教授 数学系, 杰曼诺夫数学中心
教育背景
◆ 2009年,香港中文大学,数学系,获应用数学哲学博士学位;
◆ 2004年,武汉大学,计算机学院,获计算机科学硕士学位;
◆ 2001年,武汉大学,数学与统计学院,获数学学士学位。
工作经历
◆ 2020年1月至今,南方科技大学,数学系,教授;
◆ 2012年6月至2019年12月,南方科技大学,数学系,副教授;
◆ 2011年9月至2012年5月,中国科学院,深圳先进技术研究院,助理研究员;
◆ 2009年9月至2011年8月,苏黎世联邦理工大学,数学系,博士后;
◆ 2004年9月至2009年8月,香港中文大学,助教。
荣誉与获奖
◆ 2021年,深圳市优秀人才项目(杰青项目)
◆ 2020年,南方科技大学 树德书院,“优秀导师奖”
◆ 2020年,南方科技大学 理学院,“双优”项目奖励
◆ 2019年,南方科技大学 理学院,“亮点”项目奖励
◆ 2016年,南方科技大学,“优秀科研奖”
◆ 2016年,南方科技大学,“优秀导师奖”
◆ 2013年,入选深圳市海外高层次人才“孔雀计划”(B类)
◆ 2012年,国家重点人才计划青年项目,数理学科
◆ 2011年,香港数学会,最佳博士论文奖
学术期刊编委
◆ Zeitschrift für angewandte Mathematik und Physik (ZAMP), Birkhäuser/Springer, 2023 – present.
◆ Communications in Analysis and Computation (CAC), AIMS Press, 2023 – present.
◆ Electronic Research Archive (ERA), AIMS Press, 2019 – present.
◆ Advances in Applied Mathematics and Mechanics (AAMM), Global Science Press, 2018 – present.
◆ Numerical Mathematics: A Journal of Chinese Universities (Chinese Series), Nanjing University Press. 2016- present.
个人简介
研究领域
◆ 科学计算
◆ 有限元方法
◆ 反问题理论与计算方法
◆ 形状优化与微分形式统一理论
◆ 计算金融
◆ 深度学习
◆ 大语言模型
教学
1. MA206 数学建模 (春季/本科生)
2. MA216 计算金融 (秋季/本科生)
学术成果 查看更多
Selected Journal Articles
57. Chen, D.; Li, J. & Zhang, Y.
A posterior contraction for Bayesian inverse problems in Banach spaces
Inverse Problems, 2024, 40, 045011 (32pp).
56. Chen, R.; Deng, Y.; Gao, Y.; Li, J. & Liu, H.,
Imaging multiple magnetized anomalies by geomagnetic monitoring
Journal of Computational Physics , 2024, 498, 112661 (15pp).
55. Klibanov, M.; Li, J. & Yang, Z.,
Convexification for the Viscocity Solution for a Coefficient Inverse Problem for the Radiative Transfer Equation,
Inverse Problems, 2023, 39, 125002 (29pp).
54. Cai M.; Gu H.; Li, J. & Mu M.,
Some optimally convergent algorithms for decoupling the computation of Biot’s model,
Journal of Scientific Computing, 2023, 97:48(33pp).
53. Klibanov, M.; Li, J.; Nguyen, L., Romanov, V. G. & Yang, Z.,
Convexification numerical method for a coefficient inverse problem for the Riemannian radiative transport equation,
SIAM Journal on Imaging Sciences, 2023, 16, pp. 1762–1790.
52. Klibanov, M.; Li, J. & Zhang, W.,
Numerical solution of the 3-D travel time tomography problem,
Journal of Computational Physics, 2023, 476, 111910 (18pp).
51. Gu H.; M. Cai & Li, J.,
An iterative decoupled algorithm with unconditional stability for Biot model,
Mathematics of Computation, 2023, 92, pp. 1087–1108.
50. Klibanov, M.; Li, J.; Nguyen, L. & Yang, Z.,
Convexification numerical method for a coefficient inverse problem for the radiative transport equation,
SIAM Journal on Imaging Sciences, 2023, 16, pp. 35-63.
49. Ma, Y.; Ma, F.; Guo, Y., & Li, J.,
Computation of transmission eigenvalues by the regularized Schur complement for the boundary integral operators,
CSIAM Transactions on Applied Mathematics, 2023, 4, pp. 306–324.
48. Chen, H.; Li, J. & Qiu, W.,
A C^0 Interior penalty method for mth-Laplace equation,
ESAIM: Mathematical Modelling and Numerical Analysis, 2022, 56, pp. 2081–2103.
47. Klibanov, M.; Li, J. & Zhang, W.,
A globally convergent numerical method for a 3D coefficient inverse problem for a wave-like equation,
SIAM Journal on Scientific Computing, 2022, 44, pp. A3341–A3365.
46. Cai, J.; Li, J.; Lu, X. & You, J.,
Sparse signal recovery from phaseless measurements via hard thresholding pursuit,
Applied and Computational Harmonic Analysis, 2022, 56, pp. 367–390.
45. Li, J.; Liu, H. & Ma, S.,
Determining a random schroedinger operator: both potential and source are random,
Communications in Mathematical Physics, 2021, 381, pp. 527–556.
44. Klibanov, M.; Li, J. & Zhang, W.,
Linear Lavrent’ev integral equation for the numerical solution of a nonlinear coefficient inverse problem,
SIAM Journal on Applied Mathematics, 2021, 81, pp. 1954-1978.
43. Xu, L.; Li, J. & Chen, R.,
A scalable parallel unstructured finite volume lattice Boltzmann method for three-dimensional incompressible flow simulations,
International Journal for Numerical Methods in Fluids, 2021, 93, pp. 2744–2762.
42. Li M.; Zhu L.; Li, J. & Zhang K.,
Design optimization of interconnected porous structures using extended triply periodic minimal surfaces,
Journal of Computational Physics, 2021, 425, 109909 (24pp).
41. Zhang, D.; Wang, Y.; Guo, Y. & Li, J.,
Uniqueness in inverse cavity scattering problems with phaseless near-field data,
Inverse Problems, 2020, 36, 025004 (10pp).
40. Hu, G. & Li, J.,
Inverse source problems in an inhomogeneous medium with a single far-field pattern,
SIAM Journal on Mathematical Analysis, 2020, 52, pp. 5213-5231.
39. Klibanov, M.; Li, J. & Zhang, W.,
Convexification for an inverse parabolic problem,
Inverse Problems, 2020, 36, 085008 (32pp).
38. Li, J.; Liu, H. & Sun, H.,
On an inverse elastic wave imaging scheme for nearly incompressible materials,
IMA Journal of Applied Mathematics, 2019, 84, pp. 229-257.
37. Li, J.; Liu, H. & Ma, S.,
Determining a random schroedinger equation with unknown source and potential,
SIAM Journal on Mathematical Analysis, 2019, 51, pp. 3465-3491.
36. Klibanov, M.; Li, J. & Zhang, W.,
Convexification of electrical impedance tomography with restricted Dirichlet-to-Neumann map data,
Inverse Problems, 2019, 35, 035005 (33pp).
35. Klibanov, M.; Li, J. & Zhang, W.,
Convexification for the inversion of a time dependent wave front in a heterogeneous medium,
SIAM Journal on Applied Mathematics, 2019, 79, pp. 1722-1747.
34. Wang, G.; Ma, F.; Guo, Y. & Li, J.,
Solving the multi-frequency electromagnetic inverse source problem by the Fourier method,
Journal of Differential Equations, 2018, 265, pp. 417-443.
33. Hao, Y.; Kang, F.; Li, J. & Zhang, K.,
Computation of moments for Maxwell’s equations with random interfaces via pivoted low-rank approximation,
Journal of Computational Physics, 2018, 371, pp. 1-19.
32. Zhang, D.; Guo, Y.; Li, J. & Liu, H.,
Retrieval of acoustic sources from multi-frequency phaseless data,
Inverse Problems, 2018, 34, 094001 (21pp).
31. Hiptmair, R. & Li, J.,
Shape derivatives for scattering problems,
Inverse Problems, 2018, 34, 105001 (25pp).
30. Li, X.; Li, J.; Liu, H. & Wang, Y.,
Electromagnetic interior transmission eigenvalue problem for inhomogeneous media containing obstacles and its applications to near cloaking,
IMA Journal of Applied Mathematics, 2017, 82, pp. 1013-1042.
29. Li, J.; Liu, H. & Wang, Y.,
Recovering an electromagnetic obstacle by a few phaseless backscattering measurements,
Inverse Problems, 2017, 33, 035011 (20pp).
28. Wang, X.; Guo, Y.; Li, J. & Liu, H.,
Mathematical design of a novel input/instruction device using a moving acoustic emitter,
Inverse Problems, 2017, 33, 105009 (19pp).
27. Wang, Q.; Hou, Y. & Li, J.,
Numerical design of FSHL-based approximate cloaks with arbitrary shapes,
Journal of Computational Physics, 2017, 333, pp. 142-159.
26. Guo, Y.; Hoemberg, D.; Hu, G.; Li, J. & Liu, H.,
A time domain sampling method for inverse acoustic scattering problems,
Journal of Computational Physics , 2016, 314, pp. 647-660.
25. Jiang, X.; Li, J.; Xia, T. & Yan, W.
Robust and efficient estimation with weighted composite quantile regression
Physica A, 2016, 457, pp. 413-423.
24. Chen, H.; Li, J. & Qiu, W.,
Robust a posteriori error estimates for HDG method of convection-diffusion equations,
IMA Journal of Numerical Analysis, 2016, 36, pp. 437-462.
23. Li, J.; Li, P.; Liu, H. & Liu, X.,
Recovering multiscale buried anomalies in a two-layered medium,
Inverse Problems, 2015, 31, 105006(26pp).
22. Li, H.; Li, J. & Liu, H.,
On quasi-static cloaking due to anomalous localized resonance in $R^3$,
SIAM Journal on Applied Mathematics, 2015, 75, pp. 1245-1260.
21. Li, J. & Liu, H.,
Recovering a convex polyhedral obstacle by a few backscattering measurements,
Journal of Differential Equations, 2015, 259, pp. 2101-2120.
20. Li, J.; Liu, H.; Rondi, L. & Uhlmann, G.,
Regularized transformation-optics cloaking for the Helmholtz equation: from partial cloak to full cloak,
Communications in Mathematical Physics, 2015, 335, pp. 671-712.
19. Hu, G.; Li, J. & Liu, H., & Sun H.,
Inverse elastic scattering for multiscale rigid bodies with a single far-field pattern,
SIAM Journal on Imaging Sciences, 2014, 7, pp. 1799-1825.
18. Li, J.; Liu, H., & Wang, Q.,
Ground detection by a single electromagnetic far-field measurement,
Journal of Computational Physics, 2014, 273, pp. 472-487.
17. Hu, G.; Li, J. & Liu, H.,
Recovering complex elastic scatterers by a single far-fielded pattern,
Journal of Differential Equations, 2014, 257, pp. 469-489.
16. Li, J.; Liu, H. & Zou, J.,
Locating multiple multiscale acoustic scatterers,
Multiscale Modeling and Simulations, 2014, 12, pp. 927-952.
15. Li, J.; Liu, H. & Wang, Q.,
Enhanced multilevel linear sampling methods for inverse scattering problems,
Journal of Computational Physics, 2014, 257, pp. 554-571.
14. Li, J.; Liu, H.; Shang, Z. & Sun, H.,
Two single-shot methods for locating multiple electromagnetic scatterers,
SIAM Journal on Applied Mathematics, 2013, 73(4), pp. 1721-1746.
13. Li, J.; Liu, H. & Wang, Q.,
Multiscale one-shot method for inverse scattering problems,
SIAM Journal on Imaging Sciences, 2013, 6, pp. 2285-2309.
12. Harbrecht, H. & Li, J.,
First order second moment analysis for stochastic interface problems based on low-rank approximation,
ESAIM: Mathematical Modelling and Numerical Analysis, 2013, 47, pp. 1533-1552.
11. Hiptmair, R. & Li, J.,
Shape derivatives in differential forms I: an intrinsic perspective,
Annali di Matematica Puraed Applicata, 2013, 192, pp. 1077-1098.
10. Hiptmair, R.; Li, J. & Zou, J.,
Universal extension for Sobolev spaces of differential forms and applications,
Journal of Functional Analysis, 2012, 263(2), pp. 364-382.
9. Hiptmair, R.; Li, J. & Zou, J..
Convergence analysis of finite element methods for H(curl; Omega)-elliptic interface problems,
Numerische Mathematik, 2012, 122(3), pp. 557-578.
8. Hiptmair, R.; Li, J. & Zou, J.,
Real interpolation of spaces of differential forms,
Mathematische Zeitschrift, 2012, 270(1), pp. 395-402.
7. Li, J.; Liu, H. & Sun, H.,
Enhanced approximate cloaking by SH and FSH lining,
Inverse Problems, 2012, 28(7), 075011 (21pp), Selected as ”Insights” article.
6. Li, J.; Liu, H.; Sun, H. & Zou, J.,
Reconstructing acoustic obstacles by planar and cylindrical waves,
Journal of Mathematical Physics, 2012, 53(10), 103705 (19pp), Selected as Cover article.
5. Li, J.; Xie, J. & Zou, J.,
An adaptive finite element reconstruction of distributed fluxes,
Inverse Problems, 2011, 27(7), 075009 (25pp).
4. Li, J.; Melenk, J. M.; Wohlmuth, B. & Zou, J.,
Optimal a priori estimates for higher order finite elements for elliptic interface problems,
Applied Numerical Mathematics, 2010, 60(1-2), pp. 19-37.
3. Li, J.; Liu, H. & Zou, J.,
Strengthened linear sampling method with a reference ball,
SIAM Journal on Scientific Computing, 2009, 31(6), pp. 4013-4040.
2. Li, J.; Liu, H. & Zou, J.,
Multilevel linear sampling method for inverse scattering problems,
SIAM Journal on Scientific Computing, 2008, 30(3), pp. 1228-1250.
1. Li, J. & Zou, J.,
A multilevel model correction method for parameter identification,
Inverse Problems, 2007, 23(5), pp. 1759-1786.
Books
1. Klibanov, M. & Li, J.
Inverse Problems and Carleman Estimates: Global Uniqueness, Global Convergence and Experimental Data,
Inverse and Ill-Posed Problems Series, Vol. 63, Berlin, Boston: De Gruyter, pp. ix+325, 2021.
https://doi.org/10.1515/9783110745481
2. Klibanov, M. & Li, J.
Partial Differential Equations: Theory, Numerical Methods and ILL-Posed Problems, Nova Science Publishers, pp. xiii+347, 2022.
https://doi.org/10.52305/TTIO3667
3. Li J. & Liu H.
Numerical Methods for Inverse Scattering Problems, Springer Singapore, pp. xiii+364, 2023.
https://doi.org/10.1007/978-981-99-3772-1
Join us
Postdoctoral positions:
Job description:
The Department of Mathematics at Southern University of Science and Technology (SUSTech) invites applications for 2 postdoctoral positions in computational and applied mathematics associated with the research group of Prof. Jingzhi LI. The successful candidates are expected to work on one of following research topics: (1) numerical analysis of poroelasticity model, (2) inverse problems in mathematical physics, (3) computational finance, and they are also encouraged to develop their own research projects.
The appointments can begin as early as possible and will be for 2 years. Postdoctoral researchers can be promoted to visiting or tenure-track assistant professors after 2 years based on performances.
Remuneration:
The starting annual salary of postdoctoral fellow at SUSTech will be 330,000 RMB (~50,000 USD), including subsidies of Guangdong province and Shenzhen city. Excellent candidates can apply for the SUSTech President postdoctoral fellowship with annual salary up to 500,000 RMB (~77,000 USD).
Requirements:
Applicants should have earned a PhD in pure or applied mathematics or a related field at the time of appointment. Candidates with good skills in numerical analysis, computer programming and high performance computation are preferred. Applications are open and equal to candidates with any nationalities.
Application:
Applicants should submit a single PDF file that includes a statement of research achievements and research plans, a curriculum vitae with publication list and contact information of three referees. Applications should be sent to both Prof. Jingzhi LI via email: li.jz@sustech.edu.cn and our group secretary via email caoym@mail.sustech.edu.cn and will be considered till the posts are filled. Please do not hesitate to contact us via li.jz@sustech.edu.cn for any inquiries.