
Special Issue Article

Proc IMechE Part B:
J Engineering Manufacture
1–14
� IMechE 2017
Reprints and permissions:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/0954405417697352
journals.sagepub.com/home/pib

Association of design and
computational fluid dynamics
simulation intent in flow control
product optimization

Lei Li, Carlos F Lange and Yongsheng Ma

Abstract
Computational fluid dynamics has been extensively used for fluid flow simulation and thus guiding the flow control device
design. However, computational fluid dynamics simulation requires explicit geometry input and complicated solver setup,
which is a barrier in case of the cyclic computer-aided design/computational fluid dynamics integrated design process.
Tedious human interventions are inevitable to make up the gap. To fix this issue, this work proposed a theoretical frame-
work where the computational fluid dynamics solver setup can be intelligently assisted by the simulation intent capture.
Two feature concepts, the fluid physics feature and the dynamic physics feature, have been defined to support the simula-
tion intent capture. A prototype has been developed for the computer-aided design/computational fluid dynamics inte-
grated design implementation without the need of human intervention, where the design intent and computational fluid
dynamics simulation intent are associated seamlessly. An outflow control device used in the steam-assisted gravity drai-
nage process is studied using this prototype, and the target performance of the device is effectively optimized.
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Introduction

Simulation-based design (SBD) has been extensively
used in recent years to meet the increasing demand on
the product performance. To conduct SBD, computer-
aided design (CAD) and computer-aided engineering
(CAE) are the commonly used tools: the former for
product modeling while the later for physical simula-
tion. They are expected to be seamlessly integrated,
where the communications among the participators
involved are supposed to be highly effective.1 However,
there are evident gaps in practice that the design intent
embedded in CAD is missing during model transfer
into CAE, for example, the designable geometric para-
meters cannot be identified in CAE and thus design
changes cannot be accurately determined through ana-
lyzing the simulation result. In addition, CAD and
CAE are still operated by different groups of engineers
because of their distinctive expertise.2 Intense informa-
tion communications are required to maintain a consis-
tent product development process; however, this
complicates the product development process and

severely delays the design cycle time, especially given
the cyclic characteristic.

To bridge this gap, a primary idea is to remove the
barrier through realizing CAD/CAE integration.3,4 So
far, the integration can be categorized into two aspects:
maintaining the geometric information consistency and
automating the CAE solver setup. Both aspects have
been extensively studied, but a mature integration solu-
tion is still vacant, especially coming to the field of
computational fluid dynamics (CFD), which requires
rich experience and strong background knowledge to
identify the flow regime and properly select the physics
models. Therefore, the purpose of this article is to
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propose an effective CAD/CFD integration frame-
work, which makes the CAD and CFD tools seam-
lessly integrated to facilitate the cyclic product
development process and also simplify the CFD solver
setup. Three novel feature concepts are proposed in this
article, where fluid physics features and dynamic phy-
sics features are used to convey simulation intent; fluid
functional features are used for defining design intent
and propelling the formation of inter-feature associa-
tions.5 More descriptions of these feature classes will be
given in the following sections.

The CAD/CFD integration system also utilized the
CAE boundary feature and CAE effect feature6 pro-
posed in the authors’ previous work, while the function-
ality from several perspectives has been enhanced in
comparison. With this system, a design engineer with-
out deep knowledge in CFD is expected to be able to
conduct the flow control device development indepen-
dently. Meanwhile, the mechanism of design and simu-
lation intent interaction is deeply discussed.

To assist the CFD solver setup, an effective
approach is to embed artificial intelligence (AI) or
knowledge into the CFD system. Dating back to 1980s,
one of the first-implemented AI/CFD systems was an
expert cooling fan design system called EXFAN pro-
posed by Tong.7,8 EXFAN was a rule-based system
developed on top of a Fortran CFD code. The EXFAN
system starts with a primary input and gradually modi-
fies it through iterative CFD analysis till the design
objective satisfaction. The rules are repetitively followed
during the iterations. Dannenhoffer and Baron9 estab-
lished a hybrid system which incorporates both conven-
tional and expert systems to conduct local compressible
flow analysis. Their hybrid system is coupled at a lower
level leading to the separation of processing and control,
which turned out to be a major benefit.

Another type of expert system was developed to
diagnose problems, aid decision making and provide
best practices in the CFD environment. Wesley et al.10

brought forward a CFD expert system by integrating
AI and CFD to monitor the user input and inspect
unreasonable combinations. Thus, wasted simulation
runs could be reduced. Stremel et al.11 implemented
best practices expert (BPX), an expert system, to guide
the CFD projects. Users can receive sufficient informa-
tion about flow properties, object configuration, grid
generation, solver selection and guidelines to make deci-
sions and obtain accurate results with less uncertainty.
Although helpful to novice users, such kind of systems
can only facilitate the CFD solver setup, instead of fully
automation. So far, automated CFD solver functions
are still insufficient and urgently needed.

CFD expert systems drew research attention when
the solvers were in the form of in-house codes, which
required special knowledge and training. With the evo-
lution of CFD, more and more commercial systems
have been developed and equipped with graphical user
interfaces to be user-friendly. Even so, the knowledge
behind the solvers is still nontransparent to many junior

users. In fact, relying on experts also makes it difficult
to develop the CAE-driven optimization programs.12,13

Ideally, the implementation of intelligent CFD solver
should inherit the design information from the design
stage and transform it into the best-fit simulation model
and then, in turn, generate accurate results. Thus, the
integration of CAD/CFD will be prompted to a higher
level of robustness and efficiency.

The following section introduces the concept of fluid
functional feature and fluid physics feature and their
roles in the proposed integration system. The concept of
the dynamic physics feature, which prompts the genera-
tion of a robust simulation model, is described in the
‘‘Implementation of the proposed feature concepts’’ sec-
tion. In the ‘‘Optimization methodology’’ section, the
methodology used for the optimization process is pre-
sented. Following that, a case study of a steam-assisted
gravity drainage (SAGD) outflow control device (OCD)
optimization process is given to illustrate the prospec-
tive mechanism of the proposed integration method. A
conclusion of the presented work is made at last.

CAD/CFD integration framework

Conventionally, the definition of design intent mainly
focuses on geometric modeling aspects.14 It involves
the control of parametric, geometric and constrained
relationships to define a part. However, this kind of
view is not sufficient because it ignores function which
is another constituent of design intent. Mun et al.15

defined design intent as the functional requirement pro-
vided by customers, which is a set of geometric and
functional rules satisfied by the final product. From
this definition, it is obvious that the formation of
design intent starts from the customer’s requirement
for functions. Designers fulfill the functional require-
ment based on engineering knowledge and develop the
initial conceptual design using CAD model. CFD simu-
lation should not only transform the CAD geometric
model into a CFD mesh model but also the simulation
conditions and setup parameters must be transmitted
into a CFD meta model. The result should be coher-
ently used by the analyst to run the simulation.

Nolan et al.16 defined simulation intent as a collec-
tion of all the analysis, modeling and idealization deci-
sions and all the parameters required to create an
adequate analysis model from an input CAD geometry.
Based on this definition, the authors suggest that the
generation of simulation intent should occur in the
transition process where the association with design
intent could be readily setup. Commonly, after the
simulation is done, the result has to be used to check
the initial design assumption validity and conduct
design optimization. Subsequently, the design is further
modified to meet the manufacturability and cost con-
straints. Eventually, an acceptable design is returned to
the customer for endorsement. Figure 1 presents this
whole product development process, which may take
many iterations before the final design is achieved.
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As to this article’s focus of CAD/CFD integration,
in order to keep the consistency of design intent in dif-
ferent product development stages and to facilitate the
correspondence of the design and simulation models, a
CAD/CFD integration framework is proposed here,
which is depicted in Figure 2.

As aforementioned, the design can be parameterized
according to engineering knowledge. The parametric
design enables a topology-based representation of the

part, which maintains the design intent consistently.17

Based on the functional requirements, fluid functional
feature is defined as a class of design intent attributes
which are composed of design parameters and func-
tional descriptions, as well as functional geometry
which is controlled by those attributes.5 The functional
fluid geometry can be itemized as inlet, outlet and inner
faces enclosing fluid space and symmetry plane if there
is any. In this way, the design intent can be fully con-
veyed by fluid functional features to the downstream
analysis stage. The CAD model of the flow space can
be extracted by Boolean operations. The face IDs of
flow space geometry are assigned specific tags with
attributions and boundary conditions attached, which
will be recognized as a CAE boundary feature. A CAE
boundary feature was defined as a class of features that
contains the mapping relations of geometrical depen-
dencies between CAD entities and their associated
CAE mesh representations as well as non-geometrical
dependencies, such as inherited properties, like fluid
properties, fluid space body face names, tags, constitu-
tional structures and conceptual constraints to apply
CFD boundary conditions.6 Consequently, the fluid
flow space can be meshed with designated mesh types
according to different boundary properties. For example,
an inflation layer is applied along the wall boundary to
capture the boundary layer accurately. Meanwhile, the

Figure 1. Product development routine.

Figure 2. CAD/CFD integration framework.
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boundary conditions are assigned accordingly. The fluid
flow space including discrete geometry, boundary condi-
tions and non-geometrical fluid attributes inherited from
the design intent, is treated as the input of solving stage.

At the upper-right corner of Figure 2, fluid physics
feature is defined as an object class with a characteristic
set of fluid simulation setup parameters with a generic
data structure and related methods.5 Then, this fluid
physics feature module also models a set of rules to
select the appropriate CFD solver regime applicable to
each round of simulation. This module is also designed
to implement knowledge and best practices which
enable the conversion of input data, assist CFD solver
setup and generate a robust CFD model. Therefore, the
simulation intent is embedded in the fluid physics fea-
ture instances. The detailed description of the fluid phy-
sics feature class will be illustrated in the next section.
Post processing could be conducted based on any con-
verged run. The CFD model including mesh and solver
setup parameters could be updated iteratively, leading
to a robust model setup. This is a unique requirement
of CFD analysis which distinguishes it from linear engi-
neering problems, such as stress analysis.

After achieving the robust CFD model, the initial
design can be modified heuristically to approach design
objectives. Then, based on the new design, the updated
CFD analysis will be obtained accordingly under the
aforementioned scheme. The CAE effect features are
extracted from the difference between the incremental
analysis results.6 Following that, a sensitivity or surro-
gate model could be obtained to provide optimization
input. Coupling with optimization objectives derived
from design intent, operational performance, manufac-
turability and cost analysis, the optimization process
takes different constraints into consideration, which
eliminates the redundant communications between
designer and other stake holders. Here, a unified non-
dimensional ratio model is proposed to calculate the
weights of different design criteria and to enable the
measurement of performance increments between dif-
ferent designs. Finally, a closed CAD/CFD loop forms,
which links the CAD domain and CFD domain consis-
tently. Evidently, the design intent is adhered to
throughout the whole process. The transfer of the
design intent in this process is denoted by solid arrows
which link the relevant blocks in Figure 2. At the same
time, design intent and simulation intent are associated
through the control of fluid functional features, CAE
boundary features and fluid physics features.

Implementation of the proposed feature
concepts

In this article, the fluid physics feature is established
based on a compressible flow scenario, which is a chal-
lenging case in CFD application. The process of physical
parameter analysis, CFD solver setup, convergence anal-
ysis and robust model generation is shown in Figure 3.

The initial values are the fluid attributes which are
carried over by design intent to achieve specific product
functional performance. The physical relationships
between these parameters are applied as rules that have
the form of equations listed below

A=
pd2

4
ð1Þ

p= rRT ð2Þ

a=
ffiffiffiffiffiffiffiffiffiffi
kRT
p

ð3Þ

v=
Q

A
ð4Þ

Re=
rvd

m
ð5Þ

Ma=
v

a
ð6Þ

where A is the cross-sectional area of duct, d is the inner
diameter of duct, p is the pressure of gas, r is the density
of gas, R is the gas constant, T is the temperature of
gas, a is the speed of sound of gas, k is the specific heat
ratio of gas, v is the velocity of gas, Q is the flow rate of
gas, Re is the Reynolds number, m is the dynamic visc-
osity of gas and Ma is the Mach number.

Consecutively, the parameters in steps 1, 2 and 3 can
be acquired through forward chaining.9 It should be
noted that the medium used in this case is ideal gas. If
not, the knowledge base should be extended corre-
spondingly. Providing the initial data pool is sufficient,
the Reynolds number and Mach number in step 3 can
always be obtained regardless of the occurrence
sequence of the other parameters. Parameters like velo-
city and pressure are usually assigned to the boundaries
as boundary conditions. As a consequence, they can be
used to check the validity of the fluid flow space which
will be the input of the CFD solver. The Reynolds
number and Mach number are dimensionless quantities
which determine the flow regime. Based on the
Reynolds number, a turbulence model will be selected
if the flow is turbulent. The Mach number judges the
compressibility of the flow. A special model and setup
are needed if the compressibility effects cannot be
ignored. When the simulation is in the start-up stage or
faced with convergence problems, lower order discreti-
zation schemes like upwind differencing scheme (UDS)
and Euler implicit, as well as k-epsilon turbulence
model if applicable, have the priority to be selected in
order to assist convergence.

The index i will be updated after each simulation
run. Indices C and D denoting the status of conver-
gence will also be updated accordingly. The simulation
solver setup is recorded no matter if the simulation is
converged or not. If a simulation is converged, post
processing will be conducted to check whether simula-
tion results match the initial assumptions and expected
accuracy. If not, grid adaption will be triggered based
on the existing simulation result to examine where local
mesh refinement is required. Simultaneously, the peak
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value of Reynolds number and Mach number will be
checked to see whether the flow regime needs to be
changed. If a simulation diverged, the system would try
to alter the solver setup to achieve convergence. It is
highlighted here that each time when a new iteration
starts, only one change is made in the solver configura-
tion to obtain the sensitivity toward different simula-
tion schemes. If the simulation still has convergence
problems after several successive runs, human interven-
tion is needed to diagnose the problem, which requires
more expert knowledge.

After rounds of successful simulations, the mesh is
further refined, which is favorable for the application
of higher order schemes and advanced turbulence
model, if the flow is turbulent. Higher order schemes
always have priority, when the iteration index is high.
Thus, the final simulation quality can be guaranteed.
The cycles stop when all the simulation requirements
are satisfied. As mentioned earlier, the simulation setup
is recorded dynamically in each iteration during this
process. Li et al.18 define the interim features between
various manufacturing operations as dynamic features.
Based on this concept, a novel operation planning
method is developed for the machining of complex
structural parts.19 Applying the similar dynamic feature
concept, in this work for CFD model generation, we
define dynamic physics feature as the intermediate states
of the fluid simulation model including flow properties,

grid distribution and discretization scheme.5 The
dynamic physics feature is developed to facilitate the
generation of robust simulation model. The robust
simulation model is defined as the applicable CFD
regime and simulation setup template with validated
physics conditions, which converges into reasonable
and accurate results. The understanding of flow physi-
cal behavior becomes more and more mature along
with the development of dynamic physics features.

Optimization methodology

Optimization is carried out based on an integrated
CAD/CFD feature model with associated geometry
and parameters, robust simulation models, accurate
results, effective optimization inputs and prospective
manufacturability constraints. The semantic definitions
and their relations among the involved features are
shown in Figure 4.

CAD/CFD integration eliminates many tedious
intermediate procedures during the cyclic design loops,
for example, repeated meshing and solver setup, which
greatly improves the design efficiency. In addition, a
critical factor to further enhance the efficiency is to
automate the cyclic process by controlling the loops
using optimization algorithms. Generally, the optimiza-
tion can be performed based on gradient-based algo-
rithms, stochastic algorithms and metamodeling-based

Figure 3. CFD simulation robust model generation cycles.
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algorithms.20 Among them, the metamodeling tech-
nique shows advantages of high efficiency compared to
stochastic algorithms and more general applicability,
given problems where the gradient information is non-
trivial to calculate.21 Metamodeling approximates the
empirical relationship between the objective function
and the design variables, based on a group of experi-
mental/numerical tests, where design of experiments
(DOE) is widely adopted to reduce the number of
tests.22 This is very meaningful, especially when compu-
tationally expensive CFD simulations are involved. A
general approximation-based optimization problem is
formulated in the following equation

Min f̂ xð Þ
Subjected to

ĝi xð Þ40, i=1, . . . , l

ĥj xð Þ=0, j=1, . . . ,m

xL4x4xH

ð7Þ

Some widely used metamodeling methods include
the response surface method (RSM), the radial basis
function (RBF)-based method and the kriging
method,22 where the RBF-based and kriging methods
are more suitable to explore highly nonlinear design
space,21 and RSM fits better for engineering problems
with a small group of design variables and a relatively
regulated design space.22 In this work, RSM is adopted
and the response surface is approximated by quadratic

polynomials.23 To be specific, the quadratic response
surface is mathematically described as follows

y=b0 +
Xk
i=1

bixi +
Xk
i=1

biix
2
i +

Xk�1
i=1

Xk
j= i+1

bijxixj + e

ð8Þ

where y is the response function, x is the design vari-
able, k is the number of variables, e is the error and b is
the regression coefficients.

Based on the experimental data, the coefficients in
equation (8) can be obtained through regression analy-
sis. Subsequently, the optimal combination of design
parameters can be obtained by further optimizing the
derived response function.

Case study

The OCD, applied in SAGD process, is studied in this
section to show how the system works. In the oil indus-
try, SAGD is applied as a practical method to extract
heavy oil from tar sands. As shown in Figure 5, there
are two horizontal wells in the SAGD completion. The
injection well conveys steam to the formation where the
steam cavern forms. The production well, which is
drilled around 5m below in parallel with the injection
well, recovers the gravity-drained water and low-
viscosity bitumen after heating cycles. The OCD regu-
lates the flow rate of steam flowing to the formation

Figure 4. UML diagram representing inter-feature associations.
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under a given pressure drop. The slotted liner covering
the OCD is used to protect the device against the sand
surrounding the well. When steam flows into the device,
a portion of it flows to the outer space through the noz-
zles radially located on the device. The majority of
steam continues flowing to the downstream. By adding
steam injection points between the heel and toe of the
injection well, the OCD contributes to creating an even
distribution, which alleviates the barbell-shaped steam
chamber induced by the traditional two-injection tub-
ing design.24 Furthermore, the use of OCDs enables the
conformance of the steam injection profile with the
reservoir ‘‘pay thickness’’ (height of oil sands layer)
along the well, which promotes steam chamber growth
and reduces steam–oil ratio (SOR).25

The performance of the OCDs is significant to the
SAGD process efficiency. Some research has been done
to optimize the number and locations of OCDs.27–29

However, the design optimization of a single OCD
device through a physically realistic CFD simulation is
still needed. Figure 6 shows the overall data flow in the
OCD optimization based on the proposed CAD/CFD
integration system. This process will be illustrated in
detail in this section.

In this case, water ideal gas (steam) at the tempera-
ture of 500K is assumed to be pumped into the injec-
tion well at a flow rate of 0.24m3/s. Figure 7(a) shows
that the functional fluid geometry is itemized as inlet,
outlets, inner faces and symmetry planes. In this way,
the fluid functional feature is fully defined, which con-
veys the design intent to the next stage in the integra-
tion loop.

In order to reduce the process time, the fluid domain
can be established using SolidWorks parametrically, as
shown in Figure 7(b). Beneficially, the flow space can
be easily updated subject to design changes. Tags with
attributes, similar to named selections, are assigned to
the fluid geometrical faces to transmit boundary infor-
mation in CAD/CFD conversion. Using the CAD
Configuration Manager provided by ANSYS
Workbench, the simulation platform can visit and mod-
ify the geometry file constructed by SolidWorks. The
attributes attached by tags are used to guide the mesh
generation as shown in Figure 7(c). Consequently,
CAE boundary features are established, resulting in the
generation of the fluid flow space, which is the input of
the fluid physics feature module.

The initial values of the physical parameters are
given in Table 1. Table 2 shows the parameters calcu-
lated in step 1. The pressure derived in this step is
assigned as the pressure inside the tool which is treated
as the reference pressure. According to the OCD work-
ing conditions,30 the outlet boundary condition is allo-
cated to NS_Oi and NS_O1 in Figure 7(b) as 250 and
0 kPa, respectively. Here, i is the number of the slots.
The inlet velocity is found to be 13.5m/s in step 2, and
it is assigned to NS_I as the inlet boundary condition.
In step 3, the Reynolds number is calculated to be
1.32 3 106, which is much bigger than the turbulence

Figure 5. SAGD well completion.26

Figure 6. Association of design and simulation intent in OCD optimization.
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transition Reynolds number in a pipe. The Mach num-
ber is 0.02, which is much less than 0.3. So, the flow
is assumed to be incompressible turbulent flow. The

k-epsilon turbulence model and the UDS advection
scheme are selected at this initial stage to facilitate con-
vergence. The simulation type is steady state. The fluid
physics models selected in this simulation are shown in
Table 3. Using ANSYS CFX as the solver, the simula-
tion converges and the Mach number contour obtained
from this initial run is shown in Figure 8.

Although the initial run converged, it is found that
the maximum Mach number is close to 0.3, which
means that compressibility effects cannot be ignored.
Based on the simulation result, grid adaption is con-
ducted, which is shown in Figure 9. The total energy
model is selected to activate the compressible flow
simulation. The other solver setup parameters remain
unchanged in the next run.

After a few iterations, the dynamic physics feature is
developed to enable the acquisition of sensitivity
toward different physical models. Consequently, a
robust simulation model is obtained. The physics mod-
els selected for this robust simulation model are shown
in Table 4. The velocity vectors derived from this final
run are shown in Figure 10.

The steam going through the slots is expected to
evenly distribute, in order to form the steam cavern
more precisely in the SAGD completion. To quantify
the steam distribution, the function Es is defined by cal-
culating the deviation of mass flow rate through a spe-
cific slot from the even distribution situation, which
has the specific expression as

Es =

ðð

A

r~v �~nds� R _min

N
ð9Þ

where r is the density of steam, ~v is the steam velocity,
~n is the normal of slot opening surface, A is the slot
opening area, R is the steam outflow ratio, _min is the
total mass flow into the device and N is the total num-
ber of slots. The value of Es ranges from �R _min=N to
_min � R _min=N. Depending on Es, the steam distribution
can be categorized as excess steam flow or insufficient
steam flow.

Correspondingly, Eo is defined as the variance of the
mass flow rate through slots

Eo =
1

N

XN
i=1

E2
si ð10Þ

Ideally, Eo is 0, that is, the steam flow through the
slots complies with the even steam distribution scenario.
Hence, a smaller Eo means better overall evenness,
which is treated as the optimization objective derived
from the design intent. Eo is calculated in CFX-Post as
an expression and it turned out to be 2.89 3 1026

kg2/s2 in the final run. Eo can be normalized by dividing
by the average mass flow rate through the slots.

In order to optimize the OCD performance, five
design variables are selected to investigate their effect
on the steam evenness factor while the other design
parameters remain fixed. Four of the variables are

Figure 7. Model conversion in CAD and CFD: (a) OCD and
slotted liner CAD model, (b) fluid domain and (c) initial mesh
generation.

Table 1. The initial values of physical parameters.

Physical parameter Value Unit

Q 0.24 m3/s
d 0.15 m
m 1.66 3 1025 kg/(m s)
r 10.83 kg/m3

R 461.5 J/(kg K)
T 500 K
k 1.327 N/A

Table 2. Values of physical parameters in step 1.

Physical parameter Value Unit

A 0.0177 m2

p 2500 kPa
a 553 m/s

8 Proc IMechE Part B: J Engineering Manufacture



shown in Figure 11, where L1 and u1 control the two
nozzles pointing in the same direction with the flow

inside the pipe while L2 and u2 control the two nozzles
pointing in the opposite direction. The fifth parameter
is the conical angle g which controls all the four
nozzles.

Central composite design (CCD)31 is applied to
design the experiments, which forms 44 sets of experi-
ments subjected to the five design variables with five
levels each. The values of the design variables are coded
as shown in Table 5.

Under the integrated environment, the fluid geome-
try can be easily updated to conduct the 44 sets of
numerical experiments. The simulated objective values
are recorded accordingly. For each design point, the
robust simulation model is used to conduct the simula-
tion and ensure the results are trustable. Meanwhile, it
should be noted that every time an updated fluid

Figure 8. Mach number contour of the initial run.

Table 3. Fluid physics models of the initial run.

Fluid physics model (i = 1; C = 1; D = 0) Selection

k-epsilon Y
Advanced turbulence model N
UDS Y
High resolution N
Steady state Y
Transient N
Incompressible flow model Y
Compressible flow model N

UDS: upwind differencing scheme.

Figure 9. Grid adaption.

Table 4. Fluid physics models of the final run.

Fluid physics model (i = 4; C = 4; D = 0) Selection

k-epsilon N
Advanced turbulence model Y
UDS N
High resolution Y
Steady state Y
Transient N
Incompressible flow model N
Compressible flow model Y

UDS: upwind differencing scheme.

Table 5. Levels of design variables.

L1 (mm) u1 (�) L2 (mm) u2 (�) g (�)

22.37841 0 40 0 40 0
21 11.59 54.49 11.59 54.49 1.45
0 20 65 20 65 2.5
1 28.41 75.51 28.41 75.51 3.55
2.37841 40 90 40 90 5

Li et al. 9



domain occurs, the validity of the robust simulation
model is checked according to the method described in
section ‘‘Implementation of the proposed feature con-
cepts.’’ If the simulation model failed in a new design,
another robust simulation model will be generated for
this design point specifically. As a result, the accuracy
of each design point can be guaranteed, which provides
effective inputs for the optimization process.

Finally, the log file recording the simulation results
is post-processed in MATLAB. Judging the result
obtained, we found that the error between the derived
minimal point’s normalized evenness factor and the
value from simulation validation is not acceptable.
This is due to insufficient data input while the OCD
flow is complex.

In order to obtain accurate optimization results,
more design points are added adaptively based on the
initial metamodel.32 To achieve this, the evenness
factor of the derived optimal point through RSM is
calculated through simulation and treated as the new
input for the next round of approximation. Finally,
the full data collected is shown in Table 6. By
regression analysis, the response function can be
obtained as

y=(0:4397� 0:0984x1 +0:0355x2 � 0:141x3

+0:0942x4 +0:0071x5

� 0:1096x1x2 +0:0056x1x3 � 0:0117x1x4

� 0:0199x1x5 � 0:0014x2x3

+0:0089x2x4 +0:0185x2x5 � 0:117x3x4

� 0:0049x3x5 +0:0161x4x5

+0:117x21 +0:0326x22 +0:0895x23 +0:0432x24

+0:0099x25)3 2:70273 10�4

ð11Þ

where y is the normalized evenness factor while x1, x2,
x3, x4 and x5 are variables which represent the coded
value of L1, u1, L2, u2 and g, respectively. The average
approximation error of this function is 6.7%. Using
this function, the minimal normalized evenness factor
is found to be 0.9776 3 1024 at the design point shown
in Table 7. This design point is validated by simulation,
and the simulation result of the normalized evenness
factor is 1.0032 3 1024, which leads to a relative error
of 2.6%.

The influence of design variables is analyzed, as
shown in Figure 12. The green line shows the contour
of the response surface against a single variable while
all the other variables remain fixed at the point shown

Figure 10. Velocity vectors of the final run.

Figure 11. Design variables: (a) horizontal plane cross-section view and (b) vertical plane cross-section view.
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Table 6. The full set of design variables and corresponding response.

Run no. x1 x2 x3 x4 x5 Normalized Eo (kg/s)

DP1 21 21 21 21 21 1.9498E–04
DP2 21 21 21 21 1 1.5906E–04
DP3 21 21 21 1 21 2.7853E–04
DP4 21 21 21 1 1 3.0530E–04
DP5 21 21 1 21 21 1.6914E–04
DP6 21 21 1 21 1 1.3918E–04
DP7 21 21 1 1 21 1.2757E–04
DP8 21 21 1 1 1 1.4775E–04
DP9 21 1 21 21 21 2.2295E–04
DP10 21 1 21 21 1 2.6967E–04
DP11 21 1 21 1 21 3.6906E–04
DP12 21 1 21 1 1 4.0617E–04
DP13 21 1 1 21 21 2.2148E–04
DP14 21 1 1 21 1 2.3743E–04
DP15 21 1 1 1 21 2.3243E–04
DP16 21 1 1 1 1 2.3686E–04
DP17 1 21 21 21 21 1.9764E–04
DP18 1 21 21 21 1 1.5014E–04
DP19 1 21 21 1 21 2.9911E–04
DP20 1 21 21 1 1 2.8789E–04
DP21 1 21 1 21 21 1.7822E–04
DP22 1 21 1 21 1 1.5453E–04
DP23 1 21 1 1 21 1.4087E–04
DP24 1 21 1 1 1 1.3308E–04
DP25 1 1 21 21 21 1.1927E–04
DP26 1 1 21 21 1 1.4458E–04
DP27 1 1 21 1 21 2.5307E–04
DP28 1 1 21 1 1 2.5576E–04
DP29 1 1 1 21 21 1.1409E–04
DP30 1 1 1 21 1 1.1088E–04
DP31 1 1 1 1 21 1.0360E–04
DP32 1 1 1 1 1 1.0109E–04
DP33 22.37841 0 0 0 0 3.3097E–04
DP34 2.37841 0 0 0 0 2.3299E–04
DP35 0 22.37841 0 0 0 1.3610E–04
DP36 0 2.37841 0 0 0 1.5534E–04
DP37 0 0 22.37841 0 0 3.0759E–04
DP38 0 0 2.37841 0 0 1.5942E–04
DP39 0 0 0 22.37841 0 1.2290E–04
DP40 0 0 0 2.37841 0 2.0310E–04
DP41 0 0 0 0 22.37841 1.0398E–04
DP42 0 0 0 0 2.37841 1.2480E–04
DP43 0 0 0 0 0 1.1560E–04
DP44 0 0 0 0 0 1.1560E–04
DP45 1.5716 2.3216 2.3716 2.3216 22.37841 1.0385E–04
DP46 20.4994 22.37841 2.3716 2.3216 2.3216 1.4051E–04
DP47 1.0466 1.4216 0.5966 20.2784 20.2784 1.4029E–04
DP48 0.8216 0.9216 0.7966 0.0216 20.1784 1.0352E–04
DP49 0.8466 0.9216 0.1466 20.9784 0.4216 1.0135E–04
DP50 0.7216 0.7216 0.9716 0.3216 20.2784 1.0865E–04
DP51 0.8966 0.9216 20.7534 22.37841 1.4216 1.0576E–04
DP52 0.7716 0.8216 0.9716 0.3216 20.3784 1.0904E–04
DP53 0.7716 0.8216 0.8466 0.1216 20.2784 1.0445E–04
DP54 0.7716 0.8216 0.7716 0.0216 20.1784 1.0833E–04
DP55 0.7716 0.8216 0.6466 20.1784 20.0784 1.0202E–04

Table 7. Values of design variables at optimum point.

L1 u1 L2 u2 g

Coded value 0.7466 0.7216 0.5216 20.3784 0.1216
Actual value 26.28 mm 72.58� 24.39 mm 61.02� 2.63�
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in the figure. The two red curves indicate a 95% simul-
taneous confidence band for the fitted response surface.
Obviously, the evenness factor is highly affected by the
first and third variables, namely, the nozzles’ distances
to the central plane. The effect of the slant and conical
angles is quite small. The streamlines flowing through
the four nozzles are generated to show how the flow
develops in the optimized OCD, as demonstrated in
Figure 13.

Conclusion

This article contributes to a feature modeling and inte-
gration method for CAD and CFD to address the sol-
ver usability problem faced by many CFD users. The
complex CFD solver setup process has been intelli-
gently coupled with feature-based parametric design
optimization, which otherwise would be highly
knowledge-demanding and would also encumber the
cyclic integrated optimization of design via interactions
between CAD and CFD. Fluid physics features and
dynamic physics features, which convey the simulation

intent, have been used to assist input data processing,
solver setup, convergence analysis and robust simula-
tion model generation. In this way, semi-automation of
CAD/CFD integration has been achieved. Through the
collaboration of fluid functional features, CAE bound-
ary features, fluid physics features and dynamic physics
features, design intent and simulation intent are associ-
ated seamlessly, leading to the consistent transmission
of design intent throughout the whole integrated CAD/
CFD system.

The effectiveness of the integration system is demon-
strated through the case study of OCD applied in
SAGD. It should be highlighted that the robust simula-
tion model is constructed progressively under the
scheme we put forward. Relying on the robust simula-
tion model, design optimization is conducted to achieve
better steam distribution. In this process, the intelligent
functions are implemented through physical knowledge
and best practices in CFD. By adapting the physical
knowledge, this method can be applied to other practi-
cal engineering problems. As to typical CAD/CFD
integration problems in application fields, the authors
would assure that the reported SolidWorks/ANSYS
models can be directly applied without major technical
barriers. Therefore, this article provides a generic
approach to aid decision making in CFD simulation
setup and thus facilitate the design optimization.

In the future, the automated function in the CFD
model generation process needs to be fulfilled based on
the novel feature concepts we proposed. The optimiza-
tion of OCD can be further conducted, incorporating
cost functions and manufacturability constraints.
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