Arnaud Nicolas Mignan

Associate Professor Department of Earth and Space Sciences, |Academy for Advanced Interdisciplinary Studies

Professor Mignan joined SUSTech in 2020. He received his PhD (2006) in Geophysics from the Tectonics Department of Institut de Physique du Globe de Paris. He then worked as a Senior Catastrophe Risk Modeller at the leading risk modelling firm Risk Management Solutions (RMS), London (2006-2010), before becoming Senior Researcher at the Swiss Federal Institute of Technology in Zurich (ETHZ) and Swiss Competence Centre for Energy Research (SCCER) (2010-2020). He has published more than 60 peer-reviewed articles, including several book chapters, invited review articles, and articles in high-impact journals such as Nature and Applied Energy, with >1,500 Google scholar citations and a H-index of 24, as of year 2020. His work on catastrophe dynamics, domino effects and critical infrastructure stress testing has been featured in a EuroNews documentary and some renowned Swiss newspaper. He has been invited to present his work in world-leading universities including Harvard and Stanford.

Personal Profile


System dynamics (catastrophe dynamics, extreme events, energy systems), event forecasting and prediction, risk governance (decision making under uncertainty, risk communication), machine learning (Bayesian inference, deep learning, reinforcement learning), and meta-science (history of science, identification of trends & status-quo biases, exploration of new theoretical horizons). Promotes cross-disciplinary research and reasoned imagination by combining physics, data analytics and behavioural science.

NSFC 2020 general program project: 'Earthquake Cascading Effects quantified by the Earthquake Hazard Adjacency Matrix using Graph Theory & Machine Learning for Improved Societal Resilience'


Spring 2021 (to be confirmed): Introduction to Catastrophe Risk Modelling; Article reading in Earth Sciences

Publications Read More

[66] Mignan A., Ouillon G., Sornette D., Freund F. (2020), Global Earthquake Forecasting System (GEFS): The Challenges Ahead. The European Physical Journal Special Topics, in press, x-x, doi: 10.1140/epjst/e2020-000261-8

[65] Freund F., Ouillon G., Mignan A., Sornette D. (2020), Preface to the Global Earthquake Forecasting System (GEFS) Special Issue: Towards Using Non-seismic Precursors for the Prediction of Large Earthquakes. The European Physical Journal Special Topics, in press, x-x, doi: 10.1140/epjst/e2020-000242-4

[64] Mignan A., Wang Z. (2020), Exploring the Space of Possibilities in Cascading Disasters with Catastrophe Dynamics. International Journal of Environmental Research and Public Health, 17, 7317, doi: 10.3390/ijerph17197317

[63] Wang Z., Broccardo M., Mignan A., Sornette D. (2020), The dynamics of entropy in the COVID-19 outbreaks. Nonlinear Dynamcis, 101, 1847-1869, doi: 10.1007/s11071-020-05871-5

[62] Mignan A., Broccardo M. (2020), Comment on ‘Elastic strain energy and pore-fluid pressure control of aftershocks’ by Terakawa et al. [Earth Planet. Sci. Lett. 535 (2020) 116103]. Earth and Planetary Science Letters, 544, 116402, doi: 10.1016/j.epsl.2020.116402

[61] Broccardo M., Mignan A., Grigoli F., Karvounis D., Rinaldi A.P., Danciu L., Hofmann H., Milkereit C., Dahm T., Zimmermann G., Hjörleifsdóttir V., Wiemer S. (2020), Induced seismicity risk analysis of the hydraulic stimulation of a geothermal well on Geldinganes, Iceland. Natural Hazards and Earth System Sciences, 20, 1573-1593, doi: 10.5194/nhess-20-1573-2020

[60] Mignan A., Broccardo M. (2020), Neural Network Applications in Earthquake Prediction (1994-2019): Meta-Analytic and Statistical Insights on Their Limitations. Seismological Research Letters, 91 (4), 2330-2342, doi: 10.1785/0220200021

[59] Villiger L., Gischig V.S., Doetsch J., Krietsch H., Dutler N.O., Jalali M., Valley B., Selvadurai P.A., Mignan A., Plenkers K., Giardini D., Amann F., Wiemer S. (2020), Influence of reservoir geology on seismic response during decameter-scale hydraulic stimulations in crystallne rock. Solid Earth, 11, 627-655, doi: 10.5194/se-11-627-2020

[58] Argyroudis S.A., Fotopoulou S., Karafagka S., Pitiliakis K., Selva J., Salzano E., Basco A., Crowley H., Rodrigues D., Matos J.P., Schleiss A.J., Courage W., Reinders J., Cheng Y., Akka S., Uckan E., Erdik M., Giardini D., Mignan A. (2020), A risk‐based multi‐level stress test methodology: application to six critical non‐nuclear infrastructures in Europe. Natural Hazards, 100, 595-633, doi: 10.1007/s11069-019-03828-5

[57] Mignan A. (2019), Forecasting aftershocks: Back to square one after a Deep Learning anticlimax. Temblor, Oct 2019, online, doi: 10.32858/temblor.053

[56] Mignan A., Broccardo M. (2019), One neuron versus deep learning in aftershock prediction. Nature, 574, E1-E3, doi: 10.1038/s41586-019-1582-8

[55] Mignan A. (2019), Generalized earthquake frequency–magnitude distribution described by asymmetric Laplace mixture modelling. Geophysical Journal International, 219 (2), 1348-1364, doi: 10.1093/gji/ggz373

[54] Mignan A. (2020), Asymmetric Laplace Mixture Modelling of Incomplete Power-Law Distributions: Application to ‘Seismicity Vision’. In: Arai K., Kapoor S. (eds), Advances in Computer Vision, CVC 2019, Advances in Intelligent Systems and Computing, 944, 30-43, doi: 10.1007/978-3-030-17798-0_4

[53] Esposito S., Stojadinovic B., Babic A., Dolsek M., Iqbal S., Selva J., Broccardo M., Mignan A., Giardini D. (2020), A risk-based multi-level methodology to stress test critical infrastructure systems. Journal of Infrastructure Systems, 26 (1), 04019035, doi: 10.1061/(ASCE)IS.1943-555X.0000520

[52] Mignan A., Broccardo M. (2019), A Deeper Look into ‘Deep Learning of Aftershock Patterns Following Large Earthquakes’: Illustrating First Principles in Neural Network Physical Interpretability. In: Rojas I., Joya G., Catala A. (eds), Advances in Computational Intelligence, IWANN 2019, Lecture Notes in Computer Science, 11506, 3-14, doi: 10.1007/978-3-030-20521-8_1

[51] Mignan A. (2019), A preliminary text classification of the precursory accelerating seismicity corpus: inference on some theoretical trends in earthquake predictability research from 1988 to 2018. Journal of Seismology, 23 (4), 771-785, doi: 10.1007/s10950-019-09833-2

[50] Staudenmaier N., Tormann T., Edwards B., Mignan A., Wiemer S. (2019), The frequency-size scaling of non-volcanic tremors beneath the San Andreas Fault at Parkfield: Possible implications for seismic energy release. Earth and Planetary Science Letters, 516, 77-107, doi: 10.1016/j.epsl.2019.04.006

[49] Mignan A., Karnouvis D., Broccardo M., Wiemer S., Giardini D. (2019), Including seismic risk mitigation measures into the Levelized Cost Of Electricity in enhanced geothermal systems for optimal siting. Applied Energy, 238, 831-850, doi: 10.1016/j.apenergy.2019.01.109

[48] Mignan A., Broccardo M., Wiemer S., Giardini D. (2019), Autonomous Decision-Making Against Induced Seismicity in Deep Fluid Injections. In: Ferrari A., Laloui L. (eds), Energy Geotechnics, SEG 2018, Springer Series in Geomechanics and Geoengineering, , 369-376, doi: 10.1007/978-3-319-99670-7_46

[47] Seif S., Zechar J.D., Mignan A., Nandan S., Wiemer S. (2019), Foreshocks and Their Potential Deviation from General Seismicity. Bulletin of the Seismological Society of America, 109 (1), 1-18, doi: 10.1785/0120170188

[46] Mignan A. (2018), Metacollecting or the process of collecting collections, with examples from The Tricottet Collection. Colligo, 1 (2), 35-50, perma: YQ5W-BN5Z

[45] Woo G., Mignan A. (2018), Counterfactual Analysis of Runaway Earthquakes. Seismological Research Letters, 89 (6), 2266-2273, doi: 10.1785/0220180138

[44] Mignan A. (2018), Utsu aftershock productivity law explained from geometric operations on the permanent static stress field of mainshocks. Nonlinear Processes in Geophysics, 25, 241-250, doi: 10.5194/npg-25-241-2018

[43] Mignan A., Danciu L., Giardini D. (2018), Considering large earthquake clustering in seismic risk analysis. Natural Hazards, 91 (Supplement 1), 149–172, doi: 10.1007/s11069-016-2549-9

[42] Scolobig A., Komendantova N., Mignan A. (2017), Mainstreaming Multi-Risk Approaches into Policy. Geosciences, 7 (4), 129, doi: 10.3390/geosciences7040129

[41] Broccardo M., Mignan A., Wiemer S., Stojadinovic B., Giardini D. (2017), Hierarchical Bayesian Modeling of Fluid‐Induced Seismicity. Geophysical Research Letters, 44 (22), 11,357-11,367, doi: 10.1002/2017GL075251

[40] Mignan A., Broccardo M., Wiemer S., Giardini D. (2017), Induced seismicity closed-form traffic light system for actuarial decision-making during deep fluid injections. Scientific Reports, 7, 13607, doi: 10.1038/s41598-017-13585-9

[39] Mignan A., Komendantova N., Scolobig A., Fleming K. (2017), Chapter 14: Multi-Risk Assessment and Governance. Handbook of Disaster Risk Reduction & Management, , 357-381, doi: 10.1142/9789813207950_0014

[38] Panzera F., Mignan A., Vogfjord K.S. (2017), Spatiotemporal evolution of the completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013. Journal of Seismology, 21 (4), 615–630, doi: 10.1007/s10950-016-9623-3

[37] Seif S., Mignan A., Zechar J.D., Werner M.J., Wiemer S. (2017), Estimating ETAS: The effects of truncation, missing data, and model assumptions. Journal of Geophysical Research, 122 (1), 449-469, doi: 10.1002/2016JB012809

[36] Mignan A. (2016), Reply to ‘Comment on ‘Revisiting the 1894 Omori Aftershock Dataset with the Stretched Exponential Function’ by A. Mignan’ by S. Hainzl and A. Christophersen. Seismological Research Letters, 87 (5), 1134-1137, doi: 10.1785/0220160110

[35] Mignan A. (2016), Static behaviour of induced seismicity. Nonlinear Processes in Geophysics, 23, 107-113, doi: 10.5194/npg-23-107-2016

[34] Mignan A., Scolobig A., Sauron A. (2016), Using reasoned imagination to learn about cascading hazards: a pilot study. Disaster Prevention and Management, 25 (3), 329-344, doi: 10.1108/DPM-06-2015-0137

[33] Mignan A. (2016), Metacollecting and use of ‘collection-objects’ in prosopographical studies of meteorite collections. Meteorites, 4 (1-2), 11-22, doi: 10.5277/met160102

[32] Mignan A. (2016), Revisiting the 1894 Omori Aftershock Dataset with the Stretched Exponential Function. Seismological Research Letters, 87 (3), 685-689, doi: 10.1785/0220150230

[31] Mignan A., Chen C.C. (2016), The Spatial Scale of Detected Seismicity. Pure and Applied Geophysics, 173 (1), 117–124, doi: 10.1007/s00024-015-1133-7

[30] Mignan A. (2015), Modeling aftershocks as a stretched exponential relaxation. Geophysical Research Letters, 42 (22), 9726-9732, doi: 10.1002/2015GL066232

[29] Liu Z., Nadim F., Garcia-Aristizabal A., Mignan A., Fleming K., Luna B.Q. (2015), A three-level framework for multi-risk assessment. Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 9 (2), 59-74, doi: 10.1080/17499518.2015.1041989

[28] Mignan A., Danciu L., Giardini D. (2015), Reassessment of the Maximum Fault Rupture Length of Strike‐Slip Earthquakes and Inference on Mmax in the Anatolian Peninsula, Turkey. Seismological Research Letters, 86 (3), 890-900, doi: 10.1785/0220140252

[27] Cara M., Cansi Y., Schlupp A., …, Mignan A., … (2015), SI-Hex: a new catalogue of instrumental seismicity for metropolitan France. Bulletin de la Société Géologique de France, 186 (1), 3-19, doi: 10.2113/gssgfbull.186.1.3

[26] Mignan A., Landtwing D., Kaestli P., Mena B., Wiemer S. (2015), Induced seismicity risk analysis of the 2006 Basel, Switzerland, Enhanced Geothermal System project: Influence of uncertainties on risk mitigation. Geothermics, 53, 133-146, doi: 10.1016/j.geothermics.2014.05.007

[25] Mignan A., Wiemer S., Giardini D. (2014), The quantification of low-probability–high-consequences events: part I. A generic multi-risk approach. Natural Hazards, 73 (3), 1999–2022, doi: 10.1007/s11069-014-1178-4

[24] Tormann T., Wiemer S., Mignan A. (2014), Systematic survey of high‐resolution b value imaging along Californian faults: Inference on asperities. Journal of Geophysical Research, 119 (3), 2029-2054, doi: 10.1002/2013JB010867

[23] Mignan A., Chouliaras G. (2014), Fifty Years of Seismic Network Performance in Greece (1964–2013): Spatiotemporal Evolution of the Completeness Magnitude. Seismological Research Letters, 85 (3), 657-667, doi: 10.1785/0220130209

[22] Mignan A. (2014), The debate on the prognostic value of earthquake foreshocks: A meta-analysis. Scientific Reports, 4, 4099, doi: 10.1038/srep04099

[21] Komendantova N., Mrzyglocki R., Mignan A., Khazai B., Wenzel F., Patt A., Fleming K. (2014), Multi-hazard and multi-risk decision-support tools as a part of participatory risk governance: Feedback from civil protection stakeholders. International Journal of Disaster Risk Reduction, 8, 50-67, doi: 10.1016/j.ijdrr.2013.12.006

[20] Kraft T., Mignan A., Giardini D. (2013), Optimization of a large-scale microseismic monitoring network in northern Switzerland. Geophysical Journal International, 195 (1), 474–490, doi: 10.1093/gji/ggt225

[19] Mignan A., Jiang C., Zechar J.D., Wiemer S., Wu Z., Huang Z. (2013), Completeness of the Mainland China Earthquake Catalog and Implications for the Setup of the China Earthquake Forecast Testing Center. Bulletin of the Seismological Society of America, 103 (2A), 845-859, doi: 10.1785/0120120052

[18] Nanda S.J., Tiampo K.F., Panda G., Mansinha L., Cho N., Mignan A. (2013), A tri-stage cluster identification model for accurate analysis of seismic catalogs. Nonlinear Processes in Geophysics, 20, 143-162, doi: 10.5194/npg-20-143-2013

[17] Mignan A. (2012), Seismicity precursors to large earthquakes unified in a stress accumulation framework. Geophysical Research Letters, 39 (21), L21308, doi: 10.1029/2012GL053946

[16] Mignan A. (2012), Functional shape of the earthquake frequency‐magnitude distribution and completeness magnitude. Journal of Geophysical Research, 117 (B8), B08302, doi: 10.1029/2012JB009347

[15] Mignan A., Woessner J. (2012), Estimating the magnitude of completeness for earthquake catalogs. Community Online Resource for Statistical Seismicity Analysis, Theme IV, 1-45, doi: 10.5078/corssa-00180805

[14] Mignan A., Werner M.J., Wiemer S., Chen C.C., Wu Y.M. (2011), Bayesian Estimation of the Spatially Varying Completeness Magnitude of Earthquake Catalogs. Bulletin of the Seismological Society of America, 101 (3), 1371-1385, doi: 10.1785/0120100223

[13] Mignan A. (2011), Retrospective on the Accelerating Seismic Release (ASR) hypothesis: Controversy and new horizons. Tectonophysics, 505 (1-4), 1-16, doi: 10.1016/j.tecto.2011.03.010

[12] Mignan A., Grossi P., Muir-Wood R. (2011), Risk assessment of Tunguska-type airbursts. Natural Hazards, 56 (3), 869–880, doi: 10.1007/s11069-010-9597-3

[11] Pinzuti P., MIgnan A., King G.C.P. (2011), Surface morphology of active normal faults in hard rock: Implications for the mechanics of the Asal Rift, Djibouti. Earth and Planetary Science Letters, 299 (1-2), 169-179, doi: 10.1016/j.epsl.2010.08.032

[10] Tiampo K.F., Klein W., Li H.C., Mignan A., Toya Y., Kohen-Kadosh S.Z.L., Rundle J.B., Chen C.C. (2010), Ergodicity and Earthquake Catalogs: Forecast Testing and Resulting Implications. Pure and Applied Geophysics, 167 (6-7), 763–782, doi: 10.1007/s00024-010-0076-2

[9] Mignan A., Tiampo K. (2010), Testing the Pattern Informatics index on synthetic seismicity catalogs based on the Non-Critical PAST. Tectonophysics, 483 (3-4), 255-268, doi:

[8] Mignan A., Di Giovambattista R. (2009), Reply to comment by J. Greenhough et al. on ‘Relationship between accelerating seismicity and quiescence, two precursors to large earthquakes’. Geophysical Research Letters, 36 (17), L17304, doi: 10.1029/2009GL039871

[7] Muir-Wood R., Mignan A. (2009), A Phenomenological Reconstruction of the Mw9 November 1st 1755 Earthquake Source. In: The 1755 Lisbon Earthquake: Revisited. Geotechnical, Geological, and Earthquake Engineering, 7, 121-146, doi: 10.1007/978-1-4020-8609-0_8

[6] Mignan A., Di Giovambattista R. (2008), Relationship between accelerating seismicity and quiescence, two precursors to large earthquakes. Geophysical Research Letters, 35 (15), L15306, doi: 10.1029/2008GL035024

[5] Mignan A. (2008), Non-Critical Precursory Accelerating Seismicity Theory (NC PAST) and limits of the power-law fit methodology. Tectonophysics, 452 (1-4), 42-50, doi: 10.1016/j.tecto.2008.02.010

[4] Mignan A. (2008), The Stress Accumulation Model: Accelerating Moment Release and Seismic Hazard. Advances in Geophysics, 49, 67-201, doi: 10.1016/S0065-2687(07)49002-1

[3] Mignan A., King G.C.P., Bowman D. (2007), A mathematical formulation of accelerating moment release based on the stress accumulation model. Journal of Geophysical Research, 112 (B7), B07308, doi: 10.1029/2006JB004671

[2] Mignan A., Bowman D.D., King G.C.P. (2006), An observational test of the origin of accelerating moment release before large earthquakes. Journal of Geophysical Research, 111 (B11), B11304, doi: 10.1029/2006JB004374

[1] Mignan A., King G., Bowman D., Lacassin R., Dmowska R. (2006), Seismic activity in the Sumatra–Java region prior to the December 26, 2004 (Mw = 9.0-9.3) and March 28, 2005 (Mw = 8.7) earthquakes. Earth and Planetary Science Letters, 244 (3-4), 639-654, doi: 10.1016/j.epsl.2006.01.058

Lab members Read More

Join us

Contact Us

Contact Address

Room 511-3, Building 6, Innovation Park, 1088 Xueyuan Avenue, Nanshan District Shenzhen, Guangdong, 518055, China

Office Phone


Copyright © 2018 All Rights Reserved.