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Abstract— The conventional machine learning algo-
rithm for analyzing ultrasonic signals to detect struc-
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tural defects necessarily identifies and extracts either
time- or frequency-domain features manually, which has
problems in reliability and effectiveness. This work pro-
poses a novel approach by combining convolutional neural
networks (CNNs) and wavelet transform to analyze the
laser-generated ultrasonic signals for detecting the width
of subsurface defects accurately. The novelty of this work
is to convert the laser ultrasonic signals into the scalo-
grams (images) via wavelet transform, which are subse-
quently utilized as the image input for the pretrained CNN
to extract the defect features automatically to quantify the
width of defects, avoiding the necessity and inaccuracy
induced by artificial feature selection. The experimentally
validated numerical model that simulates the interaction of
laser-generated ultrasonic waves with subsurface defects
is first established, which is further utilized to generate
adequate laser ultrasonic signals for training the CNN
model. A total number of 3104 data are obtained from
simulation and experiments, with 2480 simulated signals
for training the CNN model and the remaining 620 simu-
lated data together with 4 experimental signals for verifying
the performance of the proposed algorithm. This approach
achieves the prediction accuracy of 98.5% on validation set,
particularly with the prediction accuracy of 100% for the
four experimental data. This work proves the feasibility and
reliability of the proposed method for quantifying the width
of subsurface defects and can be further expanded as a
universal approach to various other defects detection, such
as defect locations and shapes.

Index Terms— Convolutionalneural networks, laser ultra-
sonic signal, nondestructive evaluation (NDE), numerical
model, subsurface defects, wavelet transform.

I. INTRODUCTION

THE subsurface defects hidden in metallic structures are
detrimental to the integrity of critical structures and may

cause ruinous damage ultimately [1], [2]. A reliable and
effective nondestructive evaluation (NDE) technique to detect
and size the subsurface defects is therefore crucial for securing
safety and operation. Ultrasound has been widely implemented
in NDE practice for obtaining information, including the
location and size of subsurface defects in different materials
[3], [4]. However, the conventional ultrasonic inspection is
generally contact-based and requires additional fixtures or
coupling for ultrasonic signal generation and acquisition [5],
which is therefore not applicable in a harsh environment, such
as high temperature and heavy radiation [5].
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The laser ultrasonic technique, using a pulsed laser to
generate and adopting a continuous laser interferometer to
detect the ultrasonic signals, is a pure noncontact detection
technique and has been widely utilized for inspecting structural
materials with various defects. Lévesque et al. [6] used laser
ultrasonics combining with the synthetic aperture focusing
technique to analyze the additive manufactured coupons.
Bate et al. [7] implemented laser ultrasonics to obtain infor-
mation of microstructures of metallic alloy. Selim et al. [8]
proposed a hybrid system combining remotely induced laser
ultrasonic with conventional transducer for defects detection
in metallic parts. Zeng et al. [9] testified the feasibility
of using laser ultrasonics to inspect additive manufactured
components. The abovementioned work generally relies on
establishing a linear correlation between the detected defects
and the parameters of the received ultrasonic signals to obtain
the defect information. However, in practical applications,
it is extremely expensive and time-consuming to obtain the
correlation between defects and ultrasonic signals by a mass
of experiments and samples.

The approaches combining machine learning with the NDE
technique that enables establishing the complex nonlinear
relationship between defects and ultrasonic parameters via
neural networks are emerging in recent years [10], [11].
Zhang et al. [2] quantified the subsurface defects by com-
bining an improved genetic algorithm–backpropagation
neural network (GA-BPNN) with laser ultrasonic technique.
Krummenacher et al. [12] proposed two machine learning
methods to automatically detect the wheel cracks by a
pretraining artificial neural network (ANN) with convolu-
tional layers on 2-D representations of the measurement
time series for learning features and using support vector
machines (SVMs) for classification. Li et al. [1] used the
features of laser-generated surface acoustic waves as inputs
to a neural network optimized with particle swarm opti-
mization (PSO) algorithm to predict the depth of surface
defects. All the above works necessarily require to select
and extract either time- or frequency-domain features from
detected ultrasonic signals for training the machine learning
algorithm. However, this procedure is very subjective and
empirical, and in most cases, it is very difficult to extract the
reliable features that are most effective or relevant with the
defects to be detected.

A robust method that can automatically identify the most
relevant features of ultrasonic signal with defects and eliminate
the subjective selection is therefore highly demanded. Deep
learning, a new area in machine learning, which can extract
and identify the effective features of images automatically,
may be a potential method to address the above issue. In deep
learning, convolutional neural networks (CNNs) have proved
to have excellent performance for visual recognition tasks and
are widely implemented [13]. Makantasis et al. [14] used
a deep learning technique to recognize the human activities
in industrial environments by appropriately transforming the
video input into incorporate temporal information into each
frame. Maninis et al. [15] constructed a deep CNNs archi-
tecture for both retinal vessel and optic disk segmentation
through studying the eye fundus images. However, CNNs
require high-resolution images as input, which imposes chal-

lenges for conventional ultrasonic NDE technique with only
time-domain ultrasonic signals obtained. The wavelet trans-
form technique enables the transformation of time-domain
signals into images (scalogram) for CNN analysis. The scalo-
gram is the time–frequency representation of the time-domain
signal through wavelet transform, and the coefficient values at
the corresponding time–frequency locations can be revealed
by its color and brightness. The scalograms (images) with
CNNs analysis has been successfully implemented in research
on various kinds of time-domain signals, such as acoustic
signals [16]–[18] and electroencephalogram (EGG) [19].
Ren et al. [18] transformed the acoustic signal into scalo-
grams based on the morse and bump wavelet bases and used
the scalograms as the input of pretrained CNNs and (bidirec-
tional) gated recurrent neural network to classify the acoustic
scene. The application of CNN based on time–frequency
images, either obtained from piezoelectric or pulsed laser
ultrasonic waves, for detecting structural defects has not been
reported yet. As the time-domain laser ultrasonic signals
are similar to the above acoustic signals, combining wavelet
transform and CNN can serve as a new effective way to
analyze the ultrasonic signals to detect structural defects.

In this work, a systematic approach that combines CNN and
wavelet transform is proposed to evaluate subsurface defects
in metallic alloy materials by analyzing laser-generated ultra-
sonic signals. Unlike conventional machine learning-based
work on defects detection necessarily extracting either time-
or frequency-domain ultrasonic signals as features manually,
it is very subjective and unreliable in many cases. This
method enables the quantification of the width of subsurface
defects automatically, avoiding the necessity and inaccuracy
introduced by artificial feature selection. The novelty of
this work is to convert the laser ultrasonic signals into the
scalograms (images) via wavelet transform and the obtained
scalograms are subsequently utilized as the image input for the
pretrained CNN to quantify the width of defects. Considering
that CNN requires large training data to assure the accuracy
of prediction, it is extremely expensive and time-consuming to
obtain such a large number of data by experiments. Therefore,
a reliable numerical model is established to obtain sufficient
simulation data to prove the concept of this work. The numer-
ical model is first established and experimentally validated to
simulate the interaction of laser-generated ultrasonic waves
with subsurface defects. The obtained ultrasonic signals are
thereafter converted into the scalograms via reliable wavelet
transform. Three pretrained CNNs from large-scale datasets
ImageNet are further introduced to extract the deep features
of scalograms from ultrasonic signals with characteristics of
subsurface defects automatically. Finally, the multiplicative
long short-term memory network (mLSTM) is chosen as
the classifier for predicting the crack widths, by receiving
the features extracted using the above pretrained CNNs. The
framework of this work is shown in Fig. 1.

II. MATERIALS AND METHOD

A. Specimens and Experiment Data

The aluminum alloy (2024) plates with dimension of 30 mm
in length, 10 mm in width, and 5 mm in height were used
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Fig. 1. Flowchart of the combination of the CNNs and laser ultrasonic technique for detecting the width of subsurface cracks. (a) Simulated
time-domain laser ultrasonic signal with defect width of 4 mm. (b) Scalogram obtained from wavelet transform of the laser ultrasonic signal. (c) Image
features extraction by pretrained CNNs. (d) mLSTM for defect width prediction.

for the experiments. The subsurface defects with fixed defect
height (H ) of 1 mm, depth-to-surface (D) of 1 mm, and
various defect widths (W ) of 0, 2, 3, and 4 mm were fabricated
using electrical discharge machining and wire cutting method.
The schematic of the laser ultrasonic experimental setup is
shown in Fig. 2(a). A Nd:YAG pulsed laser (Centurion+) with
the wavelength of 1064 nm, pulse duration of 12 ns, and pulse
energy of 5 mJ is utilized to generate Rayleigh ultrasonic
waves, and a laser interferometer (TEMPO 2D, Sound and
Bright, USA) is adopted to detect the ultrasonic waves. The
pulsed laser is excited at 5 mm away from the center of
subsurface defects, and the detector is positioned at 10 mm
from it to receive the transmitted Rayleigh ultrasonic waves.
The acquired signals are digitized with a sampling frequency
of 250 MHz and averaged over 300 times to improve the
signal-to-noise ratio. The laser-generated ultrasonic signals
are substantially affected by the width of defects, both in
amplitude and phase, as shown in Fig. 2(b). To minimize the
effect of surface roughness, the surface of all experimental
specimens is maintained at about 0.8 μm.

B. Numeric Model and Simulation Data

The simulation is conducted using the thermal stress module
with transient solver in Comsol Multiphysics 5.4. All materials
are assumed to be isotropic linear elastic materials, and no
damping is considered. According to the shape of laser source
and the shape of defect, the model in our work is simplified
as a 2-D axisymmetric model. In order to simulate the laser
radiation effect, a heat flux load is applied on the top side
of the 2-D model. The artificial subsurface defect is modeled
as a rectangle notch with a fixed height and depth of 1 mm
and various widths varied from 0 to 6 mm with an increment
of 0.2 mm, with a total of 31 simulation data obtained. The
distance between the generation and detection laser is fixed at
10 mm. The parameters of the laser pulse spot radius, power
density, and rise time are set to 1 mm, 5mW/cm2, and 12 ns,
respectively. The material properties of 2024 aluminum alloy
used in the numerical calculation are listed in Table I.

As the convergence of finite-element calculation is sig-
nificantly affected by the temporal and spatial resolution of
the numerical model [1], the appropriate mesh size (Le) and
proper time step (�t ) are the two important aspects to highly
decide the fidelity and accuracy of the numerical simulation,

TABLE I
RELEVANT PARAMETERS OF 2024 ALUMINUM ALLOY MATERIALS

FOR NUMERICAL SIMULATION

which can be modeled as [20]

Le = λmin

10
(1)

�t = 1

20 fmax
(2)

where fmax and λmin are the highest frequency and the shortest
wavelength of the laser-generated ultrasonic waves, respec-
tively. In the simulation model, the normal node displacement
at the detection location is extracted for the acquisition of
ultrasonic signal. The quadrilateral elements with four nodes
are applied, and the mesh size near the laser irradiation area
and the other mesh size away from the heated-affected area are
arranged to be 2 and 20 μm, respectively, which can guarantee
the continuous spread of ultrasound and satisfy the change of
the temperature gradient. The time step and simulation time
are set to 4 ns and 10 μs, respectively, which can ensure
the accuracy of the numerical solution and meanwhile enables
the representation of all phenomena implied in the simulation
process. In addition, the boundary condition of both sides used
in the numerical model is set as low-reflecting boundary to
suppress the reflection of ultrasonic waves.

C. Wavelet Transform

To extract the time–frequency information hidden in
the defect ultrasonic signal automatically, the scalogram
of the signal through wavelet transform is utilized. Com-
pared with the conventional time–frequency methods such
as short-time Fourier transform (STFT), continuous wavelet
transform (CWT) is a time-scale representation. In the scalo-
gram, the wavelet coefficient values at the corresponding
time–frequency locations are represented by the gray value
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Fig. 2. (a) Schematic of laser ultrasonic detection of subsurface defects in metallic material. H, D, and W here are abbreviations of defect height,
depth-to-surface, and defect width, respectively. (b)–(d) Representative laser ultrasonic signals obtained from specimens with various defect widths.

in the 2-D image, which exposes more detailed information
of the signal.

For a given signal x(t), the CWT is defined as [21]

CWTx(β, ε) =
∫ +∞

−∞
x(t)ϕ∗

β,ε(t)dt (3)

where β ∈ R+ stands for the scale parameter, ε ∈ R+
is the translation diameter of time shifting and the basis
function, and ϕ∗

β,ε is obtained by scaling the mother wavelet
ϕ(t) at time ε and scale β. The asterisk represents that the
complex conjugate of the wavelet function is used in the
transform. To select the optimal wavelet basis function for
the laser-generated ultrasonic signals, five conventionally used
wavelet basis functions that are most similar to the waveform
of the defect signals, db4, db10 [22], coif3 [23], bump [24],
and morse [25] are utilized and compared. In this work,
the wavelet transform of the signal is conducted by using the
wavelet transform toolbox of MATLAB [26].

D. Deep Learning

1) Features Extraction With Pretrained CNNs: Due to the
power of transfer learning technique (i.e., saving training

time and improving the generalization capability of the net-
work), the fine-tuning pretrained network has advantages
over training a network with randomly initialized parame-
ter weights [27]. Since using multiple convolution networks
can extract image features more accurately and completely,
“VGG16,” “Resnet50,” and “DenseNet161” are chosen as
the pretrained CNNs for extracting the deep features of the
scalogram obtained from wavelet transform after comparing
the training results of different variants of these three mod-
els. These three deep CNNs have shown excellent perfor-
mance in an enormous amount of image classification tasks,
such as ImageNet Large Scale Visual Recognition Challenge
(ILSVRC). The three pretrained CNNs were obtained from
Pytorch’s model library and were replaced by the last layer
of them with a fully connected layer for concatenating. Then,
the output parameters of the fully connected layer will be used
as the input to mLSTM classifier with a softmax layer for
defect width prediction.

The softmax activation function is defined as [28]

Softmax(zi ) = ezi∑K
k=1 ezk

(4)
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Fig. 3. (a) Scalograms obtained from wavelet transform. (b) Structure of three pretrained CNNs for feature extraction. (c) Fully connected layer to
concatenate and output the extracted features to mLSTM for defect width prediction.

where zi represents the output of the i th classification and K
stands for the number of classification.

As shown in Fig. 3, the scalograms of laser ultrasonic
signals with various defect widths obtained from wavelet
transform are used as the input of three pretrained CNNs for
deep feature extraction, and a fully connected layer is added to
concatenate the extracted features and output them to mLSTM
for defect width prediction automatically.

a) VGG16 model: Visual geometry group (VGG) network
is a CNN proposed by the Oxford Visual Geometry Group,
Oxford, U.K., which has excellence on image localization and
classification [29]. In this network, several sizes of 3 × 3
convolution kernels are used to replace the larger convolution
kernels (three 3 × 3 replace a 7 × 7 and two 3 × 3 replace a
5 × 5), which is shown in Fig. 3(b). In this way, the number
of parameters between each network layer can be reduced
substantially. Fewer parameters mean less overfitting, and
more importantly, the stack of two 3 × 3 convolutions has
more nonlinear transforms than a single 5 × 5 convolution,
which enables the network to have an improved capability in
feature learning. In this article, VGG16, a kind of VGG model
that contains 16 convolution layers and has great learning
performance in VGG series, is selected as one of the pretrained
CNNs.

b) ResNet50 model: ResNet is the abbreviation of residual
network, a network structure proposed by He et al. [30].
Since deep convolutional neural networks have made a series
of breakthroughs for image classification and recognition,
adding the depth of network has become a trend in the field
of deep learning. However, notorious problems occur when
training a deeper neural network is vanishing gradient problem
and degradation problem. Various methods can be used to
solve the vanishing gradient problem, including normalized
initialization and intermediate normalization layers. However,
the degradation problem remains a challenge to be solved.
Residual learning is proposed to solve the degradation problem
due to the merits of its special parameter delivery way. Instead
of learning features, this model tries to learn some residuals.
The residual learning structure is a shortcut connection that
is shown in Fig. 3(b). Also, ResNet50 is a variant of ResNet,
which is a 50-layer residual network [31].

c) DenseNet161 model: DenseNet is a dense convolutional
network, which makes improvement on the basis of ResNet
[32]. ResNet creates short paths from early layers to later
layers to address the problem that gradient vanishes when
passing many layers. However, the identification function and
the output of each layer in ResNet are combined via adding,
which may block the flow of information. To improve the prob-
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lem of information flow between layers, DenseNet introduces
the dense block and transition layer, as shown in Fig. 3(b).
Each layer in the dense block can learn the features produced
by the previous layers in forwarding propagation, which can
alleviate the risk of exploding and vanishing gradient problem
and accelerate the speed of gradient propagation. Due to this
dense connectivity, the dimension of feature maps received
by the subsequent layers increases largely as the depth of
dense block grows. Therefore, there are transition layers set
between two dense blocks for reducing the dimension with a
1×1 convolution kernel. In this article, DenseNet161, a species
of DenseNet with 161 layers incorporated with other models
exhibits excellence on features extraction [33].
2) mLSTM Classifier for Prediction: As a variant of LSTM,

mLSTM is an amalgam structure that integrates the flexible
input-independent transitions of mRNNs with the gating struc-
ture in LSTM [34]. Due to the combination architecture of
mRNNs and LSTM, the convoluted transition produced by
the factorized hidden weight matrix becomes much easier
to control through the gating unit. Besides, more flexible
input-independent transition functions could be applied since
the additional sigmoid input and forget gates setting in LSTM.
Since the distributed hidden features could be changed fast
in mLSTM architecture, it surpasses other variants of LSTM
and all previous networks in Hutter Prize and some language
modeling tasks [35]. Therefore, mLSTM is selected as the
classifier, which receives the scalogram features extracted by
the above pretrained CNNs and predicts the corresponding
defect width.

III. RESULT AND DISCUSSION

A. Experimental Results and Numerical Model Validation

A reliable and validated numerical model is crucial for
obtaining adequate data for training the deep learning model.
The dataset of this work is obtained from the simulation model
of laser-generated ultrasonic waves with distinct subsurface
defects (crack widths ranging from 0 to 6 mm at 0.2-mm
interval, with 31 groups in total). The experimental and simu-
lation data (from specimen with defect width of 2 and 3 mm)
are, respectively, normalized in the range from −1 to 1 for
comparison [36], as shown in Fig. 4. The results show that the
simulated laser ultrasonic waves are in good consistent with
the experimental signals, as highlighted in the dashed area.
It therefore indicates that the established simulation model
is validated and reliable to simulate experiments to obtain
sufficient data for training the CNN.

The subsurface defect in this work is defined as the internal
defect with depth less than one wavelength of laser-generated
Rayleigh ultrasonic waves. The central frequencies of the
generated Rayleigh ultrasonic waves are about 2.2 MHz, with
the corresponding wavelength of 1.36 mm. As the depths of
all the subsurface defects are consistent at 1 mm beneath the
surfaces, therefore, such defects can be effectively detected by
the laser-generated Rayleigh ultrasonic waves. The effective-
ness of Rayleigh ultrasonic waves on detection of subsurface
defects has been well verified [37], [38].

Fig. 4. Comparison between experimental and simulation signals.
(a) Signals of no crack (mm). (b) Signals of crack width of 2 mm.

Fig. 5. Validation performance of the models based on various wavelet
bases.

B. Wavelet Base Selection and Analysis

For extracting the time–frequency information hidden in
the ultrasonic signal more effectively and accurately, wavelet
transform is applied to obtain the scalograms. To better repre-
sent the features of defect signals, five wavelet bases that are
most similar to the waveform of the defect signals are selected
from 20 commonly used wavelet bases for subsequent analy-
sis. Fig. 5 shows the comparison of the validation accuracy of
the selected wavelet bases. It can be seen that the classification
accuracy is affected by the wavelet base and the db4 wavelet
base is considered as the most suitable wavelet base to obtain
the scalograms.

The interaction of laser-generated ultrasonic waves with
various subsurface defects (a crack width of 0.8, 1.6, 2.4, and
3.2 mm) is simulated, and the representative time traces of
the laser-generated ultrasonic waves are shown in Fig. 6(a).
The result demonstrates that the detected ultrasonic signals are
significantly affected by defect width, indicating that the ultra-
sonic waves encompass the information of crack width. The
time-domain signals are transformed into the corresponding
scalograms by using the wavelet transform with db4 wavelet
base. The variation of crack width significantly affects the
corresponding scalogram, in which the pixels characterizing
the crack width have conspicuous alteration in color, bright-
ness, and position. Consequently, as input features into the
subsequent training model, these db4 scalograms are consid-
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Fig. 6. (a) Simulated time-domain laser ultrasonic signals with various
defect widths. (b)–(d) db4 scalograms of ultrasonic signals from speci-
mens with a crack width of 0.8, 1.6, 2.4, and 3.2 mm, respectively.

ered as the optimum images for representing the ultrasonic
signal. To enhance the robustness of the later training model,
the dataset is enlarged via adding varying levels of white
Gaussian noises to the signal of each crack width, which is
widely used for training neural network [39].

C. Data Preprocessing

As mentioned above, 31 simulated signals are added with
varying levels of white Gaussian noises (SNR ranging from
3 to 30 dB with 3-dB increment), and ten simulations are
conducted on each condition. Therefore, the total number of
scalogram images in the dataset is 3104 (3100 simulation data
and four experimental data), with the randomly selected 80%
(2480) simulated images as the training set and remaining
20% (620) simulation images and four experimental data as
the validation set. Since the input image for ResNet50 and
VGG19 should be of size 224×224, all the images are resized
to the target size of 224 × 224 before training. The batch size
for training is set to be 16 so that each epoch in training has
155 steps. Besides, the selections of the optimizer, learning
rate, and loss function play a significant role in improving
the training effect of the model. In view of the excellent
performance of Adam optimizer in many training tasks and its
significant advantages such as high computing efficiency and
less memory requirement [40], it is selected as the optimizer in
this study. The initial learning rate is set to be 0.0003, which
is small enough to prevent the parameters directly skipping
the local minimum value, resulting in no convergence. The
cross-entropy loss is taken as the loss function, as it is more
reasonable to update the model parameters in classification
tasks.

D. Training Results

The scalograms obtained from the wavelet transform with
wavelet base of db4 are used for the model training. As the
input of model is images, a great quantity of epochs are
required for training to achieve a satisfactory result. There-
fore, the model is trained for 100 iterations, and the loss

TABLE II
FOUR METRICS OF THE BEST RESULT ON THE VALIDATION SET

Fig. 7. Accuracy and loss of the model based on db4 scalograms.

value and accuracy are recorded at the end of each itera-
tion. Fig. 7 shows the variations of loss value and accuracy
during training and validating, respectively. It can be seen
that the validation loss drops dramatically in the first few
iterations and then gradually stabilizes at 0.1102, while the
training accuracy declines steadily and finally stabilizes at
0.07812, which reveals the effectiveness of the proposed
model for training the scalograms. In addition, the tenden-
cies of training accuracy and validation accuracy are very
similar, which both converge after 20 iterations of training.
Finally, the training accuracy stabilizes at 99.798%, while
the overall validation accuracy stabilizes at 98.516%. As the
gap between the two is small, which indicates that there is
no overfitting problem. Moreover, this approach achieves the
prediction accuracy of 100% for the four experimental data,
which proves the feasibility and reliability of the established
model.

The confused matrix of the best epoch on the validation
set is shown in Fig. 8, displaying the amount of correct
predictions and error predictions. It shows that CNNs have
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Fig. 8. Confusion matrix of the best performance on the validation set.

excellence in defect width prediction, with only minor errors
on a few cases. These errors may be caused by the noise
and the similar waveform of the defect signals. However,
in general, the number of misjudgments in the model is
negligible. There are some metrics obtained from the best
result on the validation set in Table II, including accuracy,
precision, recall rate, and F1-score [41]. All of them indicate
that the proposed model has excellent performance on the
validation set.

IV. CONCLUSION

Machine learning has been increasingly utilized in ultra-
sonic wave-based NDE applications. Conventional approaches
necessarily require to select and extract either time- or
frequency-domain features from detected ultrasonic signals
manually for training the machine learning model. How-
ever, this procedure is very subjective, empirical, and time-
consuming, and in most cases, it is very difficult to extract
the reliable features that are most relevant with the defects to
be detected. This work proposes a novel approach combining
CNN and wavelet transform to analyze the laser ultrasonic
signals for detecting the width of subsurface defects automat-
ically and accurately. The novelty of this work is to convert
the laser ultrasonic signals into the scalograms (images) via
wavelet transform, which are subsequently utilized as the
image input for the pretrained CNN to extract the defect
features automatically to quantify the width of defects, avoid-

ing the necessity and inaccuracy induced by artificial feature
selection. The experimentally validated numerical model is
established to simulate the interaction of laser ultrasonic waves
with subsurface defects. The simulated laser ultrasonic signals
are converted into scalograms via wavelet transform with the
most suitable wavelet base db4. The obtained scalograms
representing the time–frequency information of the laser ultra-
sonic signals are used as the input for training the deep
learning model. Due to the advantages of transfer learning,
this approach achieves excellent performance with the overall
prediction accuracy of 98.5% on the validation set, with the
prediction accuracy of 100% for the four experimental data.
This work proves that the proposed CNN based on the feature
selection approach is reliable and effective to quantify the
width of subsurface defects.

The main objective of this work is to prove the feasibility
and effectiveness of the proposed approach, and therefore,
only the width of defects is investigated. In real applications,
as long as sufficient data with regard to the various defect
types (dimensions, orientations, locations, and shapes) can be
acquired, the developed approach can achieve the accurate
detection of corresponding defects.
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