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ABSTRACT 

High intraocular pressure (IOP) is one of the high-risk pathogenic factors of glaucoma. 

Existing methods of IOP measurement are based on the direct interaction with the cornea. 

Commercial ophthalmic tonometers based on snapshot measurements are expensive, bucky, 

and their operation requires trained personnel; theranostic contact-lenses are easy to operate, 

but they may block vision and cause infection. Here, we report a sensory system for IOP 

assessment that uses a soft indentor with two asymmetrically deployed iontronic flexible 

pressure sensors to interact with the eyelid-eyeball in an eye-closed status. Inspired by human 

fingertip assessment of softness, the sensory system extracts displacement-pressure 

information for soft evaluation, achieving high accuracy IOP monitoring (>96%). We further 

design and custom- make a portable and wearable ophthalmic tonometer based on the sensory 

system and demonstrate its high efficacy in IOP screening. This sensory system paves a way 

towards cost- effective, robust, and reliable IOP monitoring. 

Key words: intraocular pressure, tonometer, deep learning, softness, iontronic sensor 

INTRODUCTION 

High intraocular pressure (IOP) has been found to be associated with the abnormal 

circulation of aqueous humor of the monitoring of IOP has been an effective strategy to 

prevent eye-related diseases, including the acute angle-closure glaucoma[1], the second 

leading cause of irreversible loss of vision worldwide[2]. Currently, reducing IOP, the only 

known quantifiable hazard factor, is an effective method to prevent optic nerve damage and 

vision loss[3, 4]. Therefore, daily and point-of-care monitoring of IOP is crucial to the eye 

health,, especially for glaucoma screening in high-risk groups[5]. 
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The evaluation of IOP first originated from palpation to feel the hardness of the eyeball, 

credited to William Mackenzie[6] who discovered eyeball hardness as a feature of glaucoma 

in 1830. Considering the subjectiveness of palpation, objective approaches for 

snapshot-based IOP detection have been explored nowadays, among which the gold-standard 

medical measurement in hospital is based on the Goldmann applanation tonometry that uses 

an indenter to direct interact with the cornea[7]. Despite the high accuracy, this technique is 

unavailable for daily use because of its reliance on a benchtop bulky device as well as 

professional clinicians[8]. In contrast to in-office assessments, portable home tonometers that 

provide convenient IOP monitoring are becoming popular. However, these devices often 

suffer from large errors (>5 mmHg) and discomfort since they still utilizes an indentor to 

direct contact with the cornea[9]. Wearable soft contact lenses are another alternative that 

enables wireless and real-time monitoring of IOP with miniatured integrations[10-13]. The 

lenses, however, may partly hinder vision, and like other direct cornea-interaction techniques, 

can introduce a risk of infection or abrasion to the corneas, not even mentioning that the 

complexity and dedicated sensing and electronic modules for untethered read out and that a 

significant population cannot wear contact lenses.[10, 11]   

Here, we develop a palpation-type sensory system, which uses two asymmetrically 

deployed iontronic flexible pressure sensors with a high sensitivity of 736.1 kPa–1 integrated 

into a soft hemispheric indentor to interact with the eyelid of a closed eye for real-time and 

high-accuracy IOP evaluation. Inspired by softness assessment with a human fingertip, this 

sensory system detects the softness (in this work we use the term softness because the system 

can discriminate easily deformable materials only) of eyeball by extracting force and 
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displacement information measured by the two sensors during the interaction between the 

soft indentor and the eyelid. The high-performance sensors enable a quick and easy capture 

of the feature information to construct a machine-learning model for softness evaluation. This 

system is operated without any damage or contamination to the cornea, while the testing 

accuracy and testing consistency are far higher than that of commercial tonometers, and it 

shows high robustness and efficiency under different temperatures, humidities, and loading 

conditions. A custom-made, portable, wearable ophthalmic tonometer based on the sensory 

system has been further developed and has exhibited high efficacy in IOP monitoring and 

screening.  

 

RESULTS AND DISCUSSION  

Design and working principle of the tonometer 

Our sensory system for softness test is inspired by the human sensory system, which often 

feels softness by touching an object with a fingertip. The nerves and the brain are also 

involved in signal transmission and information process, respectively. Mechanoreceptors of a 

human fingertip are distributed on a curved surface. The feeling of softness often involves a 

group of mechanosensors that “detect” both pressure and displacement upon pressing. The 

central part of the touch often has a higher pressure than the marginal part. A relatively 

homogeneous distribution of pressure in addition to a large displacement give a feel of high 

softness of the object, while a larger central-to-marginal pressure difference and a smaller 

displacement give a feel of “hard” (Fig. 1a). 

Here, we design a finger-like indentor for softness sensing. Unlike general approaches 
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that pay much effort to detect numerous physical parameters while the detecting range is 

often limited (Fig. S1 and Note S1), in the indentor, we use two sensors with asymmetric 

deployment—one (termed sensor #1) placed on the pole of an elastomeric hemisphere, and 

the other (sensor #2) placed at an angle of 25° to the principal axis (Fig. 1b), to detect the 

contact pressures and deflection from the center. Only two sensors are needed to collect the 

pressure information for softness sensing because of the symmetry of the hemisphere and the 

uniformity of the contact. The detailed fabrication of the sensors is described in Fig. S2. 

When the indentor is pressed against and makes contact with a soft object, featured sensing 

information—contact force as a function of displacement can be captured (Fig. 1c and Fig. 

S3), while the two sensors show pressure to displacement response. This system can 

recognize softness based on a pressure-displacement coupled algorithm (Fig. 1d). We further 

design a wearable IOP tonometer based on the sensory system, for which the signal is 

transmitted to a cellphone and the result of IOP evaluation is reported in an app (Fig. 1e).  

 

Properties of the pressure sensor 

The sensor consists of an ionic active layer (poly(vinylidene fluoride-co-hexafluoropropylene) 

(PVDF-HFP)-1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide 

([EMIM][TFSI])) (Fig. S4) sandwiched in between a plat polyethylene terephthalate 

(PET)-gold (Au) electrode and a microstructured PI (polyimide)-Au electrode (Fig. 2a), 

governed by the iontronic sensing mechanism[14]. The PI membrane has a microstructure 

(called graded intrafillable architecture[15]) (Fig. S5) that leads to both high sensitivity 

(736.1 kPa–1
 in 0~60 kPa, and 310.1 kPa–1 in 60~300 kPa, Fig. 2b) and a rapid 
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response-relaxation speed (response time: 5.4 ms, recovery time: 6.4 ms, Fig. S6). Our 

iontronic sensor exhibits a high sensitivity and a wide working range, such high sensing 

properties are crucial to the performance of the sensory system. 

 When the hemisphere makes contact with a target object at a given displacement, each 

sensor records a pressure that is dependent on the softness of the object. For example, the 

signal of touching a piece of hard steel (Young’s modulus E ~200 GPa) varies substantially 

from that of touching soft flannel (E <1 kPa) in terms of the shape of the signal and the 

pressure-difference between the two sensors (Fig. 2c). Furthermore, the contact force 

increases with displacement when the indentor presses on soft materials with different Shore 

hardness values of 30, 40, 48, 62, 72, 80, and 87 HA (Fig. 2d and Fig. S7). We further record 

the capacitance-displacement curves of the two sensors. Such data provide rich information 

to distinguish objects with different Shore softness values for us to further establish an 

efficient deep learning model (Fig. 2e, f). In addition, the iontronic pressure sensors were 

verified to have high working stability, either in cyclic loading-unloading with a fixed peak 

pressure (Over 5000 cycles, Fig. S8), or with each cycle a set of different displacements (Fig. 

2g, h). The high stability might be derived from the high compression endurance of the 

PDMS hemisphere (Fig. S9) that guarantees the data reliability. 

Deep learning enabled softness classification 

We construct a neural network based on deep learning for softness classification. It has been 

verified that high-quality small data in combination with effective algorithms can serve as a 

powerful tool to construct a high-performance deep learning system[16]. A one-dimensional 

convolution neural network (1DCNN) with multiple channels was selected to construct a 
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deep learning model by extracting and enlarging the features of the datasets (Fig. 3a), updated 

through backpropagation until the training loss is minimized (Fig. S10). Note that 1DCNN is 

commonly used in the field of intelligent sensing and has proven to be effective to derive 

features from time-series data[17-21]. Detailed parameters used for this network are given in 

Table S1. The feature datasets are collected using the hemispheric indentor to press seven 

samples with different Shore hardness values (30, 40, 48, 62, 72, 80, and 87 HA) at five 

characteristic displacements (0.2, 0.4, 0.6, 0.8, and 1.0 mm). This method is defined as 

“multi-segment displacement control”, for which characteristic datasets are collected at 

stepwise displacements. For each sample, one hundred sets of data were collected with each 

set containing 10 characteristic peaks from the two sensors (five for each sensor). The peaks 

were extracted from time series, resampled and converted into 10 separate channels. 

Consequently, within one single data sample, data points that correspond to the contact 

approximately align across channels. There are a total of 700 sets of data, containing 7000 

characteristic peaks (one peak per channel). Sixty percent of the data is used for training, 20% 

for validation, and 20% for testing. 

The softness of the objects can be well evaluated using the featured datasets under a 

multi-segment displacement control (Fig. 3b). T-distributed stochastic neighbor embedding 

(t-SNE) was utilized to visualize the data. The t-SNE method can reduce the dimensionality 

of extracted features and display the results in a 2D space, as shown in Fig. 3c. It shows that 

the normalized data of multi-segment displacement control from different samples can be 

well distinguished (Fig. S11a and Note S2). Therefore, sample points of the same object are 

clustered closely together, indicating that the hemispheric indentor is capable of accurately 
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sensing the softness of objects through displacement control. Such small but high-quality 

datasets contribute to the high training efficiency of the model—a validation accuracy of 99.3% 

is achieved within only 18 epochs (Fig. 3d, e). The Validation accuracy and the training 

accuracy are similar, which means that the training model is adaptive to unknown data. 

Therefore, our model has a high generalization ability.  

The results of force-control mode (using a single parameter of force) reported in 

literature were compared with that of our multi-segment displacement control[22, 23]. With 

the absence of displacement parameters, data points are poorly clustered (Fig. 3f) because all 

the samples with different hardness values give similar outputs (Fig. S11b, c) and 

undistinguishably normalized data (Fig. S11d). Without displacement control, the validation 

accuracy is much lower than the training accuracy (Fig. 3g), indicating low generalization 

ability. As a result, a much lower testing accuracy (78.6%, Fig. 3h) is achieved. We thus 

conclude that the introduction of displacement information substantially increases the 

classification accuracy.  

Note that the two-sensor deployment and the multi-segment displacement strategy both 

help achieve a high accuracy in evaluating softness. The classification accuracy drops to 95.7% 

when using only sensor #1, and to 92.9% when using only sensor #2 (Fig. S12a, b). Likewise, 

the number of displacements used in the indentor-sample interaction also affects the accuracy: 

the model gives a 97.1% accuracy for the case of 4 displacements, and further decreases to 

96.4% when only a single displacement is used (Fig. S12c, d). 

Our sensory system, which consists of the indentor (with both force and displacement 

control), data collection, and the deep learning model, can be used for high-accuracy 
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recognition of soft objects. We select 20 objects from soft elastomers in laboratories to 

leathers, foods, foams, and to many other commonly seen objects for our test (Fig. S13a, b). 

The training of the model is completed in only ~12 epochs (Fig. S14a), and the clustering of 

t-SNE data points shows well-defined borders that are separated from each other (Fig. S14b). 

Accordingly, the classification accuracy reaches 99.25% (Fig. S14c). Such a model trained in 

only a few epochs while exhibiting a high recognition accuracy signifies a low computational 

cost as well as a high working efficiency, which is one to two orders of magnitude higher 

than that in previously reported sensory systems based on deep learning[17-21, 24-27] (Fig. 

S15 and Table S2).  

The high performance of the sensory system is contingent upon several factors: highly 

sensitive sensors that provide precise data, specially designed data acquisition method that 

yields multi-feature data, and elaborately designed deep learning model. While sensory 

systems based on flexible sensors and machine learning have already been reported[28, 29], 

existing work often uses sensors to measure simple contact force (or pressure)[24, 30], for 

which the data often fail to reflect the spatial characteristics of the object (caused by 

deformation), leading to a suboptimal training efficiency.  

 

Reliability and robustness of the sensory system  

Our sensory system exhibits high robustness under complex working conditions, including 

varied humidities, temperatures, and loading speeds of the indentor (Fig. 4a). The indentor is 

first placed in a confined space for which the working humidity can be tuned. We show that 

there is no substantial change in the shape and magnitude of the signal for both sensors at 
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relative humidity (RH) values of 52%, 67% and 89% RH (Fig. S16a-c). Correspondingly, the 

t-SNE data points remain well clustered and distinguishable (Fig. S16d), and the model gives 

a classification accuracy of at least 98.6% under different humidity conditions (Fig. 4b and 

Fig. S17a-c), and 98.6% under random humidity (Fig. S17d). The humidity-insensitive 

behavior stems from the hydrophobic nature of the ionic material used in this work (Fig. 

S18). 

The classification accuracy is also insensitive to the loading rate of the indentor. The 

amplitude of the signal does not change with the loading rate, when the rate changes 

randomly in the range from 2.5 to 20 mm min–1 to interact with a sample of 30 HA and at a 

displacement of 1 mm (Fig. S19a-c). Because of the high-quality data sets collected in a 

displacement-control manner (Fig. S19d), an equally high classification accuracy of higher 

than 99% (Fig. 4c and Fig. S20a-d) is maintained. The result is related to the high 

response-relaxation speed of the sensors. 

Although both sensing properties of the sensor and the softness of materials may change 

with temperature, the sensory system remains effective in the identification of objects as 

temperature changes from room temperature to 60 °C. Iontronic sensors often exhibit higher 

signal amplitude at higher temperatures (Fig. S21a) because of the increasing ion 

mobility[31], and this change can compensate for the change in signal in a 

temperature-changing process. For example, the signal corresponding to the sample of 30 HA 

at 60 °C is similar to that of the sample of 40 HA at 40 °C (Fig. S21b). The experimental 

results indicate that changes in temperature do not affect the ratio between the peak values 

measured at different displacements (Fig. S21c). The multi-segment displacement design 
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ensures that the deep learning model not only considers the absolute values of each peak, but 

also the relationship between the peaks. Since one peak is converted to one channel, the 

design enables cross-calibration between channels. We thus trained a neural network based on 

the mixed data collected under varying temperatures (30, 40, and 50 °C). The t-SNE plot 

reveals well-clustered data points (Fig. S21d), and the model classification accuracy is higher 

than 98% under different temperatures (Fig. 4d and Fig. S22a-d). We repeated the training 

process by using fewer displacements to further investigate the effect of the cross-validation, 

and the results show that the classification accuracy decreases with the decreasing number of 

displacements (Fig. 4e), verifying the necessity of temperature calibration through 

multi-segment displacement control. 

 

Portable IOP tonometer  

We have designed and custom-made a portable and wearable IOP tonometer (Fig. 5a, b) 

based on our sensory system. The tonometer has binocular indentors with displacement 

controllers (Fig. S23a, b) that are integrated into a 3D-printed headset shell, and two 

adjustment screws that help align with the eyeballs (Fig. 5c). Our portable tonometer costs 

only about 200 USD, which is more cost-effective compared with that of commercial 

portable tonometers (e.g., ICARE IC-100, which costs about 2000 USD). We have also 

designed a program to control the tonometer (Fig. S24). The signals are collected and 

processed using a circuit board, of which the details can be seen in Methods. Data are used to 

train a deep learning model serving as an “AI brain”. In real-time testing, data are sent to the 

“AI brain” to make classification and results are returned to the user via a mobile app (Fig. 

D
ow

nloaded from
 https://academ

ic.oup.com
/nsr/advance-article/doi/10.1093/nsr/nw

ae050/7602401 by N
ational Science & Technology Library user on 22 February 2024



O
R
IG

IN
A

L
 U

N
E
D

IT
E
D

 M
A

N
U

S
C

R
IP

T

S25). In the tonometer, each indentor uses two sensors for pressure detection at three 

displacements of 1, 2, and 3 mm, using a micro linear meter that has a displacement accuracy 

of 0.2 mm.  

Our sensory system can detect the softness of a material even if it is covered by another 

thin layer of a softer material—which is similar to the case that an eyeball is cover by an 

eyelid, allowing our system to conduct palpation on closed eyes for IOP monitoring (Fig. 5d). 

We used a layer of Ecoflex 00-30 (Young’s modulus: ~60 kPa) as the top soft layer that 

analogues an eyelid and placed the soft layer on samples of different hardness values. Here, 

we use a stable and softer elastomer (Young’s modulus: 70 kPa, Fig. S26a-b) for the 

hemispheric indentor to protect the eyeballs (Young’s modulus: >70 kPa)[32, 33] and also to 

reduce the discomfort to the users. The sensing components exhibit an effective modulus of 

340 kPa, and the sensor can survive at a radius of curvature down to 1.1 mm (Fig. S27a-b). 

The magnitude of force is within 0.6 N (30 kPa) during the IOP testing, and the force that 

causes eye pain is about 1 N[34]. Our IOP tonometer will not injure the human eyes. Our 

experiment shows that the signal magnitude decreases slightly with increasing thickness of 

the artificial eyelid at a small displacement, and this phenomenon becomes negligible as the 

displacement increases because the deformation is determined by the harder materials (Fig. 

S28a, b). The final classification accuracies under different thicknesses of the artificial eyelid 

maintain larger than 97% (Fig. 5e and Fig. S29a-d). Similar results were obtained when the 

modulus of the artificial eyelid changes (Fig. S30a-b, Fig. S31a-d). The result indicates that 

the existence of eyelids will not have a substantial impact on the assessment of softness under 

large indenting displacements. In addition, our simulation shows that the indentor can also 
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collect characteristic signals of curved objects to meet the needs of data acquisition on 

eyeballs (Fig. S32). 

Users have their eyes closed during measurement, and get rapid feedback with the IOP 

assessment displayed in a mobile app (Fig. 5f, Fig. S33 and movie S1-3). There are three 

possible results for the assessment: normal (corresponding to 10~18.5 mmHg), above normal 

(18.5~21 mmHg), and high pressure (>21 mmHg). Three hundred datasets of 50 eyeballs 

(from 8 females and 17 males, with ages ranging from 20 to 60, Table S3) were used in the 

deep learning model for IOP assessment. The tested IOP values were in the range of 10 to 29 

mmHg. Because there is often a low proportion of people suffering from high IOP, the 

presence of the minority classes (“above normal” and “high”) in the datasets can significantly 

affect the performance of the deep learning model, resulting in data imbalance. The entire 

datasets were split into training (70%), validation (15%), and test sets (15%) while retaining 

the original data distribution. An oversampling algorithm, synthetic minority oversampling 

technique (SMOTE), was applied to restore the balance of the training set. SMOTE creates 

synthetic minority class samples by interpolating new samples between existing ones in a 

feature space[35]. This algorithm balances the training set and prevents the deep learning 

model from being biased towards the majority class (normal IOP). Detailed parameters used 

for this model are shown in Table S4.  

The kappa coefficient is a statistical measure used to quantify inter-rater reliability or 

agreement in classification tasks. By accounting for the likelihood of random agreement and 

penalizing biases towards large categories, it is particularly useful in contexts where 

imbalances may exist within the dataset (Note S3)[36]. A value of kappa coefficient close to 1 
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is indicative of high agreement. In our case, the determined kappa coefficient is 0.92 (Fig. 5g), 

which not only signifies that our model is highly reliable but also coincides with the model’s 

impressive overall accuracy of 96.7%. 

We have further verified the practicability and reliability of our portable tonometer in 

random tests and repeated experiments. Ten subjects were randomly selected for the 

validation of our system. Measured using a jet measurement-based commercial tonometer 

(Non-Contact Tonometer NCT-200), six out of the ten subjects fall in the normal region, 

while two subjects are in the “above average” region, and the rest two in the high IOP region. 

The IOP results assessed using our tonometer match well with that measured using the 

Non-Contact Tonometer NCT-200 (Fig. S34a, b). A volunteer subject was selected to verify 

the repeatability and accuracy of our portable IOP tonometer. The IOP values of the left and 

right eyes are determined to be 17 and 18 mmHg, respectively, using the NCT-200 tonometer 

in hospital (Fig. 5h). The values indicates both eyes are in a normal condition. We then used 

our tonometer to measure each eye for ten times, and the results given are all normal, 

exhibiting a consistency of 100% compared with the results of the NCT-200 tonometer. 

Further, we used a widely used commercial portable IOP tonometer based on rebound 

measurement (ICare IC100) to detect the IOP values, while this facility gives significantly 

dispersed results with high standard deviations of 2.15 and 3.07 for the left and right eyes 

(inset in Fig. 5h and Fig. S35), and corresponding accuracies are 10% and 40% (Fig. 5i), 

respectively. The results indicate that our portable IOP tonometer exhibits far higher 

repeatability and consistency compared with commercial wearable devices. 
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CONCLUSION 

In this work, we demonstrate a palpation-type sensory system, which is inspired by the 

palpation of fingers, for IOP assessment based on asymmetric, two-point 

displacement-pressure control and deep learning. Our simple yet effective design can extract 

both displacement and pressure information, allowing for the capture of subtle change in 

softness of materials. A small datasets solution was used to deal with the softness 

classification problem in complicated conditions (with varied temperature, humidity, 

displacement, or an additional soft layer), and it shows high accuracy and high efficiency 

(over 99% accuracy within only 18 epochs) due to the capability of the system to capture rich 

feature information. Our study shows that improving the characteristic quality of sensing 

signals is a desired way to enhance the training efficiency and classification accuracy instead 

of making a bigger and more complex machine learning model. Benchmarking our 

custom-made wearable tonometer, the results show high efficacy, reliability, and repeatability, 

compared with existing commercial wearable devices.   

 

MATERIALS AND METHODS 

Detailed materials and methods are available in the Supplementary data. 

 

SUPPLEMENTARY DATA 

Supplementary data are available at NSR online. 
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Figure 1. Design and principle of the portable IOP tonometer. (a) Mechanism for the feel of 

softness by a human fingertip. (b) Structure of the indentor. Two sensors are integrated on the 

sphere surface. (c) Muti-segment displacement control of the indentor. (d) Deep learning 

enabled intelligent sensing system. (e) Schematic of the portable IOP tonometer. 
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Figure 2. Sensing properties of the sensors. (a) Schematics showing the cross section of the 

iontronic sensor and its working principle. (b) Response of the sensing unit to pressure in the 

range of 0 ~ 300 kPa. (c) Distinct capacitive signals of the two sensors when touching steel 

(modulus: ~200 GPa) and velvet (modulus: <1 kPa) at a same displacement of ~ 0.1 mm. (d) 

Contact force as a function of displacements (at 0.2, 0.4, 0.6, 0.8, and 1.0 mm) by touching 

seven materials with different Shore hardness values. (e, f) Capacitance as a function of 

displacement for sensor #1 and #2 by touching the seven different samples. (g, h) Signals of 

the two sensors when they are in contact with a piece of block (87 HA) in a multi-segment 

displacement mode over 100 cycles. 
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Figure 3. Construction, accuracy, and efficiency of the deep learning model for the sensory 

system. (a) Structure of a one-dimensional convolution neural network model used in this 

work. (b) A single dataset of the softness sensor touching objects with different softness 

values. Comparison of the distinguishability, efficiency, and accuracy of deep learning 

models using (c-e) displacement-pressure model and (f-h) only force-controlled model. 

Panels (c) and (f) show one-dimensional points after dimensionality reduction through t-SNE. 

Panels (d) and (g) show the accuracy of training and validation with different numbers of 

epochs, and panels (e) and (h) show confusion matrix of softness recognition. 
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Figure 4. Reliability and robustness of the sensory system. (a) The sensory system for 

softness evaluation and its application under complex working conditions. Classification 

accuracy of the sensory system under different humidity conditions (b) loading speeds (c) and 

temperatures (d). (e) Effect of the number of displacements used on accuracy. 
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Figure 5. Structure of the portable tonometer and its application in IOP assessment. (a) 

Schematic diagram of the IOP assessment using our portable tonometer. (b) Photo of the 

portable IOP tonometer. (c) Components of the portable IOP tonometer. (d) Schematic of IOP 

evaluation by touching an eyelid using the indentor and a soft bilayer is used to simulate the 

eyelid. (e) Accuracy of softness classification when using an artificial eyelid of different 

thicknesses of 0.5, 1.0, and 1.5 mm. The case of no artificial eyelid is also involved. (f) An 

example showing the measured signals from the two sensors of an indentor and the final 

assessment using our system. (g) Deep learning results of IOP assessment. (h) Results of the 

jet measurement-based IOP tonometer (Non-Contact Tonometer NCT-200) from a subject. (i) 

Comparison of results between our portable IOP tonometer and portable IOP tonometer 

(ICare IC100). 
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