副教授(研究员) 化学系
陶丽芝,南方科技大学化学系副教授、博士生导师、课题组长。2011年于清华大学化学系获硕士学位 (导师:徐柏庆教授),研究方向为固体酸碱多相催化化学。之后前往美国加州大学戴维斯分校 (University of California, Davis) 全球著名电子顺磁共振光谱 (Electron Paramagnetic Resonance, EPR) 实验室攻读博士学位 (导师:R. David Britt 教授; William H. Casey 教授) ,研究方向为运用电子顺磁共振光谱研究多铜氧化酶催化反应的分子机制。2016年获得博士学位后留校从事博士后研究工作,将研究拓展至多种纷繁复杂的化学以及生物体系当中;运用电子顺磁共振光谱EPR对这些体系中的关键顺磁物种进行三维结构鉴定和解析,获得了原子、分子层面上反应机理及构效关系的认识和理解。迄今为止,在领域内顶级国际学术刊物 (J. Am. Chem. Soc., Nature Chem., Nature Rev. Chem.等) 发表论文40余篇。2021年入选海外高层次人才计划青年项目,2022年7月加入南方科技大学化学系。
个人简介
研究领域
先进电子顺磁共振光谱Advanced Electron Paramagnetic Resonance, EPR;物理生物无机化学;金属蛋白酶反应机理; 金属有机、表面多相催化化学反应分子机制
学术成果 查看更多
[40] Y. Zhang#, L. Tao# (co-first author), T. Woods, R. D. Britt and T. B. Rauchfuss, “Organometallic Fe2(μ-SH)2(CO)4(CN)2 cluster allows the biosynthesis of the [FeFe]-hydrogenase with only the HydF maturase”, J. Am. Chem. Soc., 2022, 144, 1534-1538.
[39] J. B. Patteson, A. T. Putz, L. Tao, W. C. Simke, L. H. Bryant, R. D. Britt, B. Li, “Biosynthesis of fluopsin C, a copper-containing antibiotic from Pseudomonas aeruginosa”, Science, 2021, 374, 1005-1009.
[38] R. D. Britt, L. Tao, G. Rao, N. Chen and L.-P. Wang, “Proposed mechanism for the biosynthesis of the [FeFe]-hydrogenase H-cluster: central roles for the radical SAM enzymes HydG and HydE”, ACS Bio. Med. Chem. Au, 2021, 2, 11-21.
[37] A. R. Balo, A. Caruso, L. Tao, D. J. Tantillo, M. R. Seyedsayamdost and R. D. Britt, “Trapping a cross-linked lysine–tryptophan radical in the catalytic cycle of the radical SAM enzyme SuiB”, Proc. Natl. Acad. Sci. U.S.A., 2021, 118, e2101571118.
[36] R. Rohac, L. Martin, Liang Liu, D. Basu, L. Tao, R. D. Britt, T. B. Rauchfuss and Y. Nicolet, “Crystal structure of the [FeFe]-hydrogenase maturase HydE bound to complex-B”, J. Am. Chem. Soc., 2021, 143, 8499-8508.
[35] R. D. Britt*, G. Rao* and L. Tao*, “Bioassembly of complex iron–sulfur enzymes: hydrogenases and nitrogenases”, Nat. Rev. Chem., 2020, 4, 542-549.
[34] L. Tao, S. A. Pattenaude, S. Joshi, T. P. Begley, T. B. Rauchfuss and R. D. Britt, “Radical SAM enzyme HydE generates adenosylated Fe(I) intermediates en route to the [FeFe]-hydrogenase catalytic H-cluster”, J. Am. Chem. Soc., 2020, 142, 10841-10848.
[33] G. Rao, L. Tao and R. D. Britt, “Serine is the molecular source of the NH (CH2)2 bridgehead moiety of the in vitro assembled [FeFe] hydrogenase H-cluster”, Chem. Sci., 2020, 11, 1241-1247.
[32] W. Zhu, L. M. Walker, L. Tao, R. D. Britt, J. P. Klinman et al., “Structural properties and catalytic implications of the SPASM domain iron–sulfur clusters in Methylorubrum extorquens PqqE”, J. Am. Chem. Soc., 2020, 142, 12620-12634.
[31] F. Li, A. Thevenon, A. R.-Hernández, …, L. Tao, … R. D. Britt, D. Sinton, T. Agapie, J. C. Peters, E. H. Sargent, et al., “Molecular tuning of CO2-to-ethylene conversion”, Nature, 2020, 577, 509-513.
[30] R. D. Britt, G. Rao and L. Tao, “Biosynthesis of the catalytic H-cluster of [FeFe] Hydrogenase: the roles of the Fe-S maturase proteins HydE, HydF, and HydG”, Chem. Sci., 2020, 11, 10313-10323.
[29] K. M. Schilling, L. Tao, R. D. Britt, G. L. Millhauser, et al., “Both N-terminal and C-terminal histidine residues of the prion protein are essential for copper coordination and neuroprotective self-regulation”, J. Mol. Biol., 2020, 432, 4408-4425.
[28] M. J. Stevenson, S. E. Janisse, L. Tao, R. D. Britt, M. C. Heffern, et al., “Elucidation of a copper binding site in proinsulin C-peptide and its implications for metal-modulated activity”, Inorg. Chem., 2020, 59, 9339-9349.
[27] L. Tao, T. Y. Lai, P. P. Power and R. D. Britt, “Germanium hydride radical trapped during the photolysis/thermolysis of diarylgermylene”, Inorg. Chem., 2019, 58, 15034-15038.
[26] L. Tao, W. Zhu, J. P. Klinman and R. D. Britt, “Electron paramagnetic resonance spectroscopic identification of the Fe–S clusters in the SPASM domain-containing radical SAM enzyme PqqE”, Biochemistry, 2019, 58, 5173-5187.
[25] T. Y. Lai, L. Tao, R. D. Britt and P. P. Power, “Reversible Sn–Sn triple bond dissociation in a distannyne: support for charge-shift bonding character”, J. Am. Chem. Soc., 2019, 141, 12527-12530.
[24] C. L. Wagner, L. Tao, R. D. Britt, P. P. Power, et al., “Two-coordinate, late first-row transition metal amido derivatives of the bulky ligand -N(SiPri3)Dipp (Dipp = 2,6-diisopropylphenyl): effects of the ligand on the stability of two-coordinate Copper(II) complexes”, Inorg. Chem., 2019, 58, 8793-8799.
[23] G. Rao, A. B. Altman, A. C. Brown, L. Tao, R. D. Britt, et al., “Metal bonding with 3d and 6d orbitals: an EPR and ENDOR spectroscopic investigation of Ti3+–Al and Th3+–Al heterobimetallic complexes”, Inorg. Chem., 2019, 58, 7978-7988.
[22] L. Tao, T. A. Stich, C. J. Fugate, J. T. Jarrett and R. D. Britt, “EPR-derived structure of a paramagnetic intermediate generated by biotin synthase BioB”, J. Am. Chem. Soc., 2018, 140, 12947-12963.
[21] L. Tao, A. N. Simonov, L. Spiccia, W. H. Casey, et al., “Probing electron transfer in the manganese-oxide-forming MnxEFG protein complex using Fourier transformed AC voltammetry: understanding the oxidative priming effect”, ChemElectroChem., 2018, 5, 872-876.
[20] L. Tao, T. A. Stich, W. H. Casey, R. D. Britt, et al., “Mn (III) species formed by the multi-copper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy”, J. Biol. Inorg. Chem., 2018, 23, 1093-1104.
[19] G. Rao, L. Tao, D. L. M. Suess and R. D. Britt, “A [4Fe–4S]-Fe (CO)(CN)-L-cysteine intermediate is the first organometallic precursor in [FeFe] hydrogenase H-cluster bioassembly”, Nature Chem., 2018, 10, 555-560.
[18] L. Tao, T. A. Stich, W. H. Casey, R. D. Britt, et al., “Copper binding sites in the manganese-oxidizing Mnx protein complex investigated by electron paramagnetic resonance spectroscopy”, J. Am. Chem. Soc., 2017, 139, 8868-8877.
[17] A. V. Soldatova, L. Tao, R. D. Britt, T. G. Spiro, et al., “Mn (II) oxidation by the multicopper oxidase complex Mnx: a binuclear activation mechanism”, J. Am. Chem. Soc., 2017, 139, 11369-11380.
[16] A. V. Soldatova, C. A. Romano, L. Tao, R. D. Britt, T. G. Spiro, et al., “Mn (II) oxidation by the multicopper oxidase complex Mnx: a coordinated two-stage Mn(II)/(III) and Mn(III)/(IV) mechanism”, J. Am. Chem. Soc., 2017, 139, 11381-11391.
[15] S. Wang, L. Tao, R. D. Britt, P. P. Power, et al., “Insertion of a transient tin nitride into carbon–carbon and boron–carbon bonds”, Inorg. Chem., 2017, 56, 14596-14604.
[14] A. N. Simonov, R. K. Hocking, L. Tao, L. Spiccia, W. H. Casey, et al., “Tunable biogenic manganese oxides”, Chem. Eur. J, 2017, 23, 13482-13492.
[13] C. L. Wagner, L. Tao, R. D. Britt, P. P. Power, et al., “Dispersion-force-assisted disproportionation: a stable two-coordinate copper(II) complex”, Angew. Chem. Int. Ed., 2016, 55, 10444-10447.
[12] L. Tao, A. N. Simonov, L. Spiccia, W. H. Casey, et al., “Biogenic manganese-oxide mineralization enhanced by oxidative priming of the MnxEFG protein complex”, Chem. Eur. J, 2016, 23, 1346-1352.
[11] B. Yan, L. Tao, Y. Liang and B.-Q. Xu, “Potassium-ion-exchanged zeolites for sustainable production of acrylic acid by gas-phase dehydration of lactic acid”, ACS Catal., 2016, 7, 538-550.
[10] L. Tao, T. A. Stich, W. H. Casey, R. D. Britt, et al., “Mn(II) binding and subsequent oxidation by the multicopper oxidase MnxG investigated by electron paramagnetic resonance spectroscopy”, J. Am. Chem. Soc., 2015, 137, 10563-10575.
[9] L. Tao, W. H. Casey, R. D. Britt, et al., “Manganese-oxide solids as water-oxidation electrocatalysts: the effect of intercalating cations”, ACS Symp. Ser., 2015, 1197, 135-153.
[8] C. N. Butterfield, L. Tao, R. D. Britt, B. M. Tebo, et al., “Multicopper manganese oxidase accessory proteins bind Cu and Heme”, Biochim. Biophys. Acta, 2015, 1854, 1853-1859.
[7] L. Tao, S.-H. Chai, H.-P. Wang, B. Yan, Y. Liang and B.-Q. Xu, “Comparison of gas-phase dehydration of propane polyols over solid acid–base catalysts”, Catal. Today, 2014, 234, 237-244.
[6] B. Yan, L. Tao, Y. Liang and B.-Q. Xu, “Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid”, ChemSusChem, 2014, 7, 1568-1578.
[5] B. Yan, L. Tao, Y. Liang and B.-Q. Xu, “Sustainable production of acrylic acid: catalytic performance of hydroxyapatites for gas-phase dehydration of lactic Acid”, ACS Catal., 2014, 4, 1931-1943.
[4] S.-H. Chai, L. Tao, J. C. Vedrine, Y. Liang and B.-Q. Xu, “Sustainable production of acrolein: effects of reaction variables, modifiers doping and ZrO2 origin on the performance of WO3/ZrO2 catalyst for the gas-phase dehydration of glycerol”, RSC Adv., 2014, 4, 4619-4630.
[3] S.-H. Chai, B. Yan, L. Tao, Y. Liang and B.-Q. Xu, “Sustainable production of acrolein: catalytic gas-phase dehydration of glycerol over dispersed tungsten oxides on alumina, zirconia and silica”, Catal. Today, 2014, 234, 215-222.
[2] L. Tao, B. Yan, Y. Liang and B.-Q. Xu, “Sustainable production of acrolein: catalytic performance of hydrated tantalum oxides for gas-phase dehydration of glycerol”, Green Chem., 2013, 15, 696-705.
[1] L. Tao, S.-H. Chai, Y. Liang and B.-Q. Xu, “Sustainable production of acrolein: acidic binary metal oxide catalysts for gas-phase dehydration of glycerol”, Catal. Today, 2010, 158, 310-316.