)e1

+
(α342 − α∗

342)(sin
2 α241 + sin2 α241 cosα342)

l41

+
(α342 − α∗

342) cosα241 sinα241 sinα342

l41
(70)

and

zT
41ż42 = zT

41

Pz42

l42
u2 − zT

41

I2 − z42z
T
42

l42
u4

= − zT
41

Pz42

l42
(z21 + z23)e2 +

(α241 − α∗
241) sin

2 α241

l42

+
(α342 − α∗

342)(− sinα241 sinα342)

l42
. (71)

Then, from (68), it follows:

α̇241 = − 1

sinα241

d(cosα241)

dt
= − żT

41z42 + zT
41ż42

sinα241

= − (sinα241)

(
1

l41
+

1

l42

)
(α241 − α∗

241)

− (α342 − α∗
342)(sinα241 + sinα341)

l41

+
(α342 − α∗

342) sinα342

l42
+

zT
41Pz42(z21 + z23)

l42 sinα241
e2

+
zT
42Pz41(z12 + z13)

l41 sinα241
e1. (72)

Analogously

α̇342 = − 1

sinα342

d(cosα342)

dt
= − żT

42z43 + zT
42ż43

sinα342

= − (sinα342)(
1

l43
+

1

l42
)(α342 − α∗

342)

− (α241 − α∗
241)(sinα342 + sinα341)

l43

+
(α241 − α∗

241) sinα241

l42
+

zT
43Pz42(z21 + z23)

l42 sinα342
e2

− zT
42Pz43(z31 + z32)

l43 sinα342
(e1 + e2). (73)

By combining (72) and (73), one has the compact form (46).
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