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Abstract 

Initially developed for geometric representation, feature modeling has been applied in 

product design and manufacturing with great success. With the growth of computer-aided 

engineering (CAE), computer-aided process planning (CAPP), computer-aided 

manufacturing (CAM), and other applications for product engineering, the definitions of 

features have been mostly application-driven. This survey briefly reviews feature modeling 

historical evolution first. Subsequently, various approaches to resolving the interoperability 

issues during product lifecycle management are reviewed. In view of the recent progress of 

emerging technologies, such as Internet of Things (IoT), big data, social manufacturing, and 

additive manufacturing (AM), the focus of this survey is on the state of the art application of 

features in the emerging research fields. The interactions among these trending techniques 

constitute the socio-cyber-physical system (SCPS)-based manufacturing which demands for 

feature interoperability across heterogeneous domains. Future efforts required to extend 

feature capability in SCPS-based manufacturing system modeling are discussed at the end of 

this survey.  

Keywords 

Feature modeling, Feature ontology, Feature interoperability, Engineering informatics, Socio-

cyber-physical system 

1. Introduction 

Feature-based modeling has been extensively applied in various engineering fields including 

design, product lifecycle modeling, semantic modeling, process control, and system 

integration [1]. In the past, there have been several papers that reviewed the development of 

features. They focused more on the applications of features in modeling geometry and 

product lifecycles. This survey briefly covers that part as the historical evolution but lays 

more emphasis on the new development of features in recent years. Especially, the 
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tremendous advancement in Internet of Things (IoT), big data, new manufacturing paradigms 

and methodologies poses higher requirements for feature interoperability and information 

consistency. We propose that features should not be restricted to the modeling of a single 

product. To meet the new challenges raised by industry upgrading, features should be capable 

of the modeling of advanced manufacturing system consisted of cyber, social, and physical 

dimensions. This evolution process is demonstrated in Fig.1, based on which this survey is 

composed.  

Specifically, the rest of this review is expanded as follows: Section 2 starts the survey with 

features’ original application in geometry representation and then extends to feature-based 

modeling of various product lifecycle stages. The interoperability issue emerges in this 

evolvement process, which brings about relevant modeling approaches reviewed in Section 3. 

Section 4 introduces the new development of feature modeling methods due to the shifting of 

informatics and manufacturing schemes in recent years. A discussion of the bottlenecks and 

future research directions is carried out in Section 5 based on the literature reviewed. The 

conclusions of this survey come at last. 

 

Fig. 1. Development and evolution of feature modeling methods. 

2. Evolution of feature definitions 

2.1. Geometry representation 

In the background of product engineering, features were initially referred to as form features 

which are generic shapes for product development purposes [2]. Examples can be a hole, slot, 

pocket, and chamfer in a product model [3]. To represent geometric shapes, constructive 
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solid geometry (CSG) is commonly applied, which represents a geometry at the implicit level 

[4]. The other widely used method is boundary representation (B-rep), which explicitly 

represents an object by its boundary like faces, edges, and vertices [5]. Comparing to B-rep, 

CSG is preferred for computational geometric modeling due to its insensitivity to topological 

changes [6,7]. Other than geometric representation, feature concepts were further developed 

to model non-geometric product properties which are essential in different stages of the 

whole product lifecycle. However, this usually makes feature definitions driven by a specific 

application in product development [8]. These heterogeneous feature definitions are briefly 

explored in the following sub-sections. 

2.2. Functional features in conceptual design 

In the conceptual design stage, the design intent is embedded in a customer’s requirement for 

functions represented as a set of geometric and functional rules satisfied by the final product 

[9]. Functional modeling serves as a means of linking different levels of product or system 

design, which is conceptual. However, there is a huge challenge to unify different definitions 

and representations of functions from literature [10]. In design research specifically, it is 

widely accepted that a function is a relationship between input and output of energy, material, 

and information [11]. Schulte et al. [12] argued that, if features in the design process contain 

information related to functions, they would be more useful to support a design engineer. 

They defined the functional feature as “a set of functional faces, which embody the active 

surface of a physical effect to meet the requirements of a certain design (sub-) function”. 

Based on this concept, they tried to restore or construct the detailed geometry from the 

functional faces they defined. One of the important applications of functional features is the 

3D layout design before the embodiment or detailing begins [13]. For example, Li et al. [14] 

employed the functional feature tree modeling approach which integrates functional 

modeling and geometric modeling for engineering layout problem with complex design 

requests. 

2.3. CAE features in design analysis and improvement 

In the analysis stage supported by computer-aided engineering (CAE), CAE features are 

applied to represent engineering analysis knowledge [8]. In most real industrial applications, 

CAE simulation is computationally expensive and time-consuming [15]. It is a common 

practice that the product modeled by computer-aided design (CAD) should be simplified 

before simulation to enhance the efficiency of CAE [16]. Therefore, idealization features 

were proposed to remove the details and reduce the dimension of a CAD model [17]. In a 

similar work reported by Hamri et al. [18], simplification features are defined to remove 

certain form features in a CAD model. There were other works focused on the geometry 

conversion from CAD domain to CAE analysis. For instance, Deng et al. [19] put forward 

CAD-CAE features to transform the features of a CAD model into features of a CAE model. 

Xia et al. [20] developed a CAD/CAE incorporate software framework in which CAE 

features are composed of geometry entities and analysis attributes including boundary 

conditions feature, material feature, mesh feature, rendering feature, etc.  

2.4. Machining features in manufacture 

In the manufacturing stage, a machining feature (MF) can be defined from a geometric 

perspective as a shape that represents volumes to be removed [21]. Machining features have a 

wide application in computer-aided process planning (CAPP) and computer-aided 
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manufacturing (CAM) [22]. To further distinguish machining features from design features. 

Yan et al. [23] defined a machining feature as an object with geometric and topological 

characteristics which are associated with a set of machining operations. Machining feature 

also extends its functionalities in many other applications. For instance, Wang et al. [24] 

presented an enriched machining feature (EMF) concept that extends a traditional machining 

feature with intermediate machining volume information. In this way, EMF can be applied in 

machining process sequencing for distributed process planning. Li et al. [25] raised the 

concept of dynamics features that contain the machining effects, such as cutting allowance 

left, over-cut, surface quality and accuracy, to assist manufacturing decision making. To 

improve the manufacturability of the topologically optimized product, Liu and Ma [26] 

introduced 2.5D machining features into the optimization process, which was further 

extended to design for hybrid manufacturing [27].  

2.5. Assembly features 

In the product assembly stage, features are applied in assembly modeling and assembly 

planning [28]. Assembly modeling enables the computerized representation of assemblies of 

discrete parts through specifying assembly features [29] while assembly planning involves 

stability analysis, grip planning, motion planning, and sequence planning based on assembly 

features [28]. Generally, an assembly feature is defined as a generic way to mate the 

components by relationships [30,31]. Specifically, the relationships are composed of face 

connections, constraints, parameters, kinematic relations, and structural relations [32]. The 

product architectures that constrain the modular design of assembly geometry can be further 

defined by associative assembly design features which model geometric or non-geometric 

associations [33]. 

3. Feature interoperability and information consistency 

The interoperability issue arises after the definition of features becomes application-driven 

because the semantics is drastically affected by different product development stages in 

which features are modeled and interpreted [34]. Various approaches have been investigated 

to resolve the interoperability issue, which will be reviewed in this section.  

3.1. An ontological approach to feature definitions and product lifecycle management 

Ontologies are widely employed in the transparent modeling of human knowledge and 

reliable data sharing [8] because ontologies provide a common vocabulary with a shared 

semantics [35]. Especially, ontologies have an extensive application in software engineering 

for domain modeling, in which a feature model is a hierarchy of features with variability [36].  

However, borrowed from philosophy, the meaning of ontology is ambiguous and not intuitive 

in the background of feature modeling, which needs deep investigation. Computer scientists 

inherit “ontology” from metaphysics and apply it to represent formal descriptions of objects 

in the world, including their properties and correlations, so that they can be classified and 

related to one another [37]. Gruber [38] defined ontology as “an explicit specification of 

conceptualization”. From this definition, ontology represents the semantics of concepts and 

their relationships by using description languages. For instance, Dartigues et al. [35] applied 

the US National Institute of Standards and Technology (NIST) CORE product model, which 

offers a generic product representation scheme for the entire product development activity 

[39], to build the ontology that represents the common concepts between CAD and CAPP by 



 
5 

Unified Modeling Language (UML). Tessier and Wang [40] combined  Ontology Web 

Language (OWL) and Semantic Web Rule Language (SWRL) to represent feature classes in 

the form of ontologies. Generally, one of the main components of ontologies, i.e., concepts, 

can be defined by a UML class diagram shown in Fig. 2. 

 

Fig.  2. UML class diagram of ontology components and their relationships [41]. 

Products nowadays are becoming more and more complex, which is one of the reasons why 

various stages are needed in product development. This situation promotes the emergence of 

product lifecycle management (PLM) which provides a knowledge management platform to 

streamline the information of a product and related stages throughout the product’s lifecycle 

[42]. Efforts have been dedicated to building PLM by the ontological method. Sudarsan et al. 

[43] developed a product information modeling framework for PLM in which the product 

information modeling architecture is composed of product ontology and interoperability 

standards. To implement ontology and features into PLM, Matsokis and Kiritsis [44] 

proposed an ontology model of product data and Knowledge Management Semantic Object 

Model, which supports multi-levels of interoperability. 

3.2. Multiple-view feature modeling 

Throughout the lifecycle of a product, each activity has its own view on the product model 

[45]. The information consistency can be maintained through view updating in multiple-view 

feature modeling [46]. Technically, multiple feature views are based on design by features, 

feature recognition [47], and feature conversion [48]. For example, in simulation-based 
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design, the analysis view [49] needs to be associated with CAD models from the design view 

in a multiple-view product development environment. Cunningham and Dixon [50] applied 

design by features to create the feature model for the design view and used feature conversion 

to establish the finite-element model for the analysis view [46]. For molding products, Lee 

[51] proposed that the design view is composed of form features and moldability features, 

while the manufacture view is focused on the design of the mold. The conversion from the 

design view to the manufacture view is achieved by the geometric relationships between the 

product and the mold. The structural optimization view of the product was proposed by Liu et 

al. [52] based on the associative optimization feature concept. Recently, Li et al. [53] 

presented multiple-view feature modeling for design-for-additive manufacturing in which the 

design view, manufacturing view, and analysis view are incorporated as shown in Fig. 3. 

 

Fig.  3. Multiple-view feature modeling framework for design-for-additive manufacturing [53]. 

The feature conversion in the aforementioned approaches is usually one-way starting from 

the original design view [54]. To achieve multi-way feature conversion [55], Hoffmann and 

Joan-Arinyo [56] created a master model that has domain-specific clients who have their own 

view on the product model. As problems related to tolerances appear in several stages of a 

product lifecycle [57], the master model coordinates the CAD view, geometric dimensioning 

and tolerancing view, manufacturing process planning view and other downstream views 

under the control of the change protocol. In order to enable a designer to specify the product 

model from an arbitrary view, Bronsvoort and Noort [46] introduced conceptual design view, 

assembly design view, part detail design view, and part manufacturing planning view in a 

multiple-view feature modeling scheme. All the phases of product development are supported 

regardless of the order of appearance, and the information consistency is kept by automatic 

checking and recovering algorithms. For product development involving CAE, Smit and 

Bronsvoort [49] proposed that the analysis view should be a part of the multiple-view feature 

modeling paradigm that propagates the changes in a multi-directional manner. In the 

proposed paradigm, knowledge plays an essential role in integrating analysis view with other 

views in product development. 
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3.3. Multi-disciplinary and multi-application integration 

3.3.1. Functional and physical feature modeling  

The essence of engineering design is to map a specific function onto a reliable physical 

artefact. The design intent conveyed by functional features should be consistently adhered to 

throughout different stages in product development. However, the original definition of 

functional feature proposed by Schulte [12] is too restricted and provides no detailed 

information on how to incorporate with CAD and the subsequent applications. In order to 

overcome the defects, Cheng and Ma proposed a new functional feature modeling scheme as 

shown in Fig. 4. Specifically, the functional feature [58,59] is defined to incorporate 

functional design considerations into CAD modeling. Functional decomposition [60] is 

applied to break down an overly abstract function into several more detailed primitive 

functions, which are usually called sub-functions. A function structure is the compatible 

combination of sub-functions into an overall function [60]. Since functional concepts are not 

concrete and in order to attach them into geometric entities of the product, a new form of 

geometry, namely abstract geometry, is introduced to provide an intermediate between 

abstract functions and concrete geometries [58,59]. Abstract geometries are used to capture 

the fundamental geometric elements of the design functionals and are associated with 

downstream CAD geometric entities. 

Further, physics feature, in the form of named variables and a set of mathematical equations 

describing the physics phenomena, is proposed to model the behavior of the design artifact 

[59]. It contains information related to the physics/phenomena context involved in the design, 

for example, a mathematical model that describes a physical phenomenon, engineering 

properties that affect the design choice, etc. Note that one mathematical model could be 

applied to model different physical phenomena.  

There are engineering tools available for physics-related behavior modeling, the result of 

which can be transferred to physics feature and further utilized by downstream design 

activities. For example, Modelica [61] models the dynamic behaviors of the technical 

systems consisting of components like mechanical, electrical, fluid, thermal, hydraulic, 

control, etc., which are described by simple differential, algebraic, and discrete equations. 

Some behaviors are described by more complex partial differential equations, which require 

advanced methods, for example, CAE, mostly solved with finite element method (FEM) and 

Computational Fluid dynamics (CFD), mostly solved with Finite Volume Method (FVM). 

Advanced engineering tools are also available for modeling such behaviors, such as ANSYS, 

Abaqus, OpenFOAM, deal.II, etc. The implementation of functional features and physics 

features will be demonstrated in the following subsections. 
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Fig.  4. Functional feature modeling cube [59]. 

3.3.2. Functional features implementation in multi-disciplinary associations 

Just like the aforementioned research into product and process integration in mechanical 

engineering domain, extensive research has been conducted in chemical engineering field as 

well. For computer-aided process engineering (CAPE), CAPE open standards have been 

established to address the interoperability among various applications, which adopts an 

object-oriented approach to model individual process components as separate objects with 

middleware handling communications among those objects [62–64]. Also, formal ontology in 

CAPE domain was developed and further applied to model the semantic associations among 

heterogeneous data from conceptual all the way through to detailed engineering phase 

[65,66]. 

Despite all these efforts, the research on product and process integration is still domain-

specific [34,66–69]. In order to deal with the interoperability problem across mechanical and 

chemical engineering domains, Xie and Ma proposed the inter-domain functional feature, 

shown in Fig. 5, to associate chemical process features and mechanical design features, and 

therefore the design intent in chemical engineering can be expressed more explicitly in a 
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tangible object form [70]. In this scheme, design knowledge, such as design codes, expert 

rules, and numerical laws, is abstracted into the constraint models, which formalize the 

dependency and references among features across domains. The establishment of such 

flexible associative relationships among interdisciplinary features provides precise contextual 

information as well as convenient updates of functional mapping. Also, the explicit 

representation of engineering constraints can offer quantitative evaluation capability rather 

than just qualitatively registering the dependencies among detailed engineering model 

entities.  

 

Fig. 5. Inter-domain functional feature definition [70]. 

With the associations and cross references among different domain features systematically 

managed as engineering constraints at a fine granularity, a feature parameter association map 

can be dynamically constructed as needed, which always reflects the most updated 

dependency information. The map generated in this procedure provides engineers graphical 

visualization of association information, which evolves along the lifecycle of engineering 

projects. Also, snapshots of the feature association map can be used for tracing engineering 

changes and referenced in the future. Further, change propagation algorithm can be 

developed with a solid context to evaluate engineering change impacts and provide intelligent 

advice on change propagation solutions [71]. Fig. 6 demonstrates how the change 

propagation is controlled in a multilayer manner aided by the association map. 
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Fig. 6. Multilayer change scope control [71]. 

3.3.3. Functional features and physics features implementation in CAD/CFD integration 

In CAD/CAE integration, besides the efforts in synchronizing the CAD and CAE models and 

interpreting the CAE results introduced in Section 2, the CAE model setup should be 

highlighted as a vital component which affects the simulation accuracy greatly. However, the 

question of how to create a correct CAE model automatically poses another barrier for 

seamless CAD/CAE integration. This situation becomes even worse when CFD is needed to 

analyze the flow field because the CFD model requires strong background knowledge and 

rich experience to deal with the nonlinearity. 

To assist the CFD solver setup, an effective approach is to establish a system in which the 

relevant knowledge is represented as rules and coded into the system. Known as expert 

systems, the rule-based systems are the simplest form of artificial intelligence [72]. Research 

works have been dedicated to CFD expert systems when CFD solvers were still in-house 

codes [73–75]. The recent development of CFD makes it more user-friendly, which in turn 

requires more interactions with CAD. CAD/CFD integration happens to serve this purpose, 

which is supposed to extract the design information from CAD and convert it into the robust 

CFD simulation model which finally derives accurate results. 

Li et al. [76] proposed a CAD/CFD integration system based on feature concepts shown in 

Fig. 7. Based on the new functional feature concept [59], the fluid functional feature is 

composed of design parameters, functional descriptions, and functional geometry. The 

functional geometry can be further decomposed into inlet, outlet, inner faces, and symmetry 

plane if there is any. The CFD boundary features establish the link between the CAD design 

model and the CFD fluid domain including fluid attributes, boundary conditions, and mesh. 

According to the fluid attributes and boundary conditions, the equations in fluid physics 

features help to evaluate the flow regime. Subsequently, suitable physics models are selected 

for the CFD solver based on the rules embedded in the fluid physics features. After the 

simulation is completed, the convergence status and the analysis model are recorded as parts 

of the dynamic physics features which further facilitate the generation of the robust 

simulation model. The intelligent functions of the fluid physics features and dynamic physics 

features are fulfilled by a Python 3 code which invokes ANSYS Workbench and executes 

different scripts [77]. One important application of the CAD/CFD integration system is to 
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optimize fluid flow product design based on metamodeling [78]. In order to conduct 

metamodeling, a series of designs need to be analyzed. The proposed system is capable of 

configuring the solver according to various designs and generating accurate results which are 

the input of metamodeling. By extracting the sensitivity information, CFD effect features are 

obtained, which can be employed to improve the design.  

 

Fig. 7. UML diagram representing inter-feature associations. 

4. Features in the emerging informatics and manufacturing scheme 

4.1. Internet of Things 

Firstly introduced in 1999, the concept of IoT was defined by Kevin Ashton as uniquely 

identifiable interoperable connected objects with radio-frequency identification (RFID) [79]. 

In recent years, the rapid development of the Internet provides a global platform for machines 

and smart objects to communicate, dialogue, compute and coordinate [80]. As a result, the 

concept of “Things” is not restricted to RFID objects anymore. Instead, it has been expanded 

to any real or physical objects, such as sensors, actuators, and smart items [81]. 

Correspondingly, the wide applications of IoT have been witnessed in some fields including 

smart industry, smart home, smart energy, smart transport, and smart health [82]. In this 

evolution process, different visions have been developed towards IoT because of the 

heterogeneous interests of the people involved. Despite all the differences, the visions can be 

summarized as “Things oriented”, “Internet oriented”, and “Semantic oriented” [83]. Among 

those visions, features in the IoT scenario are originated from the characteristic properties 

and behaviors of the “Things” [84]. 
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Feature modeling is significant to the management of common and variable features in IoT 

[85]. To be specific, the common features are mandatory features for all products while 

variable features are used according to the required specifications of a product [86]. Based on 

this scheme, Abbas et al. [85] established the detailed IoT-based feature model for the 

“Things”. Based on the presented modeling method, a temperature sensor module in IoT can 

be represented by a feature model shown in Fig. 8. As indicated by the legend, the 

temperature sensor is the root node which has four child nodes. The unit, ZigBee, and 

connectivity are mandatory, which can be categorized as common features. The screen is 

optional, which is a variable feature. The values and options of unit, screen, and connectivity 

are all variable features according to the aforementioned method. 

 

Fig. 8. Feature model of a temperature sensor in IoT. 

Because heterogeneous things that belong to different platforms are applied in IoT [87], the 

semantic interoperability is critical for the “Things” to communicate with each other through 

the Internet [88]. Many research works have been done to conquer the interoperability issue 

caused by the diversity of protocols and technologies utilized in the IoT environment. For 

example, Kiljander et al. [89] proposed a novel semantic level interoperability architecture in 

which the information and capabilities of devices are characterized by semantic web 

knowledge representation. Further efforts still need to be made to enhance the semantic 

interoperability in IoT feature modeling. 

4.2. Big data 

Through IoT, information acquisition platforms, and ERP systems within enterprises, big 

data can be collected [90]. These data acquisition approaches make the datasets increase at an 

exponential rate, which requires advanced techniques to process within limited run times [91]. 

In the context of big data, features refer to data attributes which are the keys to the accuracy 

and efficiency of data mining algorithms [92]. Aided by feature modeling, the semantic-

based big data analysis helps to extract the manufacturing relationships [93]. For instance, 

based on the unstructured text data obtained from cross-enterprise social interaction media, 

Leng and Jiang [94] proposed Word Features (WF) and Position Features (PF) to formulate 
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the sentence level features that represent the manufacturing relationships. As shown in Fig. 9, 

each word is represented as [𝑊𝐹𝑖, 𝑃𝐹𝑖]
𝑇. Through combinations, the whole sentence can be 

denoted as 𝒙 = {[𝑊𝐹0, 𝑃𝐹0]
𝑇 , [𝑊𝐹1, 𝑃𝐹1]

𝑇 , … , [𝑊𝐹4, 𝑃𝐹4]
𝑇} . Further, to extract 

manufacturing relationships among various named entities (e.g., enterprises, products, 

demands, and capabilities) from the text-based context, a deep learning model based on an 

improved stacked denoising auto-encoder for sentence-level features is proposed instead of 

exploiting man-made features that elaborately optimized for the relationship extraction task 

[95]. For big data in the form of images, Li et al. [96] proposed a deep convolutional 

computation model which extends the convolutional neural network from the vector space to 

the tensor space to learn hierarchical features embedded in the data obtained from IoT. Big 

data also contributes to the intelligent diagnosis of machine operation conditions. Lei et al. 

[97] proposed a two-stage learning method to extract features that represent diverse fault 

symptoms [98] from mechanical big data. In their method, features are firstly extracted from 

vibration signals by sparse filtering. Then, based on the resulted features, health conditions 

are then classified by a “softmax” regression. Seen from the above literature, it can be 

observed that data mining, machine learning, and signal processing are commonly used 

methods to efficiently extract features from large-scale coarse data. 

 

Fig. 9. Sentence level input data formulation based on WF and PF [94]. 

After feature extraction, feature selection plays a key role in reducing the high-dimensionality 

of the derived features so that learning algorithms can be conducted more efficiently. 

Commonly, feature selection strategies are classified as filter, wrapper, embedded, and 

ensemble techniques [99]. Further, Wang et al. treated feature selection as a combinatorial 

optimization problem and categorized the feature selection methods into exhaustive search, 

heuristic search, and hybrid methods [92]. The suitability of using feature selection has been 

demonstrated in a variety of applications that require the processing of huge amount of data 

[100]. For example, Lin et al. performed an improved cat swarm optimization algorithm to 

select features in a text classification experiment for big data [101]. Fong et al. proposed a 

novel lightweight feature selection method for mining streaming data by using accelerated 

particle swarm optimization (APSO) type of swarm search [102].  

Implementing feature modeling in big data is critical for improving system performance and 

efficiency since big data is always characterized by its high sparsity, unbalanced, and large-

scale nature. By incorporating advanced granular computing methods [103] and hybrid 

learning models [104], the automatic feature modeling, extraction, and selection techniques 

need to be developed to handle complex data sets. 
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4.3. Social manufacturing 

Social manufacturing is a novel manufacturing paradigm which is based on the rapid 

development of the Internet and social media [105,106]. Specifically, it is a dynamically 

changeable socio-technical system which covers all the stages of a product lifecycle 

including requirement/demand generation, product design, production, marketing, services, 

and so on [107]. Facilitated by the internet-based connections and communications in 

business, socialized manufacturing resources (SMRs) are self-organized into resource 

communities and then further into a social manufacturing network. The implementation of 

social manufacturing is based on the product-order-driven runtime logic which is in the form 

of outsourcing and crowdsourcing mode, as well as product service systems [108]. 

One of the most important aspects of social manufacturing is its service-oriented character in 

which the term “service” generally indicates a series of activities. For instance, service 

providers offer services requested by consumers; consumers accept the services and give 

feedback to the service providers through social media [109,110]. Under this circumstance, 

the geographically distributed, cross-disciplinary service providers and service accepters have 

to establish unified service features to define, communicate, and locate their tangible and 

intangible service demands and capabilities. With the recent development of social 

manufacturing, there are researchers who applied feature modeling techniques to represent 

the capability information. For example, Leng et al. proposed the concept of manufacturing 

feature, which takes advantage of the ontology method to define and classify manufacturing 

resource for integrated decision making and reasoning [108]. Liu et al. established a similar 

ontology based manufacturing feature model to represent the processing capability and 

production capability of manufacturing service providers for outsourcing decision making 

[111,112]. Cao et al. constructed a more detailed machining service capability model using 

ontology and semantic web methods to represent the machining features that can be offered 

by a service provider for the purpose of cross-enterprise collaborations [113].  

As aforementioned, SMRs are usually self-organized into virtual communities to provide 

manufacturing resource as a whole. This is especially significant for small and medium 

enterprises to enhance their competitiveness against other large enterprises, which is another 

benefit and characteristic of social manufacturing [114]. Therefore, several researchers 

investigated the application of features in the formation of social manufacturing communities. 

For instance, Ding et al. studied how to classify the manufacturing resource providers into 

communities according to their similar manufacturing service features based on a topology 

model [115]. Leng et al. defined the manufacturing relationship features in the context of 

cross-enterprise collaborations, and developed a deep learning approach to extract these 

features for manufacturing demand-capability matchmaking [94]. According to the design 

ability features of the members in a designer community, Yang and Jiang found a way to 

represent the design resources of designer communities in social manufacturing [93]. Fig. 10 

represents the basic operation mechanisms of social manufacturing and how the 

aforementioned feature concepts function in this advanced manufacturing system. 
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Fig. 10. The operation mechanism of social manufacturing and the involved feature concepts. 

In addition to the two characteristics mentioned above, social manufacturing is a 

sophisticated paradigm which also features with the virus-like organizational structure 

propagation, SMR capabilities sharing, dynamically distributive infrastructure, big-data 

driven decision-making, and various industrial software applications [93]. These entire 

characteristics request for more in-depth studies on the unified, pellucid, convenient feature 

identification, representation, and interoperation in the social manufacturing scheme 

involving inter and intra enterprise communications, multiple production steps collaborations, 

and multi-disciplinary interactions. 

4.4. Additive and hybrid manufacturing 

The initial concept of social manufacturing was put forward with the focus on additive 

manufacturing (AM) because the owner of each 3D printer is theoretically a producer and a 

node in socialized manufacturing. The application of feature modeling techniques in AM is 

significant in the design of structures [116].  

4.4.1. Tools and steps in conducting additive manufacturing 

As shown in Fig. 11, an AM process generally involves serval steps ranging from a 3D model 

to a physical object. It is important to notice that the information flow preserves the 

approximate geometric information regarding the original input model. A 3D CAD model 

that fully describes the geometric information is required to initiate an AM process. The 3D 

model can be either created by a CAD software or constructed from a physical object through 

reverse engineering [117,118]. For products manufactured by conventional methods, the 

primary scheme of most commercial CAD/CAM software is CSG or B-rep. When it comes to 

AM, B-rep or CSG methods are faced with the problem of numerical robustness [119]. Back 

to 1987, 3D system Inc. created Standard Tessellation Language (STL) to transfer the 
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information embedded in 3D CAD models to AM machines. In this way, a CAD file can be 

converted to header and water-tight triangular meshes [119,120]. However, STL 

representation may cause problems because of the numerical errors (i.e. non-manifold facets, 

cracks, incorrect normals, overlapping facets [121]) induced during surface creation. The 

errors can be reduced by selectively and locally increasing the density of STL file facets 

without unnecessary increase of the file size by Vertex translation algorithm (VTA) [122] or 

Surface-based Modification Algorithm (SMA) [123]. Currently, STL is the mainstream 

standard in AM process, but there are still some other types of representations. For example, 

voxel-representation is adopted in medical applications using AM, because it can be directly 

obtained from images of computed tomography (CT) or magnetic resonance imaging (MRI) 

[124]. Hiller and Lipson [125] proposed a new Additive Manufacturing file format as STL2.0 

which supports multi-material and surface properties. The ISO/ASTM 52915:2016(E): 

Standard Specification for Additive Manufacturing file Version 1.21 describes an interchange 

format to support producing geometries in full color with functionally-defined gradations of 

materials and microstructures [126]. 

 

Fig. 11.  Information flow in AM. 

4.4.2. Features in additive manufacturing 

To print the material layer by layer using a 3D printing machine, the exchange format is 

transferred to the slice file which contains the information for each layer. The slice file 

carries the information of printing orientation, layer thickness and tool path in each layer. 

Due to the layer by layer nature, a typical staircase error is caused when the shape does not 

align with the printing orientation, which is demonstrated in Fig. 12. The staircase error can 

be reduced by using thinner slices at the cost of more printing layers and building time. 

Another common issue in AM is the loss of peak features in a printed part, which is presented 

in Fig.13. To address the problem, a variety of adaptive slice methods have been developed 

to use slices of varying thickness according to the part geometry [127–131]. In a study 

reported by [128], the authors identified the peak features and employed a selective hatching 

strategy on a non-uniform rational B-spline (NURBS) surface to reduce the overall building 

time, while maintaining the desired surface quality. 

 

Fig. 12. Staircase error in AM [132]. 
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Fig. 13.  (a) Peak features lost in uniform thickness layer deposition; (b) peak feature preserved in adaptive 

thickness layer deposition [128]. 

In addition to the layer thickness, the printing orientation is another critical factor for AM 

[133]. For some complex parts, it is difficult to achieve the quality requirement by printing 

the entire body in the same direction with planar slicing. Zhao et al. [134] developed a 

featured-based five-axis path planning method for AM. Specifically, an AM feature is 

defined as an abstract class of all features that comprise the basic attributes of id (the 

identifier of the feature), part_id (the id of the part that the feature belongs to) and 

support_structure (the support structure for the suspended features). Further, AM features are 

categorized into two5D AM features and freeform features which represent the features grow 

from a plane and features accumulate on a curved surface, respectively. Based on the 

proposed AM features, the fidelity of printing is improved by implementing different slicing 

and printing orientations. Ding et al. [135] developed a feature-based algorithm to slice a 

CAD model in multi-directions for satisfying the support-less and collision-free deposition 

purpose. In their research, as illustrated in Fig. 14, a CAD model is decomposed into sub-

volumes using a curvature-based volume decomposition method, and the sub-volumes are 

regrouped by a depth-tree structure approach with the same slicing directions. Some similar 

feature-based studies on multi-direction slicing strategies can be found in literature as well, 

such as silhouette edges projection [136], transition wall [137], centroid axis extraction [138], 

marching algorithm [139], offset slicing [140], skeleton method [141], and modular boundary 

decomposition [142].  

 

Fig. 14.   (a) Decomposition of a CAD model into sub-volumes with their build directions; (b) regrouping of 

sub-volumes by a depth-tree structure approach; (c) result of sliced CAD model with minimal support structures 

[135]. 
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One important characteristic of AM is that support structures are employed to prop the 

overhang features that incline beyond a certain degree to avoid collapsing during fabrication 

[143]. Therefore, the support feature should be included as a subclass of AM features. It 

should be noted that support features vary with different printing parameters for the same 

printed part [53]. For instance, the volume of support features can be minimized by 

optimizing the build direction [144–146]. As a result, support features are strongly dependent 

on the geometric and related technological attributes of the parent AM feature class. The 

relationships between the support features and the parent AM features can be potentially 

managed by the associative feature [147] regime. 

4.4.3. Features in hybrid manufacturing 

Even though AM is capable of building parts with high geometric and material complexities, 

it is difficult to control the surface finish quality and dimensional accuracy [148]. Therefore, 

hybrid manufacturing (HM) which combines AM and subtractive manufacturing (SM) has 

drawn great attention in recent years [149]. HM leverages AM’s advantages in design 

freedom, supply chain reduction [150], environmental impact reduction [151], and SM’s 

strength in high fabrication precision and surface finishing quality. To define the precedence 

constraints for HM process planning, the AM and SM features need to be defined and 

extracted. Because SM produces a part by removing materials in essence, the definition of 

SM features coincides with the conventional MFs. In an HM based remanufacturing context, 

Le et al. [152] defined the AM features (AMFs) as a geometrical shape and the associated 

attributes including geometrical form and dimensions, build directions, starting surface, 

material, and tolerance. Further, manufacturing rules were applied to associate MFs and 

AMFs to generate the process planning for HM, which is illustrated in Fig. 15. Obviously, 

AM and SM features should be distinguished to improve the manufacturability. Kerbrat et al. 

[153] developed a hybrid and modular approach to achieve the explicit separation, which is 

demonstrated in Fig. 16. On top of that, the cost model [154] and environmental impact 

model [151] were also investigated to enrich AM and SM features in HM. 

 

Fig. 15.  Process planning for HM by SM and AM feature-based method: (a) MFs and AMFs extraction; (b) 

associations between MFs and AMFs [152]. 
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Fig. 16.  Explicit separation of SM and AM features in reducing manufacturing difficulties [153]. 

Feature modeling techniques have demonstrated advantages in facilitating the process 

planning in HM. However, only the geometric information embedded in AM and SM features 

are not sufficient for process planning. Besides the manufacturing rules, the economic model 

and dynamic attributes also need to be further investigated for AM and SM features in an HM 

process. 

5. Bottlenecks and future outlook of feature modeling methods  

As can be seen from the literature reviewed in Section 4, feature modeling techniques have 

already been adopted in research fields like IoT, big data, social manufacturing, and AM. 

Though different, these domains are inter-related. To name a few, IoT can control and 

monitor the data-driven AM processes through specific applications [155]; based on the 

mining of big data, demands from customers can be extracted and matched with the 

capability of the SMRs in social manufacturing [156]. Facilitated by IoT and big data, 

manufacturing becomes smart. Combining smart manufacturing and AM, the socio-cyber-

physical system (SCPS)-based manufacturing is established by adding a social “dimension” 

[157] to the cyber-physical system (CPS) [158]. This is a revolutionary manufacturing 

paradigm which achieves mass customization and mass personalization. However, the 

intricate associations in this system pose higher requirements for feature modeling methods. 

5.1. Feature interoperability and information consistency across domains 

In a review presented by Ma et al. [34] in 2008, feature interoperability is clearly pointed out 

as an issue which needs to be solved in a new feature modeling paradigm. After years of 

development in feature modeling techniques, the interoperability is still recognized as a 

problem in a review offered by Sanfilippo and Borgo [8] in 2016. They argue that the 

interoperability issue is due to the lack of a general theory to support the analysis and 

representation of the domain-specific information. This situation becomes more obvious in 

the new era for manufacturing in which heterogeneous data, devices, and standards are 
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actively involved. The multifarious feature definitions in product development not only 

induce the interoperability issue but also present a threat to the consistency maintenance 

which is supposed to validate engineering intent [34]. As a result, engineering intent is 

difficult to maintain and easy to lose in an interdisciplinary situation. 

5.2. New challenges in socio-cyber-physical system-based manufacturing 

The interoperability and consistency issues occur after features shift from pure geometric 

modeling to product modeling in different stages of the product lifecycle. Nowadays, due to 

the rapid development of IoT, the services within the manufacturing environment become 

increasingly integrated [159]. Actually, the industrial IoT is the premise for industry 4.0 in 

which all kinds of equipment should interact effectively to complete the assigned tasks in a 

collaborative manner [160]. In SCPS-based manufacturing, the Internet, customers, social 

media, equipment, and producers interact intensively, which requires features should not be 

restricted to the modeling of a single product and its lifecycle. Instead, the functionalities of 

features should be extended to the modeling of the new manufacturing system. Besides the 

interoperability issue across different domains in SCPS-based manufacturing, the data-

intensive applications involved in the system also challenge the application of feature 

modeling. Therefore, more investigation of feature modeling methods needs to be conducted 

in the future to resolve these challenges.  

5.3. Future research directions 

Inspired by the idea of feature-oriented domain analysis, the complex SCPS-based 

manufacturing system can be divided into various domains based on the features illustrated in 

Section 4. Definitely, the knowledge and techniques involved are domain-specific, which 

demands elaborate treatment to avoid the interoperability and consistency issue. However, 

defining a feature that models the whole system including heterogeneous domains is almost 

impossible and not necessary. Thus, generic features [161] are proposed to represent the 

common features in different domains, while associative features [147] should be applied to 

model the relationships among generic features in each domain. In this way, the feature based 

multidisciplinary manufacturing system can be established in a consistent and systematic 

way. As ontology based modeling is the major approach for product development in both 

software product line and manufacturing, the generic features and associative features should 

be formalized in an ontological manner. As demonstrated in Fig. 17, the detailed research 

directions of feature modeling methods, in the background of SCPS-based manufacturing, are 

suggested as follows. 

1. Standardization is a potential solution to systematic interoperability [162]. For instance, 

STEP (Standard for the Exchange of Product data) by the International Organization for 

Standardization (ISO) [163] has been developed to describe the entire product data 

throughout the product lifecycle. To provide a unified feature definition within the scope of 

the concerned domain, standards should be established and provide a collection of glossaries. 

The messaging automation among the features in different domains can be achieved by 

features in the form of protocols. 

2. Scalability is the ability of the storage to process increasing amounts of data in an 

appropriate manner [164], which is critical in this “big data” era. In SCPS-based 

manufacturing, the cloud database needs to be capable of managing the socio and 
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manufacturing data that change dynamically. Therefore, features have to be designed in 

flexible structures to meet the scalable requirement.  

3. Security of social data sharing across enterprises is one of the factors that hinder the 

application of social manufacturing [105,165]. The secure communication of features 

attributed as private needs to be guaranteed. An example would be the feature information 

embedded in orders and transactions which are of business values in the highly competitive 

market. On the other hand, features of SMRs should be able to be managed by trending 

technologies like blockchain [166]. Thus, the security can be enhanced in the form of 

trustiness supported by a credit keeping mechanism. 

 

Fig. 17. Features and key components in SCPS-based manufacturing. 

6. Conclusions 

This paper briefly reviews features’ initial application in geometry representation and extends 

the introduction of feature applications to product development stages like conceptual design, 

design analysis and improvement, manufacture, and assembling. Feature interoperability has 

become a trending research topic since the definition of features become application-driven. 

Correspondingly, efforts have been made in ontological feature modeling, multiple-view 

feature modeling, functional and physical feature modeling to resolve the interoperability 

issue. The emphasis of this paper is on the advanced feature modeling methods that have 

been proposed recently by researchers, who extended their efforts to the emerging techniques 
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including IoT, big data, social manufacturing, and AM. Most features in these fields behave 

differently from the classical feature concepts, which distinguishes this survey from the other 

review papers on feature modeling methods. 

The fusion of these emerging techniques promotes SCPS-based manufacturing. It is 

imperative to enrich the capability of features to the modeling of this new manufacturing 

paradigm beyond the application-oriented modeling of a single product. It has been revealed 

that the interoperability and data-intensive applications are the challenges in implementing 

feature modeling in SCPS-based manufacturing. For future development, it is proposed that 

the common features in each domain are represented by generic features while the 

correlations among the domains are established by associative features supported by the 

standardization of the concerned domain and protocols. Besides, features should be scalable 

to accommodate the data-intensive applications. The secure storage and sharing of features 

are also suggested to be further investigated. 
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