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Abstract

In these lectures we give an overview of the circle method introduced by
Hardy and Ramanujan at the beginning of the twentieth century, and devel-
oped by Hardy, Littlewood and Vinogradov, among others. We also try to
explain the main difficulties in proving Goldbach’s conjecture and we give
a sketch of the proof of Vinogradov’s three-prime Theorem.

1 Additive problems

In the last few centuries many additive problems have come to the attention of
mathematicians: famous examples are Waring’s problem and Goldbach’s conjec-
ture. In general, an additive problem can be expressed in the following form: we
are givens≥ 2 subsets of the set of natural numbersN, not necessarily distinct,
which we callA1, . . . ,As. We would like to determine the number of solutions of
the equation

n = a1 +a2 + · · ·+as (1.1)

for a givenn ∈ N, with the constraint thata j ∈ A j for j = 1, . . . , s, or, failing
that, we would like to prove that the same equation has at least one solution for
“sufficiently large”n. In fact, we can not expect, in general, that for very smalln
there will be a solution of equation (1.1). Furthermore, depending on the nature
of the setsA j , there may be some arithmetical constraints on thosen that may be
“represented” in the form (1.1).
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In Waring’s problem we take an integerk≥ 2, and all setsA j are equal to the
set of thek-th powers of the natural numbers: the goal is to prove that there exists
an integers(k) such thateverynatural number has a representation as a sum of at
mosts k-th powers. This has been proved by Hilbert by means of a very intricate
combinatorial argument. Another interesting problem is the determination of the
minimal value ofssuch that equation (1.1) has at least one solution for sufficiently
largen∈ N, that is, allowing a finite set of exceptions. We recall Lagrange’s four
square theorem (every non negative integer can be written as the sum of four
squares of non negative integers), and also that if we takek = 2 ands= 2, then
the “arithmetical” set of exceptions contains the congruence class 3 mod 4.

In Goldbach’s problem we setA1 = A2 = P, the set of all prime numbers, and,
of course, we are interested only in even values ofn in (1.1).

In both Waring and Goldbach’s problems we may say that the difficulties arise
from the fact that the setsA have a simple multiplicative structure, but we are
addingtheir elements.

1.1 The circle method

The method that we are going to describe, that has been widely used to tackle
and solve many additive problems, has its origin in a 1918 paper of Hardy &
Ramanujan [10] on partitions. It has been developed by Hardy & Littlewood [8],
[9] in the 1920’s, and, because of their success, it is now referred to as the Hardy-
Littlewood, or circle, method.

In what follows, we shall describe Hardy, Littlewood & Ramanujan’s ideas
in some detail. For the sake of simplicity, we begin with the case of abinary
problem, that is, the case wheres= 2. As a further simplification, we assume that
A1 = A2 = A . Of course, we also assume thatA is an infinite set. We start by
setting

f (z) = fA(z)def=
+∞

∑
n=0

a(n)zn, where a(n) =

{
1 if n∈ A ,

0 otherwise.
(1.2)

SinceA is infinite, the functionf is a power series whose radius of convergence
is 1 (it certainly has a singularity atz= 1, and it is regular for|z|< 1 by compar-
ison with the sum of a geometric series). We are interested in the number of the
representations ofn in the forma1 +a2 with a j ∈ A , j = 1, 2. Therefore, we set

r2(n)def=
∣∣{(a1,a2) ∈ A×A : n = a1 +a2}

∣∣.
By the so-called Cauchy rule for the product of two absolutely convergent power
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series, when|z|< 1 we have

f 2(z) =
+∞

∑
n=0

c(n)zn where c(n) = ∑∑
0≤h,k≤n
h+k=n

a(h)a(k). (1.3)

Herea(h)a(k) = 1 if both h, k ∈ A , and otherwisea(h)a(k) = 0, whencec(n) =
r2(n). The same argument proves more generally that

f s(z) =
+∞

∑
n=0

rs(n)zn where rs(n)def=
∣∣{(a1, . . . ,as) ∈ As: n = a1 + · · ·+as}

∣∣.
By Cauchy’s theorem, forρ < 1 we have

r2(n) =
1

2πi

I
γ(ρ)

f 2(z)
zn+1 dz, (1.4)

whereγ(ρ) is the circle whose centre is at the origin and whose radius isρ. For
some setsA it is possible to determine an asymptotic development forf around
the singularities it has on the circleγ(1), and it is therefore possible to estimate
the integral in (1.4) takingρ as a function ofn whose limiting value is 1.

1.2 A simple example

As a simple example, we set up the circle method to solve a trivial combinatorial
problem: givenk∈N∗, determine the number of possible representations ofn∈N
as a sum of exactlyk natural numbers. In other words, we want to determine
rk(n) :=

∣∣{(a1, . . . ,ak) ∈ Nk : n = a1 + · · ·+ ak}
∣∣. It is clearly possible to show

directly, in a totally elementary way, that this number isrk(n) =
(n+k−1

k−1

)
.

In this case we obviously havef (z) = ∑+∞
n=0zn = (1−z)−1, so that, forρ < 1,

rk(n) =
1

2πi

I
γ(ρ)

dz
(1−z)kzn+1 . (1.5)

We remark that the integrand has only one singularity on the circleγ(1), which
is a pole. In this particular case it is possible to compute exactly the value of
the integral on the right hand side of (1.5): in fact, sinceρ < 1, we have the
development

1
(1−z)k = 1+

(
−k
1

)
(−z)+

(
−k
2

)
(−z)2 + · · ·=

+∞

∑
m=0

(
−k
m

)
(−z)m.
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The series on the right converges uniformly on all compact sets contained in{z∈
C : |z|< 1}, and therefore we may substitute into (1.5) and interchange the integral
and the series:

rk(n) =
1

2πi

+∞

∑
m=0

(
−k
m

)
(−1)m

I
γ(ρ)

zm−n−1dz

=
1

2πi

+∞

∑
m=0

(−1)m
(
−k
m

){
2πi if m= n,

0 otherwise,
= (−1)n

(
−k
n

)
.

It is not difficult to check that(−1)n
(−k

n

)
=

(n+k−1
k−1

)
. We finally remark that the

integrand is fairly small on the whole circleγ(ρ), except for a small arc close to
the pointz= ρ, that gives the main contribution to the integral in (1.5). We will
make things more precise later in (1.12).

In general, of course, it is not possible to evaluate directly and exactly the
integral, and usually the integrand has several singularities on the circleγ(1). For
instance, in order to compute the number of possible decomposition of an integer
n ∈ N as a sum ofk odd integers, we need the functiong(z) = ∑+∞

m=0z2m+1 =
z/(1− z2), that has two singularities, namelyz= ±1. In these cases, one needs
asymptotic developments near each singularity. It is an interesting exercise to
repeat the same computations as above in this case, to see how the arithmetical
conditionn≡ k mod 2 arises.

We notice a very important feature of (1.3) which we are going to exploit
later when dealing with the Goldbach problem: when it is difficult to prove that
r(n) > 0, it may be helpful to change the definition of the coefficientsa(h) in
(1.2). Instead of allowing only the values 0 and 1, we may attach a positive weight
to each element of the setA : the resulting function will not count the number of
representations anymore asr2(n), but it will be positive if and only if the weighted
version is. The rationale is that it should be easier to bound from below a larger
number. This gives the circle method some flexibility.

1.3 Vinogradov’s refinement

The method we just roughly sketched has been used extensively by Hardy & Lit-
tlewood in the 1920’s to prove many results connected to Waring’s problem, and
to carry out the first real attack on Goldbach’s conjecture. In the 1930’s Vino-
gradov introduced a few simplifications that make his method slightly simpler to
explain. The basic idea in Hardy, Ramanujan and Littlewood is to have some fixed
function, like f (z)k in the previous section, and to takeρ as a function ofn with
a limiting value of 1; furthermore, we need suitable asymptotic developments for
f around the singularities that it has on the circleγ(1). Vinogradov remarked that
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only those integersm≤ n give a positive contribution tor2(n), as clearly shown
by (1.3): following him, in the combinatorial problem of the previous section we
introduce the function

fN(z)def=
N

∑
m=0

zm =
1−zN+1

1−z
, (1.6)

where the last equality is valid forz 6= 1. Forn≤ N, Cauchy’s theorem yields

rk(n) =
1

2πi

I
γ(1)

f k
N(z)
zn+1 dz. (1.7)

In this case there areno singularities of the integrand (fN is a finite sum, a poly-
nomial): therefore we may fix once and for all the circle of integration. Let’s set
e(x) := e2πix and perform the change of variablez= e(α) in (1.7):

rk(n) =
Z 1

0
f k
N

(
e(α)

)
e(−nα)dα. (1.8)

This is the Fourier coefficient formula, that gives then-th coefficient in the Fourier
series expansion of the periodic functionf k

N

(
e(α)

)
, because of the orthogonality

property of the complex exponential function:

Z 1

0
e(nx)dx =

{
1 if n = 0,

0 otherwise.
(1.9)

Its importance lies in the fact that it transforms an arithmetical problem into one
that can be attacked using standard techniques from real and complex analysis.
For simplicity, we setTN(α) = T(α) := fN

(
e(α)

)
; from (1.6) we deduce

T(α)def=
N

∑
m=0

e(mα)

=


1−e

(
(N+1)α

)
1−e(α)

= e
(1

2Nα
)sin(π(N+1)α)

sin(πα)
if α /∈ Z;

N+1 if α ∈ Z.
(1.10)

Figure1 shows the graph of|T20(α)|. The property that we need to conclude our
elementary analysis concerns the rate of decay of the functionT asα gets away
from integers: from (1.10) we easily get

|TN(α)| ≤min

(
N+1,

1
|sin(πα)|

)
≤min

(
N+1,‖α‖−1) (1.11)
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where‖α‖ denotes the distance ofα from the nearest integer, that is min{{α},
1−{α}}, sinceT is periodic of period 1, andα ≤ sin(πα) for α ∈

(
0, 1

2

]
. This

inequality shows that ifδ = δ(N) is not too small, the interval[δ,1− δ] does not
give a large contribution to the integral in (1.8): in fact, if δ ≥ 1/N andk≥ 2 we
have∣∣∣∣Z 1−δ

δ
Tk

N(α)e(−nα)dα
∣∣∣∣≤ Z 1−δ

δ
|Tk

N(α)|dα≤
Z 1−δ

δ

dα
‖α‖k ≤

2
k−1

δ1−k, (1.12)

and this iso
(
Nk−1

)
as soon asδ−1 = o(N). In other words, it is sufficient that

δ is just larger thanN−1 so that the contribution of the interval[δ,1− δ] to the
integral in (1.8) be smaller that the main term, that we know isNk−1(k−1)!−1.
This means that the main term arises from a comparatively small interval close to
α = 0.

In the casek = 2 we push our analysis a step farther: in fact, it is possible to
prove (by induction plus some trigonometric identities) the formula

(sin
(
π(N+1)α

)
sin(πα)

)2
= ∑

|m|≤N+1

(N+1−|m|)e(mα). (1.13)

Of course, the knowledge of this identity is at least as difficult as the knowledge of
the correct answer to the original problem. Indeed, a much more sensible approach
would be to prove (1.13) by means of this argument, rather than the other way
around. By (1.8) we have

r2(n) =
Z 1

0

(sin
(
π(N+1)α

)
sin(πα)

)2
e((N−n)α)dα

= ∑
|m|≤N+1

(N+1−|m|)
Z 1

0
e((N+m−n)α)dα. (1.14)

By (1.9), the only non-vanishing integral occurs form= n−N, so thatr2(n) =
N + 1− |n−N| = n+ 1. The point of this example is that one can usually find
information on the quantityr2(n) by using transformations and suitable identities.
We develop the subject further in the next section.

2 Goldbach’s problem

After this fairly long introduction devoted to the mechanism of the circle method,
we now want to set it up in the case of the Goldbach’s problem. Henceforward,
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Figure 1: The graph of the function|T20(α)|, showing that it has a fairly large
peak around integral values ofα, and that otherwise it is comparatively small.

the variablesp, p1, p2, . . . , always denote prime numbers. We are interested in
the number of representations ofn as a sum of two prime numbers

r2(n)def=
∣∣{(p1, p2) ∈P×P : n = p1 + p2}

∣∣,
wherep1 andp2 are not necessarily distinct, but we considerp1+ p2 andp2+ p1

as distinct representations ifp1 6= p2. For the time being, we do not assume that
n is an even integer. Goldbach’s conjecture, as stated in a 1742 letter to Euler, is
thatr2(2n)≥ 1 for all n≥ 2.

For technical reasons that will be clarified later (essentially the same reason
why it is easier to work with the Chebyshevθ or ψ functions rather than theπ
function) we prefer to consider a weighted version of the quantity, that is

R2(n)def= ∑
p1+p2=n

logp1 logp2.

In other words, we count each representation ofn as p1 + p2 with a weight
logp1 logp2: this will make things easier, while still retaining the most impor-
tant feature, that is,r2(n) > 0 if and only if R2(n) > 0. Therefore, the goal of the
proof of Goldbach’s conjecture in its original form, thatr2(n) > 0 for large evenn,
may be achieved by proving thatR2(n) > 0 for large evenn. Using the traditional
notation we set

S(α) = SN(α)def= ∑
p≤N

(logp)e(pα) and θ(N;q,a)def= ∑
p≤N

p≡a modq

logp.
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Figure 2: The graph of the function|S20(α)| showing peaks close to the rational
valuesα = 0, 1

2, 1
3, 2

3; in α = 1
4, 3

4 there are no peaks becauseµ(4) = 0.

By the orthogonality relation (1.9), for n≤ N we haveZ 1

0
S(α)2e(−nα)dα = ∑

p1≤N
∑

p2≤N
logp1 logp2

Z 1

0
e
(
(p1 + p2−n)α

)
dα = R2(n).

(2.1)
Once again, this is the Fourier coefficient formula for the functionS2: compare
(1.8). Since there are no singularities whatsoever on the circle of integration
(though, strictly speaking, the circle has now been replaced by the interval[0,1])
we may wonder what plays the role of the major arcs: the distribution of prime
numbers in arithmetic progressions enters the picture, and we recall a basic result
from analytic number theory.

Theorem 2.1 For any fixed A> 0, there exists a constant C= C(A) > 0 such that
for N → +∞ and uniformly for all q≤ (logN)A and for all integers a such that
(a,q) = 1 we have

θ(N;q,a) =
N

φ(q)
+E1(N;q,a),

where
E1(N;q,a) = OA

(
Nexp{−C(A)

√
logN}

)
.

Before working it out in general, we computeS(0), S
(1

2

)
, S

(1
3

)
, S

(1
4

)
, and

compare our result with the graph shown in Figure2. It is quite straightforward
thatS(0) = θ(N;1,1)∼ N by Theorem2.1; if we computeS

(1
2) we see that

S
(1

2

)
= ∑

p≤N
(logp)eiπp = log2− ∑

p≤N
p≡1 mod 2

logp = log2−θ(N;2,1)∼−N,
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since all primesp≥ 3 are odd so that eiπp =−1. A quite similar thing happens if
we computeS

(1
3

)
:

S
(1

3

)
= log3+ ∑

p≤N
p≡1 mod 3

(logp)e2iπp/3 + ∑
p≤N

p≡2 mod 3

(logp)e2iπp/3

= log3+e2iπ/3 ∑
p≤N

p≡1 mod 3

logp+e4iπ/3 ∑
p≤N

p≡2 mod 3

logp

= e2iπ/3θ(N;3,1)+e4iπ/3θ(N;3,2)+ log3

=
(
e2iπ/3 +e4iπ/3)N

2
+O

(
Nexp{−C

√
logN}

)
(2.2)

=−N
2

+O
(

Nexp{−C
√

logN}
)
,

by Theorem2.1. We leave the computation ofS
(1

4

)
as an exercise to the reader:

the most important difference lies in the fact that the sum of roots of unity that
occurs in (2.2) is replaced by i− i = 0, so thatS

(1
4

)
= O

(
Nexp{−C

√
logN}

)
.

More generally, we now computeS at a rational numbera/q, for 1≤ a≤ q
and(a,q) = 1:

S

(
a
q

)
=

q

∑
h=1

∑
p≤N

p≡h modq

(logp)e
(
pa

q

)
=

q

∑
h=1

e
(
ha

q

)
∑

p≤N
p≡h modq

logp

=
q

∑
h=1

e
(
ha

q

)
θ(N;q,h) =

q

∑∗

h=1

e
(
ha

q

)
θ(N;q,h)+O(logq), (2.3)

where the∗ means that we have attached the condition(h,q) = 1 to the corre-
sponding sum. By TheoremA.1 and (2.3) we have

S

(
a
q

)
=

N
φ(q)

q

∑∗

h=1

e
(
ha

q

)
+

q

∑∗

h=1

e
(
ha

q

)
E1(N;q,h)+O(logq)

=
µ(q)
φ(q)

N+O
(

NPexp{−C
√

logN}
)
, (2.4)

whereµ denotes the M̈obius function. This formula suggests that|S(α)| is fairly
large whenα is a rational numbera/q, and that the size of

∣∣S(a/q)
∣∣ decreases es-

sentially asq−1. SinceS is a continuous function, we may expect that|S| be large
in a neighbourhood ofa/q, and we will exploit this fact to find an approximate
formula forR2(n). We begin by extending the influence of the peak neara/q as
much as possible: the simplest tool to use in this context is partial summation.
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Lemma 2.2 For any choice of A> 0, there exists a positive constant C= C(A)
such that for1≤ a≤ q≤ P := (logN)A, with (a,q) = 1 and for |η| ≤ PN−1 we
have

S

(
a
q

+η
)

=
µ(q)
φ(q)

T(η)+E2(N;q,a,η) (2.5)

where
E2(N;q,a,η) = OA

(
Nexp{−C(A)

√
logN}

)
.

This is Lemma 3.1 of Vaughan [19]: the main ingredients for the proof are
Theorem2.1, partial summation, equation (2.4) and TheoremA.1. In a sense, the
peak ofSat a/q can be approximated fairly well by means of the peak ofT at 0,
after a suitable rescaling. Theorem2.1 implies that the coefficient inS(α) is 1 on
average, as the coefficient inT(α), which is a much easier function to study.

For q≤ P, we denote byM(q,a) :=
[

a
q−

P
N , a

q + P
N

]
themajor arcpertaining

to the rational number with “small” denominatora/q, and write

M
def=

[
q≤P

q[∗

a=1

M(q,a) and m
def=

[
P
N

,1+
P
N

]
\M,

where, once again,∗ means that we attach the condition(a,q) = 1. Therefore,M
is the set of the major arcs, and Lemma2.2 suggests that it is the set where|S|
is fairly large. Its complementm is the set of theminor arcs. We translated the
integration interval from[0,1] to

[
P/N,1+P/N

]
in order to avoid two “half arcs”

at 0 and 1, but this is legitimate since all functions involved have period 1.
The proof of this Lemma shows clearly that the major arcs can not be too

numerous or too wide if we want to keep the resulting error term under control.
We will use this result to find a quantitative version of Goldbach’s conjecture, that
was first justified along these lines by Hardy & Littlewood [8, 9].

For n≤ N, from Equation (2.1) we deduce

R2(n) =
Z 1

0
S(α)2e(−nα)dα =

(Z
M

+
Z

m

)
S(α)2e(−nα)dα

= ∑
q≤P

q

∑∗

a=1

Z P/N

−P/N
S

(
a
q

+η
)2

e
(
−n

(
a
q +η

))
dη+

Z
m

S(α)2e(−nα)dα

= RM(n)+Rm(n),

say. From now on we write≈ to indicate an expected asymptotic equality. For the
time being we neglect the contribution of the minor arcsRm(n) and all the error
terms that have arisen so far. By Equation (2.5) we have

RM(n)≈ ∑
q≤P

q

∑∗

a=1

Z P/N

−P/N

µ(q)2

φ(q)2T(η)2e
(
−n

(
a
q +η

))
dη
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= ∑
q≤P

µ(q)2

φ(q)2

q

∑∗

a=1
e
(
−na

q

)Z P/N

−P/N
T(η)2e(−nη)dη. (2.6)

We extend the integral to the whole interval[0,1] and recall the result from the
previous section:Z 1

0
T(η)2e(−nη)dη = ∑

m1+m2=n
m1≥0,m2≥0

1 = n+1∼ n. (2.7)

Since(P/N) ·N → ∞, we see that (1.12) implies that the interval[P/N,1−P/N]
gives a contributiono(n). Therefore we expect that

RM(n)≈ n ∑
q≤P

µ(q)2

φ(q)2

q

∑∗

a=1
e
(
−na

q

)
= n ∑

q≤P

µ(q)2

φ(q)2cq(n), (2.8)

wherecq is the Ramanujan sum defined in TheoremA.1. The next step is to extend
the summation toq≥ 1, with the idea of using TheoremA.2, since the summand
is a multiplicative function ofq by TheoremA.1: we skip the detailed proof that
the error term arising from this operation is of lower order of magnitude.1 Now,
by TheoremA.2, the right hand side of Equation (2.8) becomes

RM(n)≈ n ∑
q≤P

µ(q)2

φ(q)2 cq(n)≈ n ∑
q≥1

µ(q)2

φ(q)2 cq(n)

= n∏
p

(
1+ fn(p)+ fn(p2)+ . . .

)
(2.9)

where the product is taken over all prime numbers andfn(q) = µ(q)2cq(n)/φ(q)2.
Obviously fn(pα) = 0 for α≥ 2, and forα = 1 TheoremA.1 implies that

fn(p) =
µ(p)2

φ(p)
µ
(
p/(p,n)

)
φ
(
p/(p,n)

) =


1

p−1
if p | n,

− 1
(p−1)2 if p - n.

If n is odd, the factor 1+ fn(2) vanishes, and Equation (2.9) predicts that we
should not expect any representation ofn as a sum of two primes. In fact, ifn is
odd thenR2(n) = 0 if n− 2 is not a prime number, andR2(n) = 2log(n− 2) if
n−2 is a prime number: the result in (2.9) should be understood asR2(n) = o(n).
Conversely, ifn is even we may transform Equation (2.9) by means of some easy
computation:

R2(n)≈ n∏
p|n

(
1+

1
p−1

)
∏
p-n

(
1− 1

(p−1)2

)
1Actually, this is strictly true only on average overn: see Vaughan [19], Chapter 3.
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= 2n∏
p|n
p>2

(
p

p−1
· (p−1)2

p(p−2)

)
∏
p>2

(
1− 1

(p−1)2

)

= 2C0n∏
p|n
p>2

p−1
p−2

= nS(n), (2.10)

where 2C0 is the so-called twin-prime constant, andS(n) is thesingular series
defined by

C0
def= ∏

p>2

(
1− 1

(p−1)2

)
and S(n)def= 2C0 ∏

p|n
p>2

p−1
p−2

. (2.11)

Equation (2.10) is the asymptotic formula forR2(n) found by Hardy & Little-
wood: of course, it would imply the truth of Goldbach’s conjecture, but it is much
stronger. In the next paragraph we explain why, in the current state of knowledge,
it is impossible to prove it. It is clear from (2.10) that the weighted number of
representations depends on the size ofn and also on its prime factorization: it is a
nice exercise in sieve theory to see why it has to be so.

We conclude this section noticing that Equation (2.1) implies that

R2(n)≤
Z 1

0
|S(α)|2dα = ∑

p≤N
(logp)2 ≤ θ(N) logN∼ N logN (2.12)

by Theorem2.1, so that forn close toN the expected asymptotic formula (2.10)
does not differ too much from this upper bound.

3 Where are the difficulties?

For the sake of brevity, we only describe the two more important questions that
remain to be settled: the approximation of the Chebyshevθ function, and the
contribution of the minor arcs.

3.1 Approximation of the Chebyshev theta function

The approximation ofθ provided by the Prime Number Theorem for Arithmetic
Progressions2.1is quite weak for two main reasons: we remarked above that it is
only valid in a fairly restricted range of values forq, and this forces a rather small
choice ofP, the parameter that we use to define the major arcs.

The second reason is that is that the upper bound known today for the error
term is too large: in fact, it is conjectured that its true order of magnitude is much
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smaller. It is well known that the differenceθ(N;q,a)−N/φ(q) depends essen-
tially on a sum whose summands have the shapeNρ/(φ(q)ρ), whereρ denotes the
generic complex zero of suitable DirichletL functions. In the simplest case, when
q = a = 1, the relation referred to can be written in the form

θ(N) = N− ∑
ρ∈C s. t. ζ(ρ)=0

ρ=β+iγ,
|γ|≤T

Nρ

ρ
+O

(
N
T

(logN)2 +
√

N logN

)
(3.1)

whereρ = β+ iγ is the generic zero of the Riemann zeta function withβ ∈ (0,1),
andT ≤ N. This relation is known as theexplicit formula, and it suggests that it
might be a good idea to replace the functionT(η) defined in (1.10) with a different
approximation forS

(
a
q +η

)
, namely

K(η)def= ∑
n≤N

(
1− ∑

|γ|≤T

nρ−1
)

e(nη)

where the coefficient of e(nη) is the derivative with respect toN of the first two
terms in (3.1), evaluated atn (since if f is regular, then∑ f (n) ∼

R
f (t)dt). This

approximation forS is valid only in a neighbourhood of 0, but we can find similar
approximations valid on each major arc introducing the DirichletL functions.
Variants of this idea have been successfully used in several problems.

It is well known that the optimal distribution for prime numbers is achieved
if all real partsβ of all zerosρ = β + iγ of theζ function withγ 6= 0 are equal to
1
2 (Riemann Conjecture): in this case,θ(N) = N + O

(
N1/2(logN)2

)
. Similarly,

if all zerosβ + iγ of all Dirichlet L functions withβ ∈ (0,1) have real part12
(Generalized Riemann Conjecture), then forq≤ x

θ(N;q,a) =
N

φ(q)
+O

(
N1/2(logN)2

)
. (3.2)

The exponent ofN in the error term of (3.2) is optimal, and it can not be replaced
by a smaller one. In particular, Goldbach’s Conjecturedoes notfollow from the
Generalized Riemann Conjecture (3.2). We finally remark that the general case
q > 1 is harder than the caseq = 1: in fact in the present state of knowledge it is
not still possible to rule out the existence of areal zeroβ∈ (0,1) of some Dirichlet
L function, withβ very close to 1. This, essentially, is the reason why we had to
impose a rather severe limitation forq in Theorem2.1. In fact, the contribution
from this zero would be±Nβ/(φ(q)β), that is, very close to the “main term”
N/φ(q), and it might spoil the asymptotic formula forθ(N;q,a) for this particular
value ofq, with consequences on the asymptotic formula forR2(n).
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3.2 The contribution from minor arcs

The main problem concerning minor arcs is that it is not possible to give an in-
dividual estimate for their contribution: it is comparatively easy to prove thaton
averageover the integersn∈ [1,N] the minor arcs give a negligible contribution
to R2(n), but it is not possible to prove the same thing for any singlen. By the
Fourier coefficient formula, Bessel’s inequality and the Prime Number Theorem
2.1with q = 1 we have

∑
n≤N

∣∣∣Z
m

S(α)2e(−nα)dα
∣∣∣2 ≤ Z

m
|S(α)|4dα≤ sup

α∈m
|S(α)|2

Z 1

0
|S(α)|2dα

= O
(

N logN sup
α∈m

|S(α)|2
)

.

Equation (2.4) suggests (and the following Lemma proves, albeit in a slightly
weaker form) that the supremum in the last formula should be roughlyN2P−2,
since ifα ∈m then it is “close” to a rational with denominator> P.

Lemma 3.1 For 1≤ a≤ q≤ N, (a,q) = 1 and|η| ≤ q−2 we have

S

(
a
q

+η
)
� (logN)4(Nq−1/2 +N4/5 +N1/2q1/2).

This is Theorem 3.1 of Vaughan [19]. It implies that

∑
n≤N

|Rm(n)|2 = ∑
n≤N

∣∣∣Z
m

S(α)2e(−nα)dα
∣∣∣2 = O

(
N3(logN)9P−1), (3.3)

since every point on[0,1] is within q−2 from a rationala/q (this is an elementary
result of Dirichlet), and on the minor arcsq> P. In its turn, Equation (3.3) implies
that for the majority of valuesn∈ [1,N] we have that|Rm(n)| is of lower order of
magnitude than the contribution from the major arcs provided by (2.9).

We remark that the measure of the minor arcs is 1+ o(1), so that the major
arcs represent a tiny portion of the interval[0,1].

4 Results for “almost all” even integers

The argument sketched in Section2 is not strong enough to prove Goldbach’s
Conjecture, but it can still be used to prove some interesting, albeit weaker, re-
sults. In particular, we now prove that even integersn such thatR2(n) = 0 are
comparatively rare: more precisely, let us setE(N) :=

{
n≤ N : n is even and

R2(n) = 0
}

. We will prove that, givenB> 0, we have|E(N)|= OB
(
N(logN)−B

)
.
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Theorem 4.1 Given B> 0 we have

∑
n≤N

∣∣R2(n)−nS(n)
∣∣2 �B N3(logN)−B.

Sketch of the proof. Using the ideas in §2, it is not too difficult to give a rigorous
proof of the fact that forn≤ N we have

RM(n) = nS(n,P)+OA
(
n(logn)P−1) (4.1)

using Lemma2.2and Equations (1.11), (2.6)–(2.7), where

S(n,P)def= ∑
q≤P

µ(q)2

φ(q)2cq(n). (4.2)

TheoremsA.2, A.1 and standard estimates concerning Euler’sφ function, show
that

∑
n≤N

∣∣S(n,P)−S(n)
∣∣2 � N(logN)2P−1. (4.3)

The elementary inequality|a+b+c|2 ≤ 3
(
|a|2 + |b|2 + |c|2

)
implies

∑
n≤N

∣∣R2(n)−nS(n)
∣∣2 � ∑

n≤N

∣∣RM(n)−nS(n,P)
∣∣2

+ ∑
n≤N

∣∣nS(n,P)−nS(n)
∣∣2 + ∑

n≤N

∣∣Rm(n)
∣∣2

� N3(logN)2−2A +N3(logN)2−A +N3(logN)9−A

� N3(logN)9−A

by (3.3), (4.1)–(4.3). Theorem4.1follows choosingA≥ B+9. �

Finally, let E ′(N) :=
{

n ∈
[1

2N,N
]
: n is even andR2(n) = 0

}
= E(N)∩[1

2N,N
]
. Equation (2.11) implies thatS(n)≥ 2C0 whenn is even, so that

∑
n≤N

∣∣R2(n)−nS(n)
∣∣2 ≥ ∑

n≤N,2|n
R2(n)=0

|2C0n|2 ≥ ∑
N/2≤n≤N,2|n

R2(n)=0

|2C0n|2

≥ 1
2
C2

0

∣∣E ′(N)
∣∣N2,

and |E ′(N)| = OB
(
N(logN)−B

)
for any B > 0. The result forE(N) follows by

decomposing the interval[1,N] into O(logN) intervals of type
[1

2M,M
]
.
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5 Vinogradov’s three-prime theorem

The circle method can be successfully applied to many different problems: for
example, using a notation consistent with the one above, we have

R3(n)def= ∑
p1+p2+p3=n

logp1 logp2 logp3 =
Z 1

0
S(α)3e(−nα)dα

if n≤N. An argument similar to the one in the previous sections shows thatR3(n)
is well approximated by the contribution of the major arcs alone, and this yields

R3(n) =
1
2

n2S3(n)+OA

(
n2(logn)−A

)
, (5.1)

for any positiveA. Here

S3(n)def= ∏
p-n

(
1+

1
(p−1)3

)
·∏

p|n

(
1− 1

(p−1)2

)
.

Having three summands in place of two changes radically the nature of the prob-
lem: we are content to remark that in this case an individual upper bound for the
contribution of the minor arcs is indeed possible. In fact, Lemma3.1 implies, for
n≤ N andq > P, that∣∣∣Z

m
S(α)3e(−nα)dα

∣∣∣≤ sup
α∈m

|S(α)|
Z 1

0
|S(α)|2dα = O

(
n2(logn)4P−1/2

)
. (5.2)

Finally, we conclude noticing that a very simple computation shows that the
twin-prime problem is naturally linked to Goldbach’s conjecture: in fact, we have

θN(n)def= ∑
p2≤N

p2−p1=n

logp1 logp2 =
Z 1

0
|S(α)|2e(−nα)dα,

as a short computation shows. This means that the two problems are strictly re-
lated and are of the same degree of difficulty.

A Some useful results

Theorem A.1 (Ramanujan) The Ramanujan sum cq(n) defined below is a mul-
tiplicative function of q, and

cq(n)def=
q

∑∗

h=1

e
(hn

q

)
= µ

(
q

(q,n)

)
φ(q)

φ(q/(q,n))
.
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Theorem A.2 (Euler Product) Let f be a multiplicative function such that the
series∑n≥1 f (n) is absolutely convergent. Then the following identity holds

∑
n≥1

f (n) = ∏
p

(
1+ f (p)+ f

(
p2)+ f

(
p3)+ · · ·

)
,

where the product is taken over all prime numbers and is absolutely convergent.

B Recommended reading

The standard reference for the circle method is Vaughan’s monograph [19]: see
in particular Chapter 1. See also Hardy [7] Chapter 8 (in particular §§8.1–8.7),
James [13] §5, and Ellison [4] for the history of Waring’s problem. The genesis
of the idea of studying the behaviour of the generating function in the neighbour-
hood of many singularities is clearly explained in Hardy & Ramanujan [10] (in
particular §§1.2–1.5) and in Hardy [7] Chapter 8 (in particular §§8.6–8.7). For
Waring’s problem see Hardy & Wright [11] Chapters 20–21 for an introduction,
and Vaughan [19] for a detailed study. For the relationship between Laurent series
and Fourier series see Titchmarsh [18] §13.12. See also the survey by Kumchev
& Tolev [14].

SetE(N) := {2n≤ N : r2(2n) = 0}. The complete detailed proof that for any
A > 0 we have|E(N)| = OA

(
N(logN)−A

)
is in §3.2 of Vaughan [19]. Mont-

gomery & Vaughan [16] proved the stronger result that|E(N)| � N1−δ for some
δ > 0. A discussion of many problems related to variants of the Goldbach Conjec-
ture can be found in Languasco [15], while Zaccagnini [20] deals with “mixed”
problems with primes and powers. A heuristic argument in favour of the twin-
prime conjecture can be found in Hardy & Wright [11], §22.20. See the intro-
duction of Halberstam & Richert [6] for the general setting of the Schinzel &
Sierpínski’s conjectures and the notes for a quantitative version of the same con-
jectures due to Bateman & Horn. An upper bound forr2(n) of the correct order of
magnitude is contained in Theorem 3.11. See Zaccagnini [21] for an elementary
heuristic argument (based on a variant of Eratosthenes’ sieve) in support of the
asymptotic formula (2.10): in particular see Equations (6), (8) and (10), and the
“Coda.” Other strategies for the proof of Goldbach’s Conjecture are discussed in
Ribenboim [17] §4.VI. See also Guy [5] §C.1 for further references.

For Equations (3.2) and (3.3) see Davenport [2] Chapter 20 and Chapter 25
respectively. Chen proved that every large even integer can be written as a sum of
a prime and of an integer with at most 2 prime factors: see Halberstam & Richert
[6] Chapter 10, or Bombieri [1] §9 for a comparatively simple proof with 4 in
place of 2.
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Equation (5.2) is in Davenport [2] Chapter 26. The Ternary Goldbach Problem
is discussed in [2] Chapter 26 or [19] §3.1. Deshouillers, Effinger, te Riele &
Zinoviev [3] proved that if the Generalized Riemann Conjecture is true thenevery
odd integern≥ 7 is a sum of three primes. TheoremA.1 is Theorem 272 of Hardy
& Wright [11]. For useful results on the distribution of primes or the properties of
the Riemann zeta function, see [2] Chapters 7–18, or Ivić [12] Chapters 11–12.
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