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Abstract

In these lectures we give an overview of the circle method introduced by
Hardy and Ramanujan at the beginning of the twentieth century, and devel-
oped by Hardy, Littlewood and Vinogradov, among others. We also try to
explain the main difficulties in proving Goldbach’s conjecture and we give
a sketch of the proof of Vinogradov’s three-prime Theorem.

1 Additive problems

In the last few centuries many additive problems have come to the attention of
mathematicians: famous examples are Waring’s problem and Goldbach’s conjec-
ture. In general, an additive problem can be expressed in the following form: we
are givens > 2 subsets of the set of natural numbBisnot necessarily distinct,
which we call4y, ..., 4s. We would like to determine the number of solutions of
the equation

Nn=a+a+---+ag (1.1)

for a givenn € N, with the constraint thaa; € 4; for j =1, ...,s, or, failing

that, we would like to prove that the same equation has at least one solution for
“sufficiently large”n. In fact, we can not expect, in general, that for very small
there will be a solution of equatiori (). Furthermore, depending on the nature

of the sets?;, there may be some arithmetical constraints on timabat may be
“represented” in the formi(1).
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In Waring’s problem we take an intege?> 2, and all sets?; are equal to the
set of thek-th powers of the natural numbers: the goal is to prove that there exists
an integeis(k) such thaeverynatural number has a representation as a sum of at
mosts kth powers. This has been proved by Hilbert by means of a very intricate
combinatorial argument. Another interesting problem is the determination of the
minimal value ofssuch that equatiori(1) has at least one solution for sufficiently
largen € N, that is, allowing a finite set of exceptions. We recall Lagrange’s four
square theorem (every non negative integer can be written as the sum of four
squares of non negative integers), and also that if we kake® ands= 2, then
the “arithmetical” set of exceptions contains the congruence class 3 mod 4.

In Goldbach’s problem we set; = 4, =3, the set of all prime numbers, and,
of course, we are interested only in even values iof (1.1).

In both Waring and Goldbach’s problems we may say that the difficulties arise
from the fact that the setd have a simple multiplicative structure, but we are
addingtheir elements.

1.1 The circle method

The method that we are going to describe, that has been widely used to tackle
and solve many additive problems, has its origin in a 1918 paper of Hardy &
Ramanujan 0] on partitions. It has been developed by Hardy & Littlewoé& [

[9] in the 1920’s, and, because of their success, it is now referred to as the Hardy-
Littlewood, or circle, method.

In what follows, we shall describe Hardy, Littlewood & Ramanujan’s ideas
in some detail. For the sake of simplicity, we begin with the case lohary
problem, that is, the case wheye- 2. As a further simplification, we assume that
A, = 4, = 4. Of course, we also assume thatis an infinite set. We start by
setting

i 1 if A,
def { mne (1.2)

f(2)=fa(2) = ;am)ﬂ where aln) =94 Ciherwise.

Since4 is infinite, the functionf is a power series whose radius of convergence
is 1 (it certainly has a singularity at= 1, and it is regular fofz| < 1 by compar-

ison with the sum of a geometric series). We are interested in the number of the
representations of in the formay 4+ a; with a; € 4, j =1, 2. Therefore, we set

rz(n)d:Ef\{(al,az) €AxA:n=a;+az}|.

By the so-called Cauchy rule for the product of two absolutely convergent power
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series, wherz| < 1 we have

+00

f2(2) = %c(n)zn where  ¢(n) =

I éM

0

; a(hya(k). (1.3)

>

+k=n

Herea(h)a(k) = 1 if both h, k € 4, and otherwisa(h)a(k) = 0, whencec(n) =
r2(n). The same argument proves more generally that

Joo
f5(2) = 5 rs(n)2" where rs(n)‘j§f|{(a1,...,as) €A% n=a+ - +as}|
n=0
By Cauchy’s theorem, fgp < 1 we have

1 f2(2)
ra(n) = ﬁ%y(p) T dz, (1.4)

wherey(p) is the circle whose centre is at the origin and whose radips sor
some setd it is possible to determine an asymptotic developmentffaround
the singularities it has on the circlgl), and it is therefore possible to estimate
the integral in L.4) takingp as a function o whose limiting value is 1.

1.2 A simple example

As a simple example, we set up the circle method to solve a trivial combinatorial
problem: giverk € N*, determine the number of possible representatiomsaN
as a sum of exactlk natural numbers. In other words, we want to determine
re(n) == [{(as,...,a) e N: n=as +---+a}|. Itis clearly possible to show
directly, in a totally elementary way, that this number,ig) = (”Jkr'_‘gl).

In this case we obviously havidz) = 3, %, 2" = (1—2)~1, so that, fop < 1,

1 dz
= — —_— 15
"= org 7\{/@) (1-zkz+t 19
We remark that the integrand has only one singularity on the cyfdlg which
is a pole. In this particular case it is possible to compute exactly the value of
the integral on the right hand side df.§): in fact, sincep < 1, we have the
development
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The series on the right converges uniformly on all compact sets contaidedin
C: |z] < 1}, and therefore we may substitute infoq) and interchange the integral
and the series:

m=0
+00 _ i i e —
:i.z(—l)m< k) 2ri if m n :<_1)n( k)
2n &, m 0 otherwise, n

It is not difficult to check that—1)"(¥) = ("/*;%). We finally remark that the
integrand is fairly small on the whole circlép), except for a small arc close to
the pointz = p, that gives the main contribution to the integral in5). We will
make things more precise later ih{2).

In general, of course, it is not possible to evaluate directly and exactly the
integral, and usually the integrand has several singularities on the y{itgle~or
instance, in order to compute the number of possible decomposition of an integer
ne N as a sum ok odd integers, we need the functigz) = 5,2, Z2™! =
z/(1— 2%, that has two singularities, namety= +1. In these cases, one needs
asymptotic developments near each singularity. It is an interesting exercise to
repeat the same computations as above in this case, to see how the arithmetical
conditionn =k mod 2 arises.

We notice a very important feature of.8) which we are going to exploit
later when dealing with the Goldbach problem: when it is difficult to prove that
r(n) > 0, it may be helpful to change the definition of the coefficiests) in
(1.2). Instead of allowing only the values 0 and 1, we may attach a positive weight
to each element of the sét the resulting function will not count the number of
representations anymoreragn), but it will be positive if and only if the weighted
version is. The rationale is that it should be easier to bound from below a larger
number. This gives the circle method some flexibility.

1.3 Vinogradov’s refinement

The method we just roughly sketched has been used extensively by Hardy & Lit-
tlewood in the 1920’s to prove many results connected to Waring’s problem, and
to carry out the first real attack on Goldbach’s conjecture. In the 1930’s Vino-

gradov introduced a few simplifications that make his method slightly simpler to

explain. The basic idea in Hardy, Ramanujan and Littlewood is to have some fixed
function, like f(2)¥ in the previous section, and to tageas a function of with

a limiting value of 1; furthermore, we need suitable asymptotic developments for
f around the singularities that it has on the cirglg). Vinogradov remarked that
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only those integers < n give a positive contribution toy(n), as clearly shown
by (1.3): following him, in the combinatorial problem of the previous section we
introduce the function

(1.6)

where the last equality is valid far# 1. Forn < N, Cauchy’s theorem yields

1 @
rk(n) = ﬁ %y(l) F dZ. (17)

In this case there amo singularities of the integrandy| is a finite sum, a poly-
nomial): therefore we may fix once and for all the circle of integration. Let's set
e(x) := €™ and perform the change of variatde- e(a) in (1.7):

re(n) = /01 fX (e(a)) e(—na) da. (1.8)

This is the Fourier coefficient formula, that gives thth coefficient in the Fourier
series expansion of the periodic functitqb(e(a)), because of the orthogonality
property of the complex exponential function:

/Ole(nx) dx = {1 tn=0, (1.9)

0 otherwise.

Its importance lies in the fact that it transforms an arithmetical problem into one
that can be attacked using standard techniques from real and complex analysis.
For simplicity, we seffiy(a) = T(a) := fn(e(a)); from (1.6) we deduce

Tmﬁiam>

m=0
1-e((N+1)a) sin(m(N+1)a) . _
— { 1—ea) e(3Na) sin(Tm) TogZ (1.10)
N+1 ifa e Z.

Figurel shows the graph diTyo(a)|. The property that we need to conclude our
elementary analysis concerns the rate of decay of the fun¢tiasa gets away
from integers: from1.10 we easily get

[Tn(a)] < min <N+1 ) <min(N+1,al %) (1.11)

| sin(ra))|
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where||a|| denotes the distance af from the nearest integer, that is nfiu},

1—{a}}, sinceT is periodic of period 1, and < sin(rat) for a € (0,3]. This

inequality shows that id = 8(N) is not too small, the intervad, 1 — 8] does not
give a large contribution to the integral ih.8): in fact, if 8> 1/N andk > 2 we
have

1-5 1-5 1-5 )
‘ < / T (a)|da < / da < 78K 112)
o) o)

T¥(0t)e(—na) do o Sk

and this iso(Nkfl) as soon a®~! = o(N). In other words, it is sufficient that
S is just larger tharN—! so that the contribution of the intervi, 1 — §] to the
integral in (L.8) be smaller that the main term, that we knowN§ 1 (k — 1)1 1.
This means that the main term arises from a comparatively small interval close to
a=0.

In the cas&k = 2 we push our analysis a step farther: in fact, it is possible to
prove (by induction plus some trigonometric identities) the formula

(sin(n(N +1)a) )2

snom) ) = 2 (N1 |ml)e(ma). (1.13)

Im<N-+1

Of course, the knowledge of this identity is at least as difficult as the knowledge of
the correct answer to the original problem. Indeed, a much more sensible approach
would be to prove 1.13 by means of this argument, rather than the other way
around. By (.8) we have

fa(n) = /01<sin(rt(N +1)a) >2e((N o) da

sin(to)

-3 (N+1—|m|)/le((N+m—n)0()d0(. (1.14)
Im|<N+1 0

By (1.9), the only non-vanishing integral occurs for=n— N, so thatrp(n) =
N+1—|n—N|=n+1. The point of this example is that one can usually find
information on the quantityz(n) by using transformations and suitable identities.
We develop the subject further in the next section.

2 Goldbach’s problem

After this fairly long introduction devoted to the mechanism of the circle method,
we now want to set it up in the case of the Goldbach’s problem. Henceforward,
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Figure 1: The graph of the functidiizo(a)|, showing that it has a fairly large
peak around integral values of and that otherwise it is comparatively small.

the variables, p1, p2, ..., always denote prime numbers. We are interested in
the number of representationsroés a sum of two prime numbers

r2(n)d=ef\{(p1, P2) € P x P: n=p1+ p2}|,

wherep; andp; are not necessarily distinct, but we consiger- p2 andpz + p1
as distinct representationspf # p,. For the time being, we do not assume that
nis an even integer. Goldbach’s conjecture, as stated in a 1742 letter to Euler, is
thatry(2n) > 1 foralln > 2.

For technical reasons that will be clarified later (essentially the same reason
why it is easier to work with the Chebyshévor { functions rather than tha
function) we prefer to consider a weighted version of the quantity, that is

Ro(n) = > logpzlogpe.
P1+p2=n

In other words, we count each representatiomnads p; + p2 with a weight
log p1logpy: this will make things easier, while still retaining the most impor-
tant feature, that igp(n) > 0 if and only if Rx(n) > 0. Therefore, the goal of the
proof of Goldbach’s conjecture in its original form, thratn) > O for large evem,
may be achieved by proving thBs(n) > 0 for large evem. Using the traditional
notation we set

S(a) = Su(a) &' 5 (logp)e(pa)  and 8(N;q,a) &' > logp
p< b= dq
p=amo
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Figure 2: The graph of the functid&o(a)| showing peaks close to the rational
valuesa =0, 3, 3, ; in a = %, 3 there are no peaks becaygd) = 0.
By the orthogonality relationl(9), for n < N we have

/Ols(a)Ze(_na) da = pléN p2%\Ilog p1log pz/ole((p1+ p2 —n)a) da = Ry(n).

(2.2)
Once again, this is the Fourier coefficient formula for the func8ncompare
(1.8). Since there are no singularities whatsoever on the circle of integration
(though, strictly speaking, the circle has now been replaced by the infértal
we may wonder what plays the role of the major arcs: the distribution of prime
numbers in arithmetic progressions enters the picture, and we recall a basic result
from analytic number theory.

Theorem 2.1 For any fixed A> 0, there exists a constant£C(A) > 0 such that
for N — +o0 and uniformly for all g< (logN)” and for all integers a such that
(a,g) = 1 we have
N
O(N;q,a) = — +E1(N;q,a),
(N:2) ®a) (N:2)

Ei(N;qg,a) = OA<N exp{—C(A)+/ IogN}).

Before working it out in general, we compu0), S(3), S(3), S(3), and
compare our result with the graph shown in Fig@rdt is quite straightforward
thatS(0) = O(N;1,1) ~ N by Theoren?.1; if we computeS(%) we see that

S(§) = 3 (logp)é™~log2— 3 logp~log2—B(N;2.1) ~ —N,
p

p<

where

p=1 mod 2
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since all primes > 3 are odd so that® = —1. A quite similar thing happens if
we computes(3):

S(3)=log3+ 3 (ogpl @™+ 3 (logp)e™”

p< p<
p=1 mod 3 p=2 mod 3

= log3+ &3 logp+ e*"/3 logp
p=1 mod 3 p=2 mod 3
— ”3Q(N; 3,1) +*™3p(N;3,2) +log 3

_ (eZin/3+e4in/3>g+ O(N exp{—C+/ IogN}> (2.2)
— _g + O(N exp{—C/ IogN}) ,

by Theoren2.1 We leave the computation 6}(}1) as an exercise to the reader:
the most important difference lies in the fact that the sum of roots of unity that
occurs in @.2) is replaced by +i = 0, so thatS(Z) = O(Nexp{—C+/TogN}).

More generally, we now computgat a rational numbea/q, for 1 <a<q
and(a,q) = 1:

a q q

(o) 72 3, towmebii g eth) 5 o

p=hmodq p=hmodq

q q
=Y e(h8)8(N;a,h) = 5 "e(h3)8(N;q,h) + O(logq), (2.3)

where the" means that we have attached the conditibyg) = 1 to the corre-
sponding sum. By Theorem.1 and @.3) we have

q

a N d * a * a .
*(8) a2 4003 <0 e+ ofosn
)

= WNjLO(NPexp{—C\/IogN}), (2.4)

wherep denotes the Kbius function. This formula suggests th&ta)| is fairly
large wherut is a rational numbea/q, and that the size d&(a/q)| decreases es-
sentially asy~1. SinceSis a continuous function, we may expect ttitbe large

in a neighbourhood o&/q, and we will exploit this fact to find an approximate
formula for Ry(n). We begin by extending the influence of the peak ragaras
much as possible: the simplest tool to use in this context is partial summation.
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Lemma 2.2 For any choice of A> O, there exists a positive constant-CC(A)
such that forl < a < gq< P:= (logN)A, with (a,q) = 1 and for|n| < PN~ we

have

a B @ _
S<a+n> Lo + BN (2.5)

E>(N;g,a,n) = OA<N exp{—C(A)/ IogN}).

This is Lemma 3.1 of Vaughan {]: the main ingredients for the proof are
Theorem?2.], partial summation, equatio.4) and Theorenf.1. In a sense, the
peak ofSata/q can be approximated fairly well by means of the peaK @it O,
after a suitable rescaling. Theorémd implies that the coefficient i§(a) is 1 on
average, as the coefficientT{a), which is a much easier function to study.

Forq < P, we denote byii(q,a) := [g = %, g + 5] the major arc pertaining
to the rational number with “small” denominatarq, and write

where

def def | P P
m= Mm(q, and m=|—,1+—|\IM,
qL%JPaL;J q [N N‘|\

where, once agairi,means that we attach the conditicmq) = 1. Thereforet
is the set of the major arcs, and Lemi& suggests that it is the set whe@
is fairly large. Its complement is the set of thaninor arcs We translated the
integration interval fron0, 1] to [P/N, 1+ P/N] in order to avoid two “half arcs”
at 0 and 1, but this is legitimate since all functions involved have period 1.

The proof of this Lemma shows clearly that the major arcs can not be too
numerous or too wide if we want to keep the resulting error term under control.
We will use this result to find a quantitative version of Goldbach’s conjecture, that
was first justified along these lines by Hardy & Littlewoad §].

Forn <N, from Equation 2.1) we deduce

/S(a nada—(/ +/m>8(a)2e—
-3 Bl oo st

_Ri)ﬁ( ) m(”)?

say. From now on we writer to indicate an expected asymptotic equality. For the
time being we neglect the contribution of the minor aRzgn) and all the error
terms that have arisen so far. By EquatiﬁtBI we have

P/N

Ep £ 1/P/N<p ye(=n(g+n))cn
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2

(P

We extend the integral to the whole intery@J 1] and recall the result from the
previous section:

d /
Z ‘/PN1wnfa—nmdn. (2.6)

P/N

1
/ T(n)%e(—nn)dn = Y 1l=n+l~n (2.7)
0 my-p=n

m>0,mp>0

Since(P/N)-N — o, we see thatl(.12) implies that the intervalP/N,1— P/N]
gives a contributioro(n). Therefore we expect that

ons MO Sy nay 5 H@2
quzpcp(q)za; e( nq)_nqucp(q)ch(n), (2.8)

wherecg is the Ramanujan sum defined in Theor&rh. The next step is to extend
the summation tg > 1, with the idea of using Theoref 2, since the summand
is a multiplicative function ofj by TheoremA.1: we skip the detailed proof that
the error term arising from this operation is of lower order of magnitutiaw,
by TheoremA.2, the right hand side of Equatio.8) becomes

zpcp e qzlw(qzc“
:nu (14 falp) + Fa(P?) +...) 2.9)

where the product is taken over all prime numbers &id) = p(q)2cq(n)/9(q)>.
Obviously fh(p*) = 0 fora > 2, and fora = 1 TheoremA.1 implies that
1 if p|n
fo(p) — HR2R(R/ () Jpog o TP
®(p) ®(p/(p,n)) ~-gz PN

If nis odd, the factor ¥ f,(2) vanishes, and Equatior2.9) predicts that we
should not expect any representatiomats a sum of two primes. In fact, ifis
odd thenRx(n) = 0 if n— 2 is not a prime number, arg(n) = 2log(n — 2) if
n—2is a prime number: the result i8.9) should be understood &s(n) = o(n).
Conversely, ifn is even we may transform Equatio?.9) by means of some easy

computation:
=0l (1571 [ (o)

1Actually, this is strictly true only on average owersee Vaughanl[], Chapter 3.
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p (P17 1
:an(p—l'p(p—Z))FI,:le_(p—l)z)
p>2

p—1
_ZConmp >
p>2

=n&(n), (2.10)

where Zy is the so-called twin-prime constant, a6dn) is thesingular series
defined by

Cof (1— 1 ) and n) %foc, 11 2= (2.11)
,!:lz (p—1)2 H

Equation 2.10 is the asymptotic formula foRx(n) found by Hardy & Little-
wood: of course, it would imply the truth of Goldbach’s conjecture, but it is much
stronger. In the next paragraph we explain why, in the current state of knowledge,
it is impossible to prove it. It is clear fron2(10 that the weighted number of
representations depends on the size and also on its prime factorization: itis a
nice exercise in sieve theory to see why it has to be so.

We conclude this section noticing that Equati@ril) implies that

I\.) ‘

Ro(n) < /01|S(a)|2da = EN(Iog p)? < B(N)logN ~ NlogN (2.12)

p<

by Theoren?.1, so that fom close toN the expected asymptotic formula.{0
does not differ too much from this upper bound.

3 Where are the difficulties?

For the sake of brevity, we only describe the two more important questions that
remain to be settled: the approximation of the Chebydhéunction, and the
contribution of the minor arcs.

3.1 Approximation of the Chebyshev theta function

The approximation 06 provided by the Prime Number Theorem for Arithmetic
Progressiong.1is quite weak for two main reasons: we remarked above that it is
only valid in a fairly restricted range of values fgrand this forces a rather small
choice ofP, the parameter that we use to define the major arcs.

The second reason is that is that the upper bound known today for the error
term is too large: in fact, it is conjectured that its true order of magnitude is much
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smaller. It is well known that the differen@N;qg,a) — N/@(q) depends essen-
tially on a sum whose summands have the siNfyd@(q)p), wherep denotes the
generic complex zero of suitable Dirichlefunctions. In the simplest case, when
g=a=1, the relation referred to can be written in the form

p
B(N) =N— > i O(N(IogN)er \/NlogN) (3.1)
T
peCs.t.¢(p)=0
p=PB+iy,
IVI<T

wherep = 3+ iy is the generic zero of the Riemann zeta function \@ith (0, 1),
andT < N. This relation is known as thexplicit formulg and it suggests that it
might be a good idea to replace the functioim) defined in (.10 with a different
approximation forS(§ +n), namely

KmE 3 (1= 5 o )em)

IVI<T

where the coefficient of(@n) is the derivative with respect td of the first two
terms in 8.1), evaluated an (since if f is regular, therpy f(n) ~ [ f(t)dt). This
approximation foiSis valid only in a neighbourhood of 0, but we can find similar
approximations valid on each major arc introducing the Dirichldtinctions.
Variants of this idea have been successfully used in several problems.

It is well known that the optimal distribution for prime numbers is achieved
if all real partg3 of all zerosp = 3+ iy of the { function withy ## 0 are equal to

% (Riemann Conjecture): in this cas{N) = N + O(Nl/z(logN)2>. Similarly,

if all zerosp + iy of all Dirichlet L functions with3 € (0,1) have real par%
(Generalized Riemann Conjecture), thendot x

: _ N 1/2 2
O(N;g.2) = L+ 0(N*2(logN)?). (3.2)
The exponent oN in the error term 0f3.2) is optimal, and it can not be replaced
by a smaller one. In particular, Goldbach’s Conjectdoes notfollow from the
Generalized Riemann Conjectui@?). We finally remark that the general case
g > 1 is harder than the case= 1: in fact in the present state of knowledge it is
not still possible to rule out the existence aal zerop € (0, 1) of some Dirichlet

L function, with3 very close to 1. This, essentially, is the reason why we had to
impose a rather severe limitation fqrin Theorem2.1 In fact, the contribution
from this zero would betNP/(@(q)B), that is, very close to the “main term”
N/@(q), and it might spoil the asymptotic formula f6¢N; g, a) for this particular
value ofg, with consequences on the asymptotic formulaRg(n).
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3.2 The contribution from minor arcs

The main problem concerning minor arcs is that it is not possible to give an in-
dividual estimate for their contribution: it is comparatively easy to provedhat
averageover the integers € [1,N] the minor arcs give a negligible contribution

to Rx(n), but it is not possible to prove the same thing for any simgldy the
Fourier coefficient formula, Bessel’s inequality and the Prime Number Theorem
2.1with g= 1 we have

EN‘/mS(O()Ze(—na)da‘zg/m|s(a)|4daSggﬂs(a)'z/()l's(a)lzda

n<

= O(N logN sup|S(O()|2).
aem
Equation R.4) suggests (and the following Lemma proves, albeit in a slightly
weaker form) that the supremum in the last formula should be rougfiy 2,
since ifa € m then it is “close” to a rational with denominatorP.

Lemma3.1 For1<a<qg<N,(aq)=1and|n| <q?we have
S(%1 + n) < (logN)*(Ng /2 4-N¥/5 - NY/2g1/2).
This is Theorem 3.1 of Vaughan9]. It implies that

;|Rm(n)|2: ;‘/mS(a)ze(—na)da‘Z:O(N3(IogN)9P‘1), (3.3)

since every point of0, 1] is within q—2 from a rationala/q (this is an elementary
result of Dirichlet), and on the minor args> P. Inits turn, Equation3.3) implies
that for the majority of values € [1,N] we have thatR, (n)| is of lower order of
magnitude than the contribution from the major arcs providedts).(

We remark that the measure of the minor arcs-sd(1), so that the major
arcs represent a tiny portion of the inter{@|1)].

4 Results for “almost all” even integers

The argument sketched in Secti@ris not strong enough to prove Goldbach’s
Conjecture, but it can still be used to prove some interesting, albeit weaker, re-
sults. In particular, we now prove that even integersuch thatRy(n) = 0 are
comparatively rare: more precisely, let us ggiN) := {n < N: nis even and
Ro(n) = 0}. We will prove that, giverB > 0, we have Z(N)| = Og(N(logN)~B).
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Theorem 4.1 Given B> 0 we have

ZJRZ(n) —n&(n) \2 <eN3(logN) 5.

n<

Sketch of the proof. Using the ideas inZ3 it is not too difficult to give a rigorous
proof of the fact that fon < N we have

R (n) = n&(n,P) + Oa(n(logn)P~ ) (4.1)

using Lemma2.2and Equationsl(.11), (2.6)—(2.7), where

def < H(Q)?
S(n,P)= qu (p(q)ch(n)' 4.2)

TheoremsA.2, A.1 and standard estimates concerning Eule@rfsinction, show
that

HZN\G(n, P) — &(n)|* < N(logN)2P~1. (4.3)
The elementary ine(;ualitht b+c|2 < 3(|al2+ b2 + [c[2) implies
n;JRz(n) —n&(n)* < n;JRm(n) —n&(n,P)|?
+ngN}n6(n, P) —nG(n){2+n%|Rm(n)|2

< N3(logN)2=2A - N3(logN)?~A 4+ N3(logN)® 4
< N3(logN)®A

by (3.3), (4.1)—(4.3). Theoremd.1follows choosingA > B+ 9. O
Finally, let Z/(N) := {n € [3N,N]: n is even andR,(n) = 0} = £(N)N
[3N,N]. Equation 2.11) implies that&(n) > 2Co whenn is even, so that

ZJRZ(n)—nG(n)\Zz Y (2G> Y [2Gon?
n< n<N,2|n N/2<n<N,2/n
Rz2(n)=0 R>(n)=0

> S NN,

and|Z'(N)| = Og(N(logN)~B) for anyB > 0. The result for£(N) follows by
decomposing the intervél, N] into O(logN) intervals of type[%M, M].
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5 Vinogradov’s three-prime theorem

The circle method can be successfully applied to many different problems: for
example, using a notation consistent with the one above, we have

1
Re(n) & > logpilogpzlogps = /O S(a)%e(—na) da

P1+p2+p3=n

if n<N. An argument similar to the one in the previous sections show$gtaj
is well approximated by the contribution of the major arcs alone, and this yields

1
Ro(n) = 52@3(n) + Oa((logn) ). (5.1)
for any positiveA. Here

s = (14 (g ) [0 (o)

Having three summands in place of two changes radically the nature of the prob-
lem: we are content to remark that in this case an individual upper bound for the
contribution of the minor arcs is indeed possible. In fact, Len3xamplies, for

n < N andq > P, that

‘/ S(O()3e(—n0()d0(‘ < sup|8(0()|/0118(0()|2da = O(nz(logn)“P‘l/z). (5.2)

Finally, we conclude noticing that a very simple computation shows that the
twin-prime problem is naturally linked to Goldbach’s conjecture: in fact, we have

1
Bu( ™’ 5 logpilogpz = | [S(a)[e(na)da,
p2<N 0
P2—p1=n

as a short computation shows. This means that the two problems are strictly re-
lated and are of the same degree of difficulty.

A Some useful results

Theorem A.1 (Ramanujan) The Ramanujan suny(@) defined below is a mul-
tiplicative function of g, and

de d. /hn q ®(Q)
(5 o) = ((q, >)<p<q/<q,n>>'

h=1
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Theorem A.2 (Euler Product) Let f be a multiplicative function such that the
seriesy ,~1 f(n) is absolutely convergent. Then the following identity holds

S ) =](1+ P+ () +F(p%)+),

n>1 p

where the product is taken over all prime numbers and is absolutely convergent.

B Recommended reading

The standard reference for the circle method is Vaughan’s monogiaphsee

in particular Chapter 1. See also Hardy} Chapter 8 (in particular 888.1-8.7),
James [ 7] 85, and Ellison {] for the history of Waring’s problem. The genesis
of the idea of studying the behaviour of the generating function in the neighbour-
hood of many singularities is clearly explained in Hardy & Ramanujaij (in
particular 881.2-1.5) and in Hardy][Chapter 8 (in particular 888.6-8.7). For
Waring’s problem see Hardy & Wrightl.[[] Chapters 20-21 for an introduction,
and Vaughan19] for a detailed study. For the relationship between Laurent series
and Fourier series see Titchmarsk][813.12. See also the survey by Kumchev
& Tolev [14].

SetE(N) :={2n < N: ra(2n) = 0}. The complete detailed proof that for any
A > 0 we have|E(N)| = Oa(N(logN)™) is in §3.2 of Vaughan[9. Mont-
gomery & Vaughan 6] proved the stronger result thgk(N)| < N1~ for some
0> 0. A discussion of many problems related to variants of the Goldbach Conjec-
ture can be found in Languascd], while Zaccagnini £0] deals with “mixed”
problems with primes and powers. A heuristic argument in favour of the twin-
prime conjecture can be found in Hardy & Wrightl], 822.20. See the intro-
duction of Halberstam & Richert] for the general setting of the Schinzel &
Sierpiski’s conjectures and the notes for a quantitative version of the same con-
jectures due to Bateman & Horn. An upper boundrfgn) of the correct order of
magnitude is contained in Theorem 3.11. See Zaccagnihifgr an elementary
heuristic argument (based on a variant of Eratosthenes’ sieve) in support of the
asymptotic formulaZ.10: in particular see Equations (6), (8) and (10), and the
“Coda.” Other strategies for the proof of Goldbach’s Conjecture are discussed in
Ribenboim [L7] 84.VI. See also Guy] 8C.1 for further references.

For Equations3.2) and (3.3) see Davenport] Chapter 20 and Chapter 25
respectively. Chen proved that every large even integer can be written as a sum of
a prime and of an integer with at most 2 prime factors: see Halberstam & Richert
[6] Chapter 10, or Bombieril]] 89 for a comparatively simple proof with 4 in
place of 2.
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Equation 6.2) is in Davenport?] Chapter 26. The Ternary Goldbach Problem
is discussed ind] Chapter 26 or 19 83.1. Deshouillers, Effinger, te Riele &
Zinoviev [3] proved that if the Generalized Riemann Conjecture is true éveny
odd integen > 7 is a sum of three primes. Theorél is Theorem 272 of Hardy
& Wright [ 11]. For useful results on the distribution of primes or the properties of
the Riemann zeta function, seg Chapters 7-18, or I¢i[12] Chapters 11-12.
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