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Abstract This paper presents an explicit feature-based level-
set topology optimization method involving polyline-arc pro-
filing and 2.5D machining processes. This method relies on a
feature fitting algorithm incorporated into the boundary
evolvement process in order to regulate the noisy velocity
fields and thus introduce new explicit feature primitives; once
inserted, the feature-based shape optimization algorithm is
implemented to determine the optimum part shape and topol-
ogy. The research novelty lies in that, the best-fit feature prim-
itives are inserted during the topology optimization process
while other researchers so far have reported only manipulating
some existing features with the conventional level-set
methods. Therefore, feature-based design can be realized
without special requirement of initial input or any post-pro-
cessing. From the perspective of potential applications, the
engineering information embedded in those feature primitives
can be extracted and integrated into the optimization formula-
tion. Such potential integration can make the topology opti-
mization even more useful and practical. This effort is an
extension of level-set topology optimization into a domain
of structural optimization for manufacturing (OFM).

Keywords Level-set topology optimization . Feature fitting .

Machining features . Optimization-for-manufacturing

1 Introduction

Topology optimization, as an innovative and optimal part de-
sign method, has gained extensive development in the past
two decades (Rozvany 2009; van Dijk et al. 2013). The ad-
vantage of topology optimization is that it produces optimal
conceptual material distribution without initial guess (van
Dijk et al. 2013). However, poor regularity of the outcome
has been a problemwhich hinders topology optimization from
being integrated into CAD systems. To overcome the prob-
lem, a post-treatment step is needed to transform the topolog-
ically optimized result into a parametric CAD model for
density-based method (Hsu and Hsu 2005; Koguchi and
Kikuchi 2006), while parametric approaches like radial basis
functions (RBF) (Wang and Wang 2006; Wang et al. 2007;
Luo et al. 2008b; Luo et al. 2009; Ho et al. 2011; Ho et al.
2013; Liu et al. 2014) and spline curves/surfaces (Chen et al.
2007; Chen et al. 2008a) are employed for geometry represen-
tation by level-set method. This work is based on a parame-
terized level-set topology optimization method. The objective
of this research is to integrate more advanced downstream
engineering objects, such as manufacturing feature, into the
topology optimization cycles.

Currently, there are mainly two feature-based approaches
of level-set topology optimization – the explicit feature-based
and implicit feature-based ones. Before introducing the de-
tails, a clear definition about ‘explicit’ and ‘implicit’ features
should be discussed to avoid confusion. An explicit feature in
this context means that the shape feature is parametrically
constrained and the shape parameters defined can be used as
optimization variables. An implicit feature means the shape of
the geometry is approximated without scalable constraints and
no shape control parameters are available for further optimi-
zation. With regards to the current explicit feature-based ap-
proach (Chen et al. 2007; Chen et al. 2008a; Zhou and Wang
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2013; Liu et al. 2014), the research efforts mainly maintain
andmanipulate the existing feature primitives (see Fig. 1a and b).
However, there was nomechanism of creating new feature prim-
itives during the topology optimization process. The only rele-
vant work reported was to make the insertion by applying the
topological derivative (Cheng et al. 2006; Mei et al. 2008;
Gopalakrishnan and Suresh 2008), but that method was not ex-
tended into a generic 3D scheme. As for the implicit feature-
based approach (Chen et al. 2008b; Luo et al. 2008a; Guo
et al. 2014; Allaire et al. 2014), their goals were to approximately
satisfy some geometric constraints, like constraining the compo-
nent thickness within certain maximum and minimum values.
However, the lack of explicit feature primitives normally leads
to a redundant and manual post-processing step.

This paper focuses on a new explicit feature-based ap-
proach which enables fitting explicit feature primitives during
the optimization process. With this new method, the level-set
topology optimization is free from any initial guess, and can
produce explicit feature-based results (as shown in Fig. 1c). It
is also worth noticing that, the scale of the resulted feature
primitives is controllable which is of great significance in
engineering practice.

Another contribution of this paper is that, manufacturing
methods are considered upfront with their machining features,
i.e., polyline-arc profiles, prismatic 2.5D and freeform 2.5D fea-
tures. The significance of doing so is that the current 3D topology
optimization can only produce approximated freeform design;
such constraint severely limits the part design quality, i.e., man-
ufacturability. Normally freeform surfaces warrant 5-axis CNC

machining, which requires high-end machine and incurs high
costs (So et al. 2007), and long computation andmachining times
(Lasemi et al. 2010; Masmiati et al. 2012). Comparatively, 2.5D
features only require 2.5/3-axis machining, which is more eco-
nomical and efficient as it uses less costly machine tools, cutters
and clamping devices (Verma and Rajotia 2008), and requires
significantly less time for code generation and rough-to-finish
machining (Masmiati et al. 2012; Xu et al. 2013). Therefore, it
will be of great significance for the topology optimization capa-
ble of producing 2.5D machining feature-based design.

Further, design-for-manufacturing (DFM) is a feature-
based conceptual design approach which improves the prod-
uct competitiveness by conducting design activities consider-
ing both functional requirements and manufacturing con-
straints simultaneously (Kerbrat et al. 2011). In this way, the
required cutting methods, tools, suggested tolerances, surface
finish specifications, and estimated manufacturing cost can be
determined in the early design stage (Hoque et al. 2013).
Therefore, the introduction of 2.5D machining features into
topology optimization algorithm is very useful for integrating
manufacturability evaluations into topology optimization. For
instance, manufacturing time and cost can potentially work
together with mechanical requirements like stiffness and
strength, to form the objective function and constraints of
the optimization formulation (Fig. 2). This can form a new
scheme of optimization-for-manufacturing (OFM).

This paper is organized as follows: Section 2 reviews the
development of feature-based level-set topology optimization
methods and further explores the manufacturing-oriented con-
siderations. Section 3 introduces the conventional level-set
topology optimization method in more details based on the
compliance minimization problem. Section 4 describes the
working principles of the newly proposed machining feature
fitting algorithm involving multiple machining processes. In
Section 5, the feature-based shape optimization is introduced
to further adjust the constructive feature model. The complete
numerical implementation procedures of this novel machining
feature-based level-set topology optimization method are
summarized in Section 6. Several case studies are given in
Section 7 to demonstrate the effectiveness. Section 8 con-
cludes this paper and proposes the future work.

2 Review of literature

2.1 Feature-based level-set topology optimization

Level-set topology optimization (Osher and Sethian 1988;
Sethian and Wiegmann 2000; Wang et al. 2003; Allaire et al.
2004), as a popular and powerful structural design method,
has attracted great attention in the past decade (van Dijk et al.
2013). A significant advantage of level-set topology optimi-
zation is that it allows clear boundary representation. And by

Fig. 1 Results of different explicit feature-based approaches (a)
conventional explicit feature-based approach (Chen et al. 2007); (b)
conventional explicit feature-based approach with free boundary
evolvement (Kang and Wang 2013; Xia et al. 2013); (c) the new
explicit feature-based approach developed in this work
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using parametric level-set functions, the integration with CAD
has become possible although manual model mapping is still
required.

One group of parametric level-set functions is radial basis
functions of different forms and orders that have been applied
in level-set topology optimization. It enhances the design
space flexibility and convergence speed of the conventional
level-set approaches because that new holes can be naturally
produced, and the upwind schemes, velocity field, and re-
initialization can be eliminated (Wang and Wang 2006;
Wang et al. 2007; Luo et al. 2008b; Luo et al. 2009; Ho
et al. 2011; Ho et al. 2013; Liu et al. 2014). Alternatively
spline curves/surfaces are also commonly used for parameter-
ization (Chen et al. 2007; Chen et al. 2008a).

In recent years, research efforts started to deal with level-set
topology optimization with engineering features, because param-
eterization is not enough for engineering application, yet the
featurized geometric shapes with declarative and well-defined
form of engineering knowledge need to be addressed (Ma
2013). So far, two streams of feature-based level-set methods
have been developed based on shape and topological
sensitivity analysis.

The first stream is about implicit feature control. Chen et al.
(2008b) and Luo et al. (2008a) applied the quadratic energy
functional as part of the objective function and proposed the
shape feature control method which successfully realized the
strip-like design with controlled thickness. Guo et al. (2014)
realized strip-like design by imposing maximum and
minimum thickness constraints on the signed distance
function. However, simultaneously introducing the

maximum and minimum length scale control frequently
leads to local optima. Allaire et al. (2014) explored the thick-
ness control mechanism in depth, with diversified schemes of
maximum thickness only, minimum thickness only and also
the combined manners; additionally, a comparative discussion
between thickness control constraints and functionals was
demonstrated. In summary, the works under this stream are
controlling the shape features in an approximated manner,
which is meaningful for cases where the initial feature input
is unknown, but the implicit feature-based result is desired.

The second stream is about direct manipulation of the explicit
feature primitives. Chen et al. (2007; 2008a) fully parameterized
the design domain by implicitly representing the regular shape
features with intuitive parameters and the freeform shape features
with B-spline; then, the entire model was constructively formed
with shape feature primitives through R-functions. The paramet-
ric sensitivity analysis and design update are enabled by the
differential properties of implicit functions (Shapiro and
Tsukanov 1999). Cheng et al. (2006) and Mei et al. (2008) ap-
plied a similar method to perform parametric sensitivity analysis
on the regular shape feature primitives. More importantly, they
developed an initial procedure to topologically introduce explicit
feature primitives into the design domain. Zhou and Wang
(2013) regulated velocity fields of shape features via least squares
fitting to reserve the sharp characteristics; by doing so, they ac-
complished the explicit feature control with free boundary
evolvement simultaneously. More recently, Liu et al. (2014) ap-
plied the R-functions to construct the design domain with
intuitive-parameter based regular shape features and RBF-
based freeform shape features; they inherited the sensitivity
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analysis theory for R-functions from (Chen et al. 2007; Chen
et al. 2008a), and achieved a unified parametric optimization
scheme. Except for the pure level-set approaches, there are also
integrated methods which simultaneously optimize the layout of
explicit features represented by the level-set function, and the
material distribution of supporting structures through density-
based method (Kang andWang 2013; Xia et al. 2013). For these
works, efforts are focused on maintaining and manipulating the
existing explicit feature primitives, but it is still infeasible to insert
new primitives during the optimization process, which is also the
case for software tools like PareTO (2013). The only exception is
the work from (Cheng et al. 2006;Mei et al. 2008). They applied
the topological derivative to insert new explicit feature primitives
during the first few iterations of the optimization process.
However, as mentioned in the introduction, this method is still
not well-developed for several reasons:

& The topological derivative theory is designed to insert in-
finitesimal holes, but local analysis about the exact feature
type to be inserted can be rather sophisticated. Therefore,
they developed an in-between feature primitive to be
inserted which would approach to the specific feature type
during the optimization process. However, they also men-
tioned that this process was slow (Mei et al. 2008);

& The scale control is far from ideal for the infinitesimal nature
of topological derivative. A large number of small in-
between feature primitives are inserted at the initial iterations,
which generate numerous parameters to be controlled.
Furthermore, the final result is composed of too many small
segments; a “feature match process” is indispensable to ide-
alize the optimized model, for which the resulting relaxation
of the objective value was not discussed;

& This method has not been proven to be effective in 3D
scheme.

Gopalakrishnan and Suresh (2008) contributed the feature-
specific topological derivative algorithm including both internal
and boundary features under 2D scheme. This work provides a
preferable theoretical basis for topological sensitivity analysis on
inserting certain shape features. However, the possibility and
effectiveness of its application in level-set topology optimization
has not been explored yet.

At the end of this sub-section, we conclude that a compre-
hensive explicit feature-based level-set topology optimization
method is still in great need. Specifically, this method should
have the following characteristics:

& New explicit feature primitives can be automatically se-
lected and inserted during the optimization process;

& The scale of feature primitives should be controllable;
& No post-processing is needed to produce a perfect explicit

feature-based design for being directly imported into the
CAD system;

& It can be applied for 3D scheme.

All these desired characteristics will be satisfied by the
proposed method in this paper, while a comprehensive sum-
mary of the performance of existing methods on the listed
characteristics above is demonstrated in Table 1.

2.2 Manufacturing-oriented topology optimization

Previously, there were efforts for both the density-based and
level-set topology optimization to improve the result manu-
facturability, covering diversified manufacturing methods like
milling and casting (Zuo et al. 2006; Gersborg and Andreasen
2011; Guest and Zhu 2012; Lu and Chen 2012; Xia et al.
2010; Allaire et al. 2013). However, these efforts put more
focus on making the result manufacturable but fail to explic-
itly involve the manufacturing features. Consequently, it is
difficult for manufacturability to be quantitatively evaluated;
and the manufacturing cost is still relatively high because of
the nature of free evolvement. So far, optimization involving
manufacturing evaluations like time and cost are only at the
parametric shape optimization level (Chang and Tang 2001;
Edke and Chang 2006).

3 Review of level-set topology optimization

3.1 Level-set function

Osher and Sethian (1988) proposed the level-set function
which is a natural way of closed boundary representation.
By solving the Hamilton-Jacobean formulation, the boundary
can propagate, merge and split, which makes it perfect for
shape and topology optimization.

Let D∈Rn(n=2 or 3) be the initial design domain,
Ω∈ Rn(n=2 or 3) represent the area filled with materials
and ∂Ω be the boundary of the material domain.

, is the level-set function that,

Φ Xð Þ > 0; X∈Ω=∂Ω
Φ Xð Þ ¼ 0; X ∈ ∂Ω
Φ Xð Þ < 0; X ∈D=Ω

8<
: ð1Þ

To conveniently apply the level-set function into the opti-
mization process, the Heaviside function and Dirac delta func-
tion are adopted as,

H Φð Þ ¼ 1; Φ ≥ 0
H Φð Þ ¼ 0; Φ < 0

�
ð2Þ

δ Φð Þ ¼ ∂H Φð Þ
∂Φ

ð3Þ
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Then,

Ω ¼ X
���H Φ Xð Þð Þ ¼ 1

n o
ð4Þ

∂Ω ¼ X
���δ Φ Xð Þð Þ > 0

n o
ð5Þ

Normally, the approximated Heaviside and Dirac delta func-
tions are preferred (Wang et al. 2004; Wang and Wang 2005).

By taking derivative of the zero-value level-set function,
the Hamilton-Jacobean equation can be produced:

∂Φ Xð Þ
∂t

¼ Vn ∇Φ Xð Þj j ð6Þ

in which Vn is the boundary propagating speed in direction of

n, and n ¼ − ∇Φ Xð Þ
∇Φ Xð Þj j. By solving the optimization formulation

and getting the solution of Vn, the Hamilton-Jacobean equa-
tion can be updated in each iteration and at the same time, the
structure boundary evolves.

3.2 Compliance minimization problem

The work in this paper is based on compliance minimization
problems, and the methods can be extended to other design
issues. The general form of compliance minimization prob-
lems is:

min J u;Φð Þ ¼
Z
D

Ae uð Þe uð ÞH Φð ÞdΩ
s:t: a u; v;Φð Þ ¼ l v;Φð Þ; ∀v∈U

V Φð Þ ¼
Z
D

H Φð ÞdΩ≤Vmax

a u; v;Φð Þ ¼
Z
Ω
Ae uð Þe vð ÞH Φð Þdx

l v;Φð Þ ¼
Z
D

pvH Φð ÞdΩ þ
Z
D

τvδ Φð Þ ∇Φj jdΩ

ð7Þ

in which U={v∈H1(Ω)d|v=0 on ΓD} is the space of kinemat-
ically admissible displacement field. A is the Hooke’s law for
the defined isotropic material and e (u) is the strain. p is the
body force acting on the design domain and τ is the traction
force acting on the structural boundary. Vmax is the maximum
material volume ratio allowed for the design result.

3.3 Computation of velocity field

In order to solve the compliance minimization problem pre-
sented in Eq. (7), finite element analysis and sensitivity anal-
ysis are performed to derive the virtual velocity field for the
boundary evolvement. This gives the velocity field as shown
in Eq. (8) and detailed proof can be found in (Wang et al.
2003; Allaire et al. 2004).

Vn ¼ − λ−Ae uð Þe uð Þð Þ ð8Þ
where λ is the Lagrange multiplier for the volume constraint.

The velocity field is composed of continuously varying
velocities following a disorganized distribution. Therefore,
the topology optimization result tends to be rough 3D
freeform. In order to smoothen the freeform result into manu-
facturable design, a post-processing step is conventionally
used to manually construct the parametric freeform design
according to optimization result. This step is time-
consuming and labor intensive, and more severely, it may
unacceptably relax the objective function. In contrast, as
shown in Table 1, if 2.5D feature-based geometry is preferred,
the proposed method does not need this post-processing step.
Further, the new algorithm is fully automated, therefore, it
warrants better performance in application.

4 Machining feature fitting algorithm

Machining feature is a domain-specific form of the explicit
feature concept. The machining feature fitting algorithm

Table 1 Characteristics of existing feature-based level-set methods

In-process
insertion of
feature primitives

Scale control
of feature
primitives

Need of post-processing
for explicit feature-
based result

Applied in 3D
schemes

Implicit feature-based approaches:

Chen et al. (2008b); Luo et al. (2008a); Guo et al. (2014); Yes Yes Yes To be proved

Allaire et al. (2014); Yes Yes Yes Yes

Explicit feature-based approaches:

Chen et al. (2007; 2008a) No N/A No Yes

Cheng et al. (2006) Mei et al. (2008) Yes No Yes No

Zhou and Wang (2013) No N/A No Yes

Liu et al. (2014) No N/A No To be proved

Method proposed in this paper Yes Yes No Yes
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developed in this work is inspired by feature-based model
reconstruction in reverse engineering (Thompson et al. 1999;
Rabbani and van den Heuvel 2004; Bi and Wang 2010; Wang
et al. 2012), for which different methods have been developed
to construct the feature-based models from scanned point
cloud. Generally, three major components (Fig. 3) – define
feature library, make segmentation and solve the feature fitting
problem – exist in these methods, and are suitable to be
inherited by our proposed fitting algorithm. Specifically, the
feature library includes the candidate feature primitives to be
fitted in; segmentation is applied for the piecewise property of
feature fitting, as mechanical components are normally com-
posed of numerous feature primitives; then, the nonlinear least
squares formulation is adopted to solve the segmented feature
fitting problems as shown in Eq. (9).

min f ¼
X

i

d pi; sð Þ2 ð9Þ

where d is the shortest distance from pi to the targeted feature
surface, and s is the parameter set which can uniquely deter-
mine the feature profile.

In level-set topology optimization, the boundary velocity field
following a disorganized distribution is applied for free evolve-
ment, which is similar to the point cloud in reverse engineering.
Therefore, the feature fitting algorithm is appropriate for level-set
topology optimization, in order to hold back the free boundary
evolvement and eventually produce manufacturable designs. In
(Zhou and Wang 2013), the authors applied the least squares
fitting to regulate velocity field of existing feature primitives, in
this way to maintain and manipulate the feature primitives.
However, the method proposed in this paper is trying to insert
new feature primitives from candidate machining features, for
which there are more design freedoms.

In order to guarantee the completeness of this approach and
enable its adaptiveness to different machining processes, the

feature fitting algorithm has been developed with polyline-arc
profile features, prismatic 2.5D and freeform 2.5D features,
respectively.

4.1 Polyline-arc profile (PLAP) features

In this paper, PLAP features are involved because 2D topolo-
gy optimization widely exists in literature. In practice, PLAP
features can be regarded as the contour projection of 2.5D
machining features, so it is meaningful to investigate the
PLAP features under the machining background. To make it
different from free evolvement, the freeform profiles repre-
sented by spline curves are not considered here.

There are different taxonomies for PLAP machining
features (Miao et al. 2002; Kang et al. 2014), in which
numerous specific machining features have been defined
and a few cases are illustrated in Fig. 4a. However, it
would be ineffective to fit the velocity field with the
machining features separately. Therefore, two compound
features – the compound slot feature and the compound
arc feature – have been defined in this work (Fig. 4b),
which can evolve into any specific case as shown in
Fig. 4a through solving the feature fitting problem.
Mathematically, the velocity fields of the compound fea-
tures can be represented by Eqs. (10–11).

Vslot xð Þ ¼

V line1 L1;C1ð Þ ¼ C1 x∈ 0; L1½ Þ
Vslope1 L2ð Þ ¼ C1 þ C2−C1

L2−L1
x−L1ð Þ x∈ L1;L2½ Þ

V line2 L3;C2ð Þ ¼ C2 x∈ L2;L3½ Þ
Vslope2 L4ð Þ ¼ C2 þ C3−C2

L4−L3
x−L3ð Þ x∈ L3;L4½ Þ

V line3 L5;C3ð Þ ¼ C3 x∈ L4; L5½ �X5
i¼1

Li ¼ L

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð10Þ

Varc xð Þ ¼

V line1 C1ð Þ ¼ C1 x∈ 0;max 0; x0−Rð Þ½ �
Varc1 x0; y0;Rð Þ ¼ max C1;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2− x−x0ð Þ2

q
þ y0

� �
x∈ max 0; x0−Rð Þ; x0ð Þ

Varc2 x0; y0;Rð Þ ¼ max C2;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2− x−x0ð Þ2

q
þ y0

� �
x∈ x0;min x0 þ R; Lð Þ½ Þ

V line2 C2ð Þ ¼ C2 x min x0 þ R; Lð Þ; L½ �
x0∈ 0; Lð Þ

8>>>>>>>><
>>>>>>>>:

ð11Þ

In Eqs. (10–11), C1, C2 and C3 are constants representing
the piecewise velocity magnitude; (x0, y0) and R are the center
position and radius of the circle in the circular arc feature; L
represents the total length of the linear segment to be fitted.

For boundary segmentation, it is significant because the
feature fitting problems are solved on the basis of piecewise
boundary segments. Thus, different fitting results would be
produced with different scales of segmentation. For

Define feature library Make segmentation Solve the feature fitting problem 

Fig. 3 Three major components of the feature fitting algorithm

568 Jikai Liu and Y. -S. Ma



instance, a linear boundary can be cut into numerous
small segments and then each one is fitted with a PLAP
feature. In this way, the boundary evolvement can be
tracked accurately. However, too many segments are defi-
nitely undesirable as they will bring numerous parameters
to manage and create difficulties in manufacturing.
Therefore, a proper scale of segmentation is significant.
In this work, the segments are read from natural boundary
definitions; and a customized minimum length scale Llim is
employed to filter the small segments out of fitting activities.

As shown in Fig. 5, this algorithm divides the model
boundary into 8 linear segments, and the length of each seg-
ment is calculated. The following feature fitting problems will
only be solved on the segments employing the length larger

than Llim, for the purpose of controlling the scale of the newly
inserted feature primitives.

After the proper setup of the PLAP feature library
and the boundary segmentation, it is designed to apply
the least squares formulation as shown in Eq. (12) to
regulate the velocity distribution on each piecewise lin-
ear segment with the predefined compound feature ve-
locity fields.

min f ¼
Z L

0

V x; sð Þ−Vn xð Þð Þ2dx ð12Þ

Here Vn (x) is the local normal velocity; V (x,s) is the 1D
feature velocity as demonstrated in Eqs. (10–11), and s is the
optimization variable vector. Given the multiple candidate
compound features, the feature fitting problem is finally for-
mulated into a double-layer scheme as,

min: min: f i by finding sið Þ i ¼ compound slot or compound arcð13Þ

In Eq. (13), the inner loop can be solved by the finite dif-
ference method as the analytical expression is hard to derive
(Rabbani and van den Heuvel 2004), while the outer loop can
be simply solved through comparison.

4.1.1 2.5D features

2.5Dmachining is a conventional and popular milling method
which is greatly preferred by the manufacturing industry for
its high efficiency and low cost (Fig. 6). A clear classification
of 2.5D machining features is proposed according to (Miao
et al. 2002; Kang et al. 2014).

Fig. 6 Directions in the 2.5D milling process
Fig. 5 Boundary segmentation (‘+’ means the length larger than Llim; ‘-
’means the length shorter than Llim)

(a) 

(b) 

Vline1            Vslope1         Vline2         Vslope2        Vline3

Vline1                         Varc1      Varc2                   Vline2

Slot                                   V-Slot                                 Step   

Slope                                 Sector                                 Arc   

Fig. 4 PLAP machining feature library (a) individual features; (b)
compound features
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(1) Prismatic 2.5D features
The prismatic 2.5D features employs the contour of

general shapes like rectangle and circle, which are the
most general 2.5D machining features. Specifically, the
prismatic 2.5D features can be divided into two sub-cat-
egories, which are fitted in through the projection direc-
tion (Fig. 7a) or the free cutting directions (Fig. 7b).

(2) Freeform 2.5D features
The freeform 2.5D features are designed with

freeform contours in the cutting directions. It is more
complex but still can be handled by the 2.5D machining.
Detailed classification of freeform 2.5D features is
similar to those demonstrated in Fig. 7a and b, and is
shown in Fig. 7c.

Similar segmentation rules as demonstrated in the 2D
scheme can be extended to 3D cases, but certain adaptations
are needed. Details about the rules will be introduced in the
next section because it is tightly connected to the construction
method of the feature model.

With regards to the exact 2.5D machining feature fitting
algorithm, the least squares formulation demonstrated in
Eq. (12) needs to be extended with one more direction as
shown in Eq. (14).

min f ¼
Z
0

H Z L

0
V x; y; sð Þ−Vn x; yð Þð Þ2dx

� �
dy ð14Þ

The feature fitting problem with prismatic 2.5D features is
still a double-layer optimization formulation as shown in
Eq. (15), but different feature libraries will be applied for the
projection direction and the free cutting directions. Through
solving Eq. (15), the best fitted feature and the relevant spec-
ifications (size, depth and orientation) for each feasible surface
can be found. For instance, a fitting case of the prismatic 2.5D
in the projection direction is demonstrated in Fig. 8.

min: min: f i by finding sið Þ i ¼ feature index ð15Þ

As for freeform 2.5D features, the feature fitting problem is
adapted into a one-layer optimization problem as shown in

Fig. 8 A fitting case of the prismatic 2.5D in the projection direction

Fig. 7 Classification of 2.5D features (a) prismatic 2.5D features in the
projection direction; (b) prismatic 2.5D features in the free cutting
directions; (c) freeform 2.5D features
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Eq. (16), because of the spline curves applied for the free
contour representation.

min: f by finding s;which represents the set of control points

ð16Þ

Here, a major problem is to define the projection direction.
The strategy applied in this work is to determine the surface
employing the highest material removal rate in the initial iter-
ation, and define the relevant normal direction as the projec-
tion direction. The reason lies in that the projection direction is
normally the major cutting direction.

5 Explicit feature-based shape optimization

Apparently, the material domain after feature fitting is com-
posed of explicit feature primitives, and can be easily trans-
formed into a constructive feature model by R-functions to
support the explicit feature-based shape optimization.
Further shape adjustments of the material domain can be
achieved in a fast and robust iterative manner without relying
on the velocity field.

5.1 Constructive model

In CAD systems, constructive and boundary representa-
tion are two widely adopted model representation
methods, while the latter is more general in commercial
software tools. However, for geometric model optimiza-
tion, sensitivity analysis on the boundary representation
requires the model to be isomorphic which severely in-
fluence the optimization capability (Chen et al. 2008a).
Comparatively, constructive model optimization is insen-
sitive to topology change. Therefore, constructive model
is suitable to be the basis of feature-based shape
optimization.

To form the constructive model, explicit feature primitives
need to be represented in level-set form which describes the
volume by point sets. For instance, circle is represented by
Eq. (17),

Φ Xð Þ ¼ R − X − X 0j j ð17Þ
in which R is the circle radius and X0 is the circle center.

On the other hand, the freeform profiles of the 2.5D
features can also be represented implicitly. In this work,
the 1-D Bezier curve is applied to represent the freeform
profiles for the sake of simplicity (Xu and Ananthasuresh
2003), for which the implicit representation is demonstrat-
ed in Eq. (18). Extension to more complex spline curves
like B-spline is possible (Chen et al. 2007; Cai et al.
2014).

Φ x; yð Þ ¼
Xn
i¼0

Bn;i t xð Þð ÞY i

 !
−y

Bn;i tð Þ ¼ n!

i! n−ið Þ!t
i 1−tð Þn−i

t xð Þ ¼ x−K
L

x ∈ K; K þ L½ �

ð18Þ

Fig. 10 Boundary segmentation

Fig. 9 Constructive feature model
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The feature primitives (Φ1(X),Φ2(X),Φ3(X)……) are then
combined together by R-functions to form new and complex
geometry (Cai et al. 2014),

Φ1∪Φ2 ¼ max Φ1;Φ2ð Þ
Φ1∩Φ2 ¼ min Φ1;Φ2ð Þ
Φ1nΦ2 ¼ min Φ1;−Φ2ð Þ

ð19Þ

In this sense, the integral level-set function will be,

Φ ¼ C Φ1;Φ2;Φ3;……ð Þ ð20Þ

In Fig. 9, the integral level-set function is formed by R-
function as Φ=(Φ1∪Φ3)\(Φ2∪Φ4).

So far, the constructive feature model has been introduced
in details. Therefore, the boundary segmentation rules are pre-
sented here for its tight connection with the construction
method.

As presented in Fig. 10a, the constructive feature
model composed of only one primitive can be represen-
ted by:

Φ Xð Þ ¼ Φ1 Xð Þ ¼ min
L

2
− x− x0ð Þ; L

2
þ x− x0ð Þ;W

2
− y− y0ð Þ;W

2
þ y− y0ð Þ;H

2
− z−z0ð Þ;H

2
þ z−z0ð Þ

� 	

ð21Þ
in which L, W, H are the lengths in x, y, z directions,
respectively; and (x0, y0, z0) is the coordinate of the

center point. Correspondingly, the front boundary seg-
ment in x direction is represented by:

X
L

2
− x− x0ð Þ ¼ 0 and Φ Xð Þ ¼ 0

����
� �

ð22Þ

Yes 

Yes 

Sensitivity analysis 
for velocity field

Start

Segmentation 

Any segment > ?

Feature fitting for all 
eligible segments

Sensitivity analysis 
on feature parameters 

Constructive feature model update 

Convergent? 

Parametric update of 
feature primitives

End 

No 

No 

Finite element 
analysis

Update of the Lagrange multiplier , 
penalty factor , and the length scale 

Explicit feature 
based shape 
optimization 
(Section 5) 

Feature fitting 
algorithm 
(Section 4) 

Fig. 11 Flowchart of the
implementation procedure

Fig. 12 Short cantilever problem in 2D
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In Eq. (22), the last term is naturally satisfied, be-
cause Φ (X) is identical to Φ1 (X). However, it is sig-
nificant to have the Φ (X) = 0 term in this representa-
tion, because only the overlapping boundaries between
the feature primitive and the constructive feature model
will be tracked as effective boundary segment for fea-
ture fitting.

If fit in another primitive Φ2 to the front face in x direction
as presented in Fig. 10b, the constructive level-set function
will be:

Φ Xð Þ ¼ Φ1 Xð Þ
.
Φ2 Xð Þ ð23Þ

Φ2 Xð Þ ¼ min
L0

2
− x−x

0
0


 �
;
L0

2
þ x−x

0
0


 �
;
W 0

2
− y−y

0
0


 �
;
W 0

2
þ y−y

0
0


 �
;
H 0

2
− z−z

0
0


 �
;
H 0

2
þ z−z

0
0


 �� 	

ð24Þ

Then, the front boundary segment of primitive Φ1 in x
direction is still tracked by Eq. (22), but the effective area
has changed. The effective boundary segment of primitive
Φ2 is tracked by Eq. (25).

X
L0

2
− x−x

0
0


 �
¼ 0 or

L
0

2
þ x−x

0
0


 �
¼ 0

� 	
and Φ Xð Þ ¼ 0

����
� �

ð25Þ

In this way, all effective boundary segments can be
accurately tracked during optimization. Another point to
be emphasized is that the orientation (projection direc-
tion, or one of the free cutting directions) of each cre-
ated explicit feature primitive should be recorded. For
each of the primitive, only boundary segment perpendic-
ular to the recorded orientation will be considered for
further feature fitting.

As for size of the boundary segment, it is counted by the
number of included mesh points.

5.2 Sensitivity analysis

Because the feature primitives are represented by implicit
level-set functions and their shapes are directly decided by
the intuitive parameters or control points, the sensitivity

Fig. 14 Convergence histories (a) regular level-set approach; (b) machining feature-based approach with customized length scale Llim=15

Fig. 13 Optimization processes of different schemes
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analysis on the shape parameters or control points can be
calculated by applying Eq. (26).

∂p j

∂t
¼ −

Z
D
R
∂Φ
∂Φi

∂Φi

∂p j
δ Φð ÞdΩ ð26Þ

where pjmeans the jth shape parameter (control point) of shape
(spline curve) i, and R is called shape gradient density.

R ¼ −Ae uð Þe uð Þ þ λ ð27Þ

Details about the proof of Eqs. (26–27) can refer to (Chen
et al. 2007).

After sensitivity analysis, design update can be done para-
metrically Eq. (28) instead of solving the Hamilton-Jacobi
Equation for non-parametric shape optimization.

pj ¼ pj þ
∂pj

∂t
*Δt ð28Þ

6 Numerical implementation details and procedures

In this work, the finite element analysis (FEA) is implemented
on fixed quadrilateral/hexahedral meshes to solve the linear
elastic problem as depicted in Eq. (7). The artificial weak
material is applied for voids in order to avoid the singularity
of the stiffness matrix, as

E ¼ 10−3Em 1−H Φð Þð Þ þ EmH Φð Þ ð29Þ
in which Em is the elastic modulus for the solid material.

The volume constraint is satisfied by applying the
Augmented Lagrange method which adopts the Lagrange
multiplier as,

λkþ1 ¼ λk þ μk

Z
D
H Φð ÞdΩ−Vmax

� �
μkþ1 ¼ α μk where 0 < α < 1

ð30Þ

With regards to the convergence algorithm, the steepest
descent method guarantees the feature fitting and parameter

adjustment in the descent direction. Specifically, the velocity
field is only involved in a few iterations to fit in new feature
primitives; while in most iterations, the parametric shape op-
timization make the convergence process fast and efficient
(Chen et al. 2008a).

As for the feature fitting algorithm, the customized length
scale Llim is applied in an increasing manner to save compu-
tational expense and to avoid the infinite loop. That is,

Llim
kþ1 ¼ βLlim

k

β ≥ 1
ð31Þ

Additionally, a few special filter principles are: first, the
feature primitives fitted in with very small magnitudes need
to be filtered out; second, ineffective feature primitives will be
detected and filtered out for every a few shape optimization
iterations, which targets at the feature primitives either not
effectively forming part of the model boundary or employing
zero-valued sizing parameters.

In summary, all the numerical skills mentioned above guar-
antee the efficiency comparable or even better compared with
existing level-set methods.

In Fig. 11, the complete numerical implementation proce-
dures are demonstrated, and the overall algorithm is illustrated
step by step as below:

Fig. 16 Cube problem

Table 2 Quantitative comparison between extruded 2.5D result and the
conventional 3D level-set result

Extruded
2.5D
result

Conventional
3D level-set
result

Rate of increase
compared with the
conventional 3D result

Compliance (under
the volume ratio
of 0.3)

8.02 7.88 1.78 %

Fig. 15 Comparison between extruded 2.5D result and the conventional
3D level-set result (a) gird and iso-contour model of extruded 2.5D result
(b) grid model of conventional 3D level-set result

574 Jikai Liu and Y. -S. Ma



Step 1: Initialize the constructive feature model by defining
the level set functions and the Boolean operations.
Define the projection direction and the free cutting
directions. Set the Lagrange multiplier λ, penalty
factor μ, and the length scale Llim.

Step 2: Perform finite element analysis to evaluate the de-
formation field.

Step 3: Make segmentation and measure the segment sizes.

Step 4: If there are segments eligible for feature fitting (size
> Llim), go to Step 4.1; otherwise, go to Step 4.2.

& Step 4.1. Solve the feature fitting problems on all
eligible segments to fit in new feature primitives. Go
to Step 5.

& Step 4.2. Perform sensitivity analysis on existing fea-
ture primitive parameters and update the relevant fea-
ture primitives. Go to Step 5.

Fig. 19 Result of conventional
3D level-set approach

Fig. 18 Results of the machining feature-based approach with Llim=
14*14 (a) result after feature fitting; (b) final result; (c) the final result
with removed 2.5D featuresFig. 17 Results of the machining feature-based approach with Llim=

20*20 (a) result after feature fitting; (b) final result; (c) the final result
with removed 2.5D features
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Step 5: Update the constructive feature model with either
new feature primitives (if go through Step 4.1) or
new parameter values (if go through Step 4.2).

Step 6: Update of the Lagrange multiplier λ, penalty factor
μ, and the length scale Llim.

Step 7: Check if the termination condition is satisfied. If yes,
then a convergent solution is found; otherwise, go
through Step 2 to Step 6.

It should be noticed that if Llim is bigger than the maximum
possible boundary segment size, the algorithm will ignore
Step 3 and Step 4.1 in order to save computational effort.

7 Case study

7.1 Short cantilever problem – the PLAP case

The first case is about the short cantilever problem as shown in
Fig. 12. The top and bottom of the left side are fixed and a
vertical unit force pointing downward is loaded at the middle
of the right side. The objective is to minimize the compliance
with the maximum volume ratio of 0.4. Poisson ratio and
Young’s modulus are 0.3 and 1 respectively.

To manifest the influence of adding the feature fitting algo-
rithm into the optimization process, the regular level-set ap-
proach and the machining feature-based approach with cus-
tomized length scale Llim=15 have been implemented in this

case. Their results and the convergence histories are illustrated
in Figs. 13 and 14, respectively.

In analysis of these two optimization processes, the regular
level-set approach takes 107 iterations and adapts the design
from Fig. 13a to b with the final objective of 7.3101. Then the
machining feature-based approach takes 81 iterations, and the
design follows the adaption path of (a)-(c)-(e)-(f) in Fig. 13,
for which the objective ends at 7.5128. Through comparison
of these two results, it can be concluded that the regular level-
set approach is able to reach the optimal objective but its
design manufacturability is relatively low; while machining
feature-based approach can achieve the desired design with
great manufacturability, in condition that the objective is not
overly sacrificed.

An extra feature-based process with enlarged length scale
Llim=25 is tested in this case. This process adapts the design

Fig. 20 Cantilever problem in 3D

Fig. 21 Optimization process of the prismatic 2.5D machining feature-
based approach with Llim=10*20 (a-b) intermediate results; (c) the final
result; (d) the final result with removed 2.5D features

Table 3 Data of the three
different results Machining feature-based

result (Llim=20*20)
Conventional 3D
result

Rate of increase compared with
the conventional 3D result

Compliance (under the
volume ratio of 0.2)

14.58 13.62 7.04 %

Machining feature-based
result (Llim=14*14)

Conventional 3D
result

Rate of increase compared with
the conventional 3D result

Compliance (under
the volume ratio of 0.2)

14.07 13.62 3.30 %
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Fig. 22 Optimization process of
the freeform 2.5D machining
feature-based approach with
Llim=10*20 (a-d) intermediate
results; (e) final result; (f) the final
result with removed 2.5D features
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following the path of (a)-(c)-(d) in Fig. 13, and its final com-
pliance is 8.7760 which is 20.29 percent higher than the opti-
mum. Through this test, the significance of appropriately
selecting the customized length scale is emphasized.

A similar case appeared earlier in (Mei et al. 2008). Their
result consists of many small feature primitives, for lack of
scale control capability. Consequently, manufacturability is
still problematic unless adopting the post-treatment of bound-
ary smoothing.

(1) regular level-set approach (a-b);
(2) machining feature-based approach with customized

length scale Llim=15 (a-c-e-f);
(3) machining feature-based approach with customized

length scale Llim=25 (a-c-d)

As mentioned earlier, the 2D features can be regarded as
the contour projection of the 2.5D machining features.
Therefore, we extrude the 2D design with the depth of 10,
and compare it with the conventional 3D level-set result.
From Fig. 15 and Table 2, it can be seen that the 2.5D result
employs the compliance nearly at the same level with the
conventional 3D result, but has much better manufacturability.

7.2 Cube problem

In this case, the design domain (as shown in Fig. 16) is a cube
(24*24*24) with its four bottom corners fixed and a force of
magnitude 2 loaded at the bottom center. The objective is to
minimize the compliance under the volume constraint of 0.2.
Poisson ratio and Young’s modulus are 0.3 and 1 respectively.

Three different optimization schemes have been adopted to
demonstrate the effectiveness of the machining feature-based
approach, as well as the scale control ability. The first scheme
is the machining feature-based approach with customized
length scale Llim=20*20, and the results are shown in
Fig. 17. Comparatively, the second scheme is still the machin-
ing feature-based approach, but with the customized length
scale Llim=14*14, for which the results are illustrated in
Fig. 18. Finally, the conventional 3D level-set approach is
applied to derive the freeform 3D result as shown in Fig. 19.

Data of the three different results is listed in Table 3.
Through data analysis, it can be concluded that the conven-
tional 3D level-set approach can derive the optimum, while
the machining feature-based approach slightly sacrifices the
optimality in order to improve the desired manufacturability.
On the other hand, smaller customized length scale can lead
the objective closer to the optimum. In fact, the 3D level-set
approach is equivalent to the machining feature-based ap-
proach with infinitesimal customized length scale.

Practically this may take more time to machine as smaller
tools and multiple tool changes may need to be used.

7.3 Cantilever problem

The 3D cantilever (40*10*20) problem is depicted in Fig. 20,
where the left side is fixed and a vertical force (magnitude=2)
pointing downward is loaded at the middle bottom of the right
side. The objective is to minimize the compliance with the
maximum volume ratio of 0.4. Poisson ratio and Young’s
modulus are 0.3 and 1 respectively.

In this case, two different schemes have been defined and
will be commented in a comparative manner:

& The first scheme is the machining feature-based approach
with prismatic 2.5D features;

& The second scheme is the machining feature-based ap-
proach with freeform 2.5D features;

Fig. 23 Result of conventional 3D level-set approach

Table 4 Statistic comparison between the machining feature-based and
the conventional 3D results

Prismatic
2.5D result

Conventional
3D result

Rate of increase
compared with
the conventional
3D result

Compliance
(under the same
volume ratio
of 0.4)

45.49 43.28 5.11 %

Freeform 2.5D
result

Conventional
3D result

Rate of increase
compared with
the conventional
3D result

Compliance
(under the same
volume ratio
of 0.4)

43.87 43.28 1.36 %
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For the first scheme, the results are demonstrated in Fig. 21.
In Fig. 21a, two symmetric shallow pockets in the projection
direction, and one pocket, two slopes and one arc surface in
the free cutting directions are fitted in. Then from (a) to (b), a
pair of symmetric pockets is fitted in again in the projection
direction. After these feature fitting activities, the feature-
based shape optimization converges to 45.49 of compliance
and 0.4 of volume ratio.

For the second scheme, the intermediate results are shown
in Fig. 22a-d, in which the 3D grid and iso-contour models, as
well as the 2D Bezier curves have been demonstrated. Control
points of the Bezier curves have been designated as the vari-
ables of the feature-based shape optimization. Consequently,

the final result is demonstrated in Fig. 22e, for which the
volume ratio is 0.4, and the compliance is 43.87.

To fairly comment the 2.5D machining feature-based ap-
proaches, the conventional 3D level-set result is demonstrated
in Fig. 23. It is clear that both machining feature-
based approaches can derive results with much better manu-
facturability. Considering more details, the freeform 2.5D re-
sult (Fig. 22e) employs the shape and topology much closer to
the conventional 3D result, when compared with the prismatic
2.5D result (Fig. 21c). This is owing to the more design free-
doms of spline curves compared with regular shape parame-
ters. However, the small sacrificing of the objective of the
prismatic 2.5D result brings even better manufacturability, as
well as the convenience for the downstream design change
management, because prismatic 2.5D features are preferred
in commercial modelling systems. Therefore, the choice

Fig. 26 Optimization process of freeform 2.5D machining feature-based
approach with Llim=10*20 (a-b) intermediate results; (c) the final result;
(d) the final result with removed 2.5D features

Fig. 27 Conventional 3D level-set result

Fig. 25 Optimization process of prismatic 2.5Dmachining feature-based
approach with Llim=10*20 (a-b) intermediate results; (c) the final result;
(d) the final result with removed 2.5D features

Fig. 24 Cantilever problem with fixed hole
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between freeform and prismatic 2.5D machining feature-
based approaches is a trade-off between better objective and
the simplicity in further design change management. In
Table 4, a set of data analyses is demonstrated.

7.4 Cantilever problem with fixed hole

The 3D cantilever (40*10*20) problem depicted in Fig. 24
employs the same problem initialization with the case demon-
strated in Sub-Section 7.3. However, there are two major dif-
ferences: a fixed hole exists in the design domain for purpose
of assembly; and the force is loaded at the middle of the right
side wall, which makes the final design vertically symmetric.
This is a benchmark case cited from (Zhou andWang 2013) to
better demonstrate the effectiveness of our novel machining
feature-based approach.

Figure 25 presents two intermediate results (a-b), as well as
the final design (c) of the regular 2.5D machining feature-
based approach. Compared with the prismatic 2.5D case pre-
sented in Sub-Section 7.2, the optimized result in this case is
evidently different in the configuration of feature primitives,
and specially, the symmetric design in this case employs better
compliance of only 34.65 with volume ratio of 0.4.

As for the freeform 2.5D machining feature-based ap-
proach, the intermediate results are shown in Fig. 26a and b,
and consequently, the final result is demonstrated in Fig. 26c,
for which the volume ratio is 0.4, and the compliance is 33.52.

The conventional 3D level-set result is shown in Fig. 27.
Through comparison, it can be concluded that the material
distributions are very similar among Figs. 25c, 26c and 27.
Therefore, the mechanical performances can be predicted and
are close as shown in Table 5. Readers who have interest can
refer to (Zhou and Wang 2013) for a similar 3D result.

At the end of the case study section, the computation times
of the 2.5D and 3D examples have been summarized in
Table 6. All computations are performed by Matlab with
Core CPU of 3.3GHz. From the data, it can be concluded
the 3D scheme is the most time-consuming, because it has
more design freedoms and takes more iterations to converge.
For the 2.5D scheme, the feature fitting activities increase the
computation time, and sometimes make it close to the 3D
scheme. Additionally, the freeform 2.5D scheme takes more
iterations to converge than the regular 2.5D.

8 Conclusion

This paper presents a novel machining feature-based level-set
topology optimization method, which relies on the feature
fitting algorithm and the feature-based shape optimization to
derive optimized machining feature-based design. Specially,
the feature fitting algorithm applies the least squares fitting to
piecewise regulate the disorganized boundary velocity fields,
and thus realize the insertion of machining feature primitives;
feature-based shape optimization optimizes the constructive
feature model resulting from feature fitting to derive the final
optimum. Theoretically, this new approach allows more de-
sign freedom through conditionally inserting feature primi-
tives during the optimization process, and therefore, fills the
gap of only maintaining and manipulating the existing feature
primitives of the conventional feature-based level-set
methodes.

From the perspective of engineering application, this new
method is designated to employ the manufacturing back-
ground. Machining features of PLAP, prismatic 2.5D and
freeform 2.5D have been applied as the candidate feature
primitives. Therefore, manufacturability of the topology

Table 6 Computation times of
the 2.5D and 3D examples
(seconds)

Prismatic 2.5D
examples

Freeform 2.5D
examples

3D
examples

The cube problem 866/914 – 1426

The cantilever problem 817 1085 1519

The cantilever problem with fixed hole 761 1012 1098

Table 5 Statistic comparison
between the machining feature-
based and the conventional 3D
results

Prismatic 2.5D machining
feature-based result

Conventional
3D result

Rate of increase compared with
the conventional 3D result

Compliance (under the
same volume ratio of 0.4)

34.65 33.30 4.05 %

Freeform 2.5D machining
feature-based result

Conventional
3D result

Rate of increase compared with
the conventional 3D result

Compliance (under the
same volume ratio of 0.4)

33.52 33.30 0.66 %
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optimization result is no longer a problem. Additionally, the
introduction of machining features makes it possible to inte-
grate the underlying engineering information into the optimi-
zation formulation. For instance, evaluations like manufactur-
ing time and cost can be part of the objective and constraints.
Therefore, a new concept of OFM is proposed, which is so far
only explored to derive the machining feature-based design.
How to integrate the manufacturing information into the opti-
mization formulation is still not explored in depth, which will
be a major future work.

Besides, this machining feature-based approach can poten-
tially be further developed and extended with even more
manufacturing methods and engineering contexts.
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