郭红卫

讲席教授 生物系

郭红卫教授是教育部特聘教授、国家杰出青年基金获得者、科技部中青年科技创新领军人才、广东省“珠江人才”科技创新领军人才、深圳市海外高层次A类人才。现任南方科技大学生物系讲座教授,生物系副主任,南方科技大学-北京大学植物与食品联合研究所所长。郭红卫教授主要从事植物激素乙烯的作用机理、叶片衰老和果实发育的调控机制、RNA降解和基因沉默等方面的研究,取得了一系列开创性的研究成果,在这些领域处于国际领先地位。已在Cell 、Science、Nature、PNAS、 Plant Cell等国际刊物发表论文80余篇,授权发明专利8项。在The Plant Cell、Plant Molecular Biology担任编委,并在中国植物生理和植物分子生物学学会植物成熟衰老专业委员会担任主任,中国遗传学会担任国际交流委员会担任委员。

个人简介

郭红卫教授,2001年博士毕业于美国加州大学洛杉矶分校,攻读博士学位期间曾以第一作者发表包括两篇Science在内的一系列研究论文,在植物光形态建成、光周期开花、光信号转导等对农业生产至关重要的领域取得了突破性进展,引起国际学术界广泛关注和反响;博士毕业后进入世界顶尖生物学研究所SALK开展博后研究工作,在植物激素的调控机理方面取得了重大突破,建立了乙烯通路的蛋白降解模型和RNA降解模型,分别发表在国际权威杂志CellPNAS上;2005年全职回国后,任北京大学生命科学学院教授、博士生导师,筹建了植物激素信号转导实验室。其实验室长期从事植物分子生物学及遗传学方面的研究,在植物激素生物学领域具有重要的国际影响力。近年来,郭红卫教授团队聚焦植物对异源或过量表达的基因多层次沉默的机制研究,以拟南芥为材料对植物中外源转基因沉默现象进行了研究,发现了植物防止内源基因沉默的双保险机制,相关成果发表在国际权威杂志Science上,并受著名生物学综述性期刊Current Opinion in Plant Biology特邀,总结近年来植物信使RNA (mRNA)代谢和mRNA质量监控研究领域的最新进展。此外,郭红卫教授团队长期关注植物器官衰老、果实发育调控机制等与生产实践密切相关的科学问题,综合利用化学遗传学等手段,筛选出多种受到同行认可的、具有潜在采后应用价值的小分子化合物。2016年起,任南方科技大学生物系讲座教授。2017年7月受南方科技大学委托筹建植物与食品联合研究所并担任首届研究所所长,2018年起任南方科技大学生物系副主任。

 

研究领域

植物激素信号转导

植物衰老与采后生物学

植物siRNA生物学

工作经历

2018.09-至今   南方科技大学生物系副主任

2017.07-至今  南科大-北大植物与食品联合研究所所长

2016.04-至今  南方科技大学生物系讲座教授

2013.09-2015.12   北京大学生命科学学院副院长

2005 .09– 2016.03   北京大学生命科学学院教授

2001.07 – 2005.09  美国加州Salk Institute 博士后

教育背景

1996 - 2001   美国加州大学洛杉矶分校(UCLA)   植物分子生物学专业  博士学位

1992 - 1995   北京大学生命科学学院 植物生理学专业   硕士学位

1988 - 1992   南开大学生物系 植物生理学专业  学士学位

获奖情况及荣誉

◆2018 广东省“珠江人才”科技创新领军人才

◆2018 国家高层次人才特殊支持计划领军人才

◆2018 深圳市海外高层次A类人才

◆2016 深圳市高层次人才国家级领军人才

◆2015 科技部中青年科技创新领军人才

◆2014 第七届“谈家桢生命科学创新奖”

◆2013 中国科协“科学中国人(2012)年度人物

◆2011 第十二届“中国青年科技奖”

◆2011  “北京大学-清华大学联合生命中心”首批研究员

◆2009 第十三届“中国青年五四奖章”称号

◆2008 中国植物学会“先进青年科技工作者”称号

◆2007 第二十二届北京市“五四奖章”标兵称号

◆2006 国家杰出青年科学基金

◆2006  教育部特聘教授

文章

2021年

  1. Zhang Y., Gao Y., Wang HL, Kan C., Li Z., Yang X., Yin W., Xia X., Nam HG, Li Z.* and Guo H.*. (2021)Verticillium dahliae Secretory Effector PevD1 Induces Leaf Senescence by Promoting ORE1-Mediated Ethylene Biosynthesis. Molecular Plant. doi: 10.1016/j.molp.2021.07.014.
  2. Guo Y., Ren G., Zhang K., Li Z., Miao Y.* and Guo H.*.(2021) Leaf senescence: progression, regulation, and application. Molecular Horticulture. doi: org/10.1186/s43897-021-00006-9.
  3. Wen X., Jin L. and Guo H.*. (2021) A Sweet Meet-New Mechanism on Nutrient and Hormone Regulation of Plant Growth. Chinese Bulletin of Botany. 56: 1-4.
  4. Hao D., Jin L., Wen X., Yu F., Xie Q. and Guo H.*. (2021) The RING E3 ligase SDIR1 destabilizes EBF1/EBF2 and modulates the ethylene response to ambient temperature fluctuations in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 118:e2024592118.
  5. Xi Y., Yang Y., Yang J., Zhang X., Pan Y. and Guo H.*. (2021) IAA3-Mediated repression of PIF proteins coordinates light and auxin signaling in Arabidopsis. Plos Genetics. 17:
  6. Wang H., Zhang Y., Wang T., Yang Q., Yang Y., Li Z., Li B., Wen X., Li W., Yin W., Xia X., Guo H.*and Li Z.*. (2021) An alternative splicing variant of PtRD26 delays leaf senescence by regulating multiple NAC transcription factors in Populus. Plant Cell. 33: 1594-1614.

 

2020年:

  1. Tan H., Li B. and Guo H.*. (2020) The diversity of post-transcriptional gene silencing mediated by small silencing RNAs in plants. Essays Biochem. 64: 919-930.
  2. Zhang Y., Wang HL., Gao Y., Guo H.* and Li Z.*. (2020) SATMF suppresses the premature senescence phenotype of the atm loss-of-function mutant and improves its fertility in Arabidopsis. Int J Mol Sci. 21: 8120. (* co-corresponding author)
  3. Sun X., Qiu Y., Peng Y., Ning J., Song G., Yang Y., Deng M., Men Y., Zhao X., Wang Y., Guo H.* and Tian Y.*. Close temporal relationship between oscillating cytosolic k+and growth in root hairs of Arabidopsis. Int J Mol Sci. 21: 6184. (* co-corresponding author)
  4. Wu H., Li B., Iwakawa H., Pan Y., Tang X., Ling-hu Q.,Liu Y., Sheng S., Feng L., Zhang H., Zhang X., Tang Z., Xia X., Zhai J. and Guo H.*. (2020). Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature.581: 89-93.
  5. Zhang Y., Wang HL., Li Z.* and Guo H.*. (2020) Genetic network between leaf senescence and plant immunity: crucial regulatory nodes and new insights. Plants (Basel). 9: 495. (* co-corresponding author)
  6. Huang P., Dong Z., Guo P., Zhang X., Qiu Y., Li B., Wang Y. and Guo H.*. (2020). Salicylic acid suppresses apical hook formation via NPR1-mediated repression of EIN3/EIL1 in Arabidopsis. Plant Cell. 32: 612-619.

 

2019年:

  1. Zhu Y., Li H., Su Q., Wen J., Wang Y., Song W., Xie Y., He W., Yang Z., Jiang K* and Guo H.*. (2019) A phenotype-directed chemical screen identifies ponalrestat as an inhibitor of the plant flavin monooxygenase YUCCA in auxin biosynthesis. Journal of Biological Chemistry. 294: 19923-19933. (* co-corresponding author)
  2. Pan S., Li K., Huang W., Zhong H., Wu H., Wang Y., Zhang H., Cai Z., Guo H., Chen X.* and Xia Y.*. (2019) ArabidopsisDXO1 possesses deNADding and exonuclease activities and its mutation affects defense-related and photosynthetic gene expression. Journal of Integrative Plant Biology. 62: 967-983.
  3. You C., He W., Hang R., Zhang C., Cao X., Guo H., Chen X., Cui J. and Mo B.*. (2019) FIERY1 promotes microRNA accumulation by suppressing rRNA-derived small interfering RNAs in Arabidopsis. Nature Communications. 10: 4424.
  4. Li Z.*, Zhang Y., Zou D., Zhao Y., Wang HL, Zhang Y., Xia X., Luo J.,Guo H. and Zhang Z.*. (2019) LSD 3.0: a comprehensive resource for the leaf senescence research community. Nucleic acids research. 48: 1069-1075.

 

2018年:

  1. Li B., Wu H. and Guo H.*. (2018) Plant mRNA decay: extended roles and potential determinants. Current Opinion in Plant Biology. 45: 178-184.
  2. Wang Y., Ji Y., Fu Y. and Guo H.*. (2018) Ethylene-induced microtubule reorientation is essential for fast inhibition of root elongation in Arabidopsis. Journal of Integrative Plant Biology 60: 864-877.
  3. Zhang X., Ji Y., Xue C., Ma H., Xi Y., Huang P., Wang H., An F., Li B., Wang Y. and Guo H.*. (2018) Integrated regulation of apical hook development by transcriptional coupling of EIN3/EIL1 and PIFs in Arabidopsis. Plant Cell. 30: 1971-1988.
  4. Zhang C., Teng X., Zheng QQ., Zhao YY., Lu JY., Wang Y., Guo H.* and Yang ZN.*. (2018) Ethylene signaling is critical for synergid cell functional specification and pollen tube attraction. Plant Journal. 96: 176-187. (* co-corresponding author)
  5. Wang Y., and Guo H.*. (2018) On hormonal regulation of the dynamic apical hook development. New phytologist. 222: 1230-1234.
  6. Li Z., Woo H.* and Guo H.*. (2018) Genetic redundancy of senescence-associated transcription factors in Arabidopsis. Journal of Experimental Botany. 69: 811-823. (* co-corresponding author)

 

2017年:

  1. Feng Y., Xu P., Li B., Li P., Wen X., An F., Gong Y., Xin Y., Wang Y.* and Guo H.*. (2017) Ethylene promotes root hair growth through coordinated EIN3/EIL1 and RHD6/RSL1 activity in Arabidopsis. Proceedings of the National Academy of Sciences. 114: 13834-13839. (* co-corresponding author)
  2. Guo P., Li Z., Huang P., Li B., Fang S., Chu J. and Guo H.*. (2017) A tripartite amplification loop involving the transcription factor WRKY75, salicylic acid and reactive oxygen species accelerates leaf senescence. Plant Cell. 29: 2854-2870.
  3. Zhang X. and Guo H.*. (2017) mRNA decay in plants: both quantity and quality matter. Current Opinion in Plant Biology. 35: 138-144.
  4. Sun X., Li Y., He W., Ji C., Xia P., Wang Y., Du S., Li H, Raikhel N., Xiao J.* and Guo H.*. (2017) Pyrazinamide and derivatives block ethylene biosynthesis by inhibiting ACC oxidase. Nature Communications. 8:15758. (* co-corresponding author)
  5. Hao D., Sun X., Ma B., Zhang JS* and Guo H.*. (2017) 6 - Ethylene. hormone metabolism and signaling in plants. J. Li, C. Li and S. M. Smith, Academic Press: 203-241. (* co-corresponding author)
  6. Li Z. and Guo H.*. (2017) Ethylene treatment in studying leaf senescence in Arabidopsis. Methods in Molecular Biology: Plant Senescence. 1744: 105-112. (* co-corresponding author)
  7. Li Z., Zhao Y., Liu X., Jiang Z., Peng J., Jin J., Guo H.* and Luo J.*. (2017) Construction of the leaf senescence database and functional assessment of senescence-associated genes. Methods in Molecular Biology: Plant Genomics Databases. 1533: 315-333.  (* co-corresponding author)
  8. Jiang B., Shi Y., Zhang X., Xin X., Qi L., Guo H., Li J. and Yang S.*. (2017) PIF3 is a negative regulator of the CBF pathway and freezing tolerance in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America. 114:E6695-E6702.

 

2016年:

  1. Song W., Liu L., Wang J., Wu Z., Zhang H., Tang J., Lin G., Wang Y., Wen X., Li W., Han Z., Guo H.* and Chai J.*. (2016) Signature motif-guided identification of receptors for peptide hormones essential for root meristem growth. Cell Research. 26: 674-685. (* co-corresponding author)
  2. Li M., An F.*, Li W., Ma M., Feng Y., Zhang X. and Guo H.*. (2016) DELLA proteins interact with FLC to repress flowering transition. J Integr Plant Biol. 58: 642-655. (* co-corresponding author)
  3. Zhang X., Zhu Y., Wu H. and Guo H.*. (2016) Post-transcriptional gene silencing in plants: a double-edged sword. Sci China Life Sci. 59: 271-276. (* co-corresponding author)
  4. Zhu Z., Xian Z., Guo H.* and Li Z.*. (2016) Ethylene biology blooms from fundamental research to postharvest applications. Mol Plant. 9:187-188. (* co-corresponding author)
  5. Qing D., Yang Z., Li M., Wong WS., Guo G., Liu S., Guo H.and Li N.*. (2016) Quantitative and functional phosphoproteomic analysis reveals that ethylene-regulates water transport via the c-terminal phosphorylation of AQUAPORIN PIP2;1 in Arabidopsis. Mol Plant. 9:158-174. (* co-corresponding author)

 

2015年:

  1. Li W., Ma M., Feng Y., Li H., Wang Y., Ma Y., Li M., An F. and Guo H.*. (2015) EIN2-directed translational regulation of ethylene signaling in Arabidopsis. Cell, 163: 670-683.
  2. Zhang X., Zhu Y., Liu X., Hong X., Xu Y., Zhu P., Shen Y., Wu H., Ji Y., Wen X., Zhang C., Zhao Q., Wang Y., Lu J. and Guo H.* (2015). Suppression of endogenous gene silencing by bidirectional cytoplasmic RNA decay in Arabidopsis. Science. 348: 120-123.
  3. Song J., Zhu C., Zhang X., Wen X., Liu L., Peng J., Guo H.* and Yi C.*. (2015) Biochemical and Structural Insights into the mechanism of DNA recognition by ArabidopsisETHYLENE INSENSITIVE3. PLoS One. 10: e0137439. (* co-corresponding author)

 

2014年:

  1. Peng J., Li Z., Wen X., Li W., Shi H., Yang L., Zhu H. and Guo H.* (2014). Salt-induced stabilization of ein3/eil1 confers salinity tolerance by diminishing ROS accumulation in Arabidopsis. PLoS Genetics. 10: e1004664.
  2. Zhang X., Zhu Z., An F., Hao D., Li P., Song J., Yin C. and Guo H.*. (2014) Jasmonate-activated MYC2 represses ETHYLENE INSENSITIVE3 activity to antagonize ethylene-promoted apical hook formation in Arabidopsis. Plant Cell 26:1105-1117.
  3. Zhong S., Shi H., Xue C., Wei N., Guo H.* and Deng X.*. (2014) Ethylene-orchestrated circuitry coordinates a seedling's response to soil cover and etiolated growth. Proceedings of the National Academy of Sciences. 111: 3913-3920. (* co-corresponding author)
  4. Li Z., Zhao Y., Liu X., Peng J., Guo H.* and Luo J.*. (2014). LSD 2.0: an update of the leaf senescence database. Nucleic Acids Research. 42: D12000-12005. (* co-corresponding author)

 

2013年:

  1. Li Z., Peng J., Wen X. and Guo H.*. (2013) ETHYLENE-INSENSITIVE3 is a senescence-associated gene that accelerates age-dependent leaf senescence by directly repressing miR164 transcription in Arabidopsis. Plant Cell. 25: 3311-3328.
  2. Zhang X., Chen Y., Lin X., Hong X., Zhu Y., Li W., He W., An F. and Guo H.*. (2013) Adenine Phosphoribosyl Transferase 1 is a key enzyme catalyzing cytokinin conversion from nucleobases to nucleotides in Arabidopsis. Mol Plant. 6:1661-1672.
  3. Song S., Qi T., Fan M., Zhang X., Gao H., Huang H., Wu D., Guo H.and Xie D.*. (2013) The bHLH subgroup IIId factors negatively regulate jasmonate-mediated plant defense and development. PLoS Genet. 9: e1003653.
  4. Ji Y. and Guo H.*. (2013) From endoplasmic reticulum (ER) to nucleus: EIN2 bridges the gap in ethylene signaling. Mol Plant. 6:11-14.
  5. Zheng D., Han X., An Y., Guo H., Xia X. and Yin W.*. (2013). The nitrate transporter NRT2.1 functions in the ethylene response to nitrate deficiency in Arabidopsis. Plant Cell Environ. 36: 1328-1337.
  6. Li H., Xu T., Lin D., Wen M., Xie M., Duclercq J., Bielach A., Kim J., Reddy G.V., Zuo J., Benková E., Friml J., Guo H.and Yang Z.*. (2013) Cytokinin signaling regulates pavement cell morphogenesis in Arabidopsis. Cell Res. 23: 290-299.
  7. Kim H., Kwon S., Jang Y., Nam M., Chung J., Na Y., Guo H. and Park O.*. (2013) GDSL LIPASE1 modulates plant immunity through feedback regulation of ethylene signaling. Plant Phys. 163: 1776-1791.

 

2012年:

  1. Wen X., Zhang C., Ji Y., Zhao Q., He W., An F., Jiang L. and Guo H.*. (2012) Activation of ethylene signaling is mediated by nuclear translocation of the cleaved EIN2 carboxyl terminus. Cell Res. 22:1613-1616.
  2. Wang Q., Fristedt R., Yu X., Chen Z., Liu H., Lee Y., Guo H., Merchant S.S. and Lin C.*. (2012) The γ-carbonic anhydrase subcomplex of mitochondrial complex I is essential for development and important for photomorphogenesis of Arabidopsis. Plant Physiology. 160: 1373-1383.
  3. Zhong S., Shi H., Xue C., Wang L., Xi Y., Li J., Quail P.H., Deng X.* and Guo H.*. (2012) A molecular framework of light-controlled phytohormone action in Arabidopsis. Current Biology 22: 1530-1535. (* co-corresponding author)
  4. Men Y., Yu Q., Chen Z., Wang J., Huang Y.* and Guo H.*. (2012) A high-throughput imaging system to quantitatively analyze the growth dynamics of plant seedlings. Integrative Biology 4:945-952. (* co-corresponding author)
  5. Shi Y., Tian S., Hou L., Huang X., Zhang X.,Guo H. and Yang S.*. (2012) Ethylene signaling negatively regulates freezing tolerance by repressing expression of cbf and type-a ARR genes in Arabidopsis. Plant Cell. 24: 2578-2595.
  6. Li Z., Peng J., Wen X. and Guo H.*. (2012) Gene network analysis and functional studies of senescence-associated genes reveal novel regulators of Arabidopsisleaf senescence. J Integr Plant Biol. 54:526-539.
  7. An F., Zhu Z., Zhang X., Ji Y., He W., Jiang Z., Li M. and Guo H.*. (2012) Coordinated regulation of apical hook development by gibberellin and ethylene in etiolated Arabidopsis Cell Res. 22: 915-927.

 

2011年:

  1. He W., Brumos J., Li H., Ji Y., Ke M., Gong X., Zeng Q., Li W., Zhang X., An F., Wen X., Li P., Chu J., Sun X., Yan C., Yan N., Xie D., Raikhel N., Yang Z., Stepanova A.N., Alonso J.M. and Guo H.*. (2011) A small-molecule screen identifies L-Kynurenine as a competitive inhibitor of TAA1/TAR activity in ethylene-directed auxin biosynthesis and root growth in Arabidopsis. Plant Cell. 23: 3944-3960.
  2. Stepanova A.N., Yun J., Robles L.M., Novak O., He W., Guo H., Ljung K. and Alonso J.M.*. (2011). The ArabidopsisYUCCA1 flavin monooxygenase functions in the indole-3-pyruvic acid branch of auxin biosynthesis. Plant Cell. 23:3961-3973.
  3. Zhu Z., An F., Feng Y., Li P., Xue L., A M., Jiang Z., Kim J., To T., Li W., Yu Q., Dong Z., Chen W., Seki M., Zhou J. and Guo H.*. (2011) Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proceedings of the National Academy of Sciences. 108:12539-12544.
  4. Zhao Q. and Guo H.*. (2011) Paradigms and paradox in the ethylene signaling pathway and interaction network. Mol. Plant. 4:626-634.
  5. Jiang Z., Liu X., Peng Z., Wan Y., Ji Y., He W., Wan W., Luo J.* and Guo H.*. (2011) AHD2.0: an update version of Arabidopsis Hormone Database for plant systematic studies. Nucleic Acids Research. 39: D1123-1129. (* co-corresponding author)
  6. Li H., Lin D., Dhonukshe P., Nagawa S., Chen D., Friml J., Scheres B., Guo H.and Yang Z.*. (2011) Phosphorylation switch modulates the interdigitated pattern of PIN1 localization and cell expansion in Arabidopsis leaf epidermis. Cell Res. 21: 970-978.
  7. Liu X., Li Z. Jiang Z., Zhao Y., Peng J., Jin J., Guo H.* and Luo J.*. (2011) LSD: a leaf senescence database. Nucleic Acids Research. 39: D1103-1107. (* co-corresponding author)

 

2010年:

  1. An F., Zhao Q., Ji Y., Jiang Z., Yu X., Liu Y., Han Y., Zhang C., Zhang S., Ecker J.R. and Guo H.* (2010). Ethylene-induced stabilization of ETHYLENE INSENSITIVE3 and EIN3-LIKE1 is mediated by proteasomal degradation of EIN3 Binding F-Box 1 and 2 that requires EIN2 in Arabidopsis. Plant Cell. 22: 2384-2401.
  2. Jiang Z. and Guo H.*. (2010) A comparative genomic analysis of plant hormone related genes in different species. J. Genet. Genomics. 37:219-230.
  3. Zhong S., Shi H., Xi Y. and Guo H.*. (2010) Ethylene is crucial for cotyledon greening and seedling survival during de-etiolation. Plant Signaling & Behavior. 5: 739-742.

 

2009年:

  1. Zhong S., Zhao M., Shi T., Shi H., An F., Zhao Q. and Guo H.*. (2009) EIN3/EIL1 cooperate with PIF1 to prevent photo-oxidation and to promote greening of Arabidopsis Proceedings of the National Academy of Sciences. 106: 21431-21436.
  2. Peng Z., Zhou X., Li L., Yu X., Li H., Jiang Z., Cao G., Bai M., Wang X., Jiang C., Lu H., Hou X., Qu L.,Wang Z., Zuo J., Fu X., Su Z., Li S. and Guo H.*. (2009) Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis. Nucleic Acids Research. 37: 975-982.
  3. Chen H., Xue L., Chintamanani S., Germain H., Lin H., Cui H., Cai R., Zuo J., Tang X., Li X., Guo H. and Zhou J.*. (2009) ETHYLENE INSENSITIVE3 and ETHYLENE INSENSITIVE3-LIKE1 repress SALICYLIC ACID INDUCTION DEFICIENT2expression to negatively regulate plant innate immunity in Arabidopsis. Plant Cell 21: 2527-2540.
  4. Li H., Wong W., Zhu L., Guo H., Ecker J.R. and Li N.*. (2009) Phosphoproteomic analysis of ethylene-regulated protein phosphorylation in etiolated seedlings of Arabidopsismutant ein2 using two-dimensional separations coupled with a hybrid quadruple time-of-flight mass spectrometer. Proteomics 9:1646-16461.

 

2008年:

  1. Zhu Z. and Guo H.*. (2008) Genetic basis of ethylene perception and signal transduction in Arabidopsis. Journal of Integrative Plant Biology. 50: 808-815.

 

2007年:

  1. Li H. and Guo H.*. (2007). Molecular basis of the ethylene signaling and response pathway in Arabidopsis. Journal of Plant Growth Regulation 26: 106-117.

 

2006年:

  1. Olmedo G.#, Guo H.#, Gregory B., Nourizadeh S., Aguilar-Henonin L., Li H., An F., Guzman P. and Ecker J.R. (2006). ETHYLENE-INSENSITIVE5 encodes a 5'→3' exoribonuclease required for posttranscriptional regulation of the EIN3-targeting F-box proteins EBF1/2. Proceedings of the National Academy of Sciences. 103: 13286-13293. (# co-first author)
  2. An F. and Guo H.*. (2006) The molecular mechanism of ethylene signal transduction. Chinese Botany Bulletin. 23: 531-542.

 

2005年之前:

  1. Guo H.# and Ecker J.R.. (2004) The ethylene signaling pathway: new insights. Curr Opin Plant Biol. 7: 40-49.
  2. Guo H.# and Ecker J.R.. (2003) Plant responses to ethylene gas are mediated by SCFEBF1/EBF2-dependent proteolysis of EIN3 transcription factor. Cell. 115: 667-677.
  3. Shalitin D., Yang H., Mockler T., Maymon M., Guo H., Whitelam G. and Lin C.*. (2002). Regulation of Arabidopsiscryptochrome 2 by blue light-dependent phosphorylation. Nature 417: 763-767.
  4. Guo H.#, Mockler T., Duong H. and Lin C.*. (2001) SUB1, an Arabidopsis Ca2+-binding protein involved in cryptochrome and phytochrome coaction. Science. 291: 487-490.
  5. Guo H.#, Duong H., Ma N. and Lin C.*. (1999) The Arabidopsis blue light receptor cryptochrome 2 is a nuclear protein regulated by a blue light-dependent post-transcriptional mechanism. Plant J. 19: 279-287.
  6. Mockler T., Guo H., Yang H., Duong H. and Lin C.*. (1999) Antagonistic actions of the Arabidopsiscryptochromes and phytochrome B in the regulation of floral induction. Development 126: 2073-2082.
  7. Guo H.#, Yang H., Mockler T. and Lin C.*. (1998) Regulation of flowering time by Arabidopsis Science. 279: 1360-1363.
  8. Lin C., Yang H., Guo H., Mockler T., Chen T. and Cashmore A.R.*. (1998) Enhancement of blue-light sensitivity of Arabidopsisseedling by a blue light receptor cryptochrome 2. Proceedings of the National Academy of Sciences. 95: 2686-2690.
  1.  

     

 

研究领域

植物激素信号转导:

植物激素在调控植物生长发育及环境响应中发挥着及其重要的作用。实验室多年来一直致力于植物激素特别是在气态激素乙烯的作用机理研究,并取得了多项突出的研究成果,学术水平处于国际领先。过去十余年间,实验室发现了乙烯途径中多个重要组分发挥功能时的分子、生化机制,如:在国际上首先发现并报道了乙烯信号转导的核心机制,即关键转录因子EIN3和EIL1的蛋白泛素化降解模型(Cell, 2003; Plant Cell, 2010),这个发现使得人们认识到了乙烯信号输出的关键节点所在;在国际上首次提出乙烯信号转导的关键正调因子EIN2蛋白在细胞核与细胞质中的双重功能理论,先后揭示了植物感受乙烯信号后EIN2蛋白由内质网进入细胞核的“剪切-入核”工作模式(Cell Research, 2012)以及在细胞质中形成mRNA复合体的“翻译抑制”工作模型(Cell, 2015),后者使实验室成为国际上在植物激素领域最先报道mRNA翻译水平调控的团队之一。同时,实验室也在乙烯与其他植物激素以及环境因子相互作用的分子机制研究领域取得了一系列重要成果,揭示出了多种信号调控植物主根生长(Plant Cell, 2011)、根毛发生和伸长(PNAS, 2011; PNAS, 2017)、顶端弯钩形成(Cell Research, 2012; Plant Cell, 2014; 2018; 2020)和幼苗出土转绿(PNAS, 2009; 2014; Current Biology, 2012; Plos Genetics, 2021)等的机理,为农业生产实践提供的坚实的理论支持。此外,实验室充分把握世界科学发展前沿,近年来引领并建立了高通量小分子筛选平台和高通量自动化表型分析平台,利用化学遗传学和表型组学等新兴技术,开辟了植物激素研究的新领域,已经发现并阐明其功能的若干重要小分子化合物,为近年来植物激素研究领域提供了重要的工具(Plant Cell, 2011; Nature Communications, 2017; JBC, 2019)。

 

植物小RNA生物学:

mRNA降解和基因沉默既是植物响应环境刺激的重要机制,也是农业转基因需要克服的重大难题。近年来,实验室开始关注植物mRNA降解、siRNA生物合成以及非编码RNA介导翻译抑制等表观遗传调控机制,并在这些研究领域作出了若干突破性的工作,如:发现植物中存在两条细胞质RNA降解通路,分别是由EIN5蛋白介导的5’3’方向途径和由SKI-Exosome复合体介导的3’5’方向途径,当同时缺失这两条降解途径时,细胞质内那些无法被降解的有缺陷的mRNA或RNA片段会在RDR6的作用下形成双链RNA,然后被植物中的Dicer-like蛋白(DCL2/4)切割形成21 nt或22 nt的siRNA,进而从转录后水平调控内源基因表达(Science, 2015);发现EBF1/2 mRNA的3’UTR是乙烯信号转导的关键节点,并发现乙烯激活EIN2后CEND脱离内质网膜并在细胞质中与EBF1/2 mRNA的3’UTR相互作用,并通过与EIN5、UPF1、PABs等蛋白的相互作用而将EBF1/2 mRNA锚定到P-body进而抑制EBF1/2翻译促进EIN3/EIL1的蛋白积累(Cell, 2015);揭示了植物中22nt siRNA可以在特定的RNA降解缺失情况下产生并大量扩增,并通过抑制靶标mRNA的翻译这一新机制发挥重要生物学功能(Nature, 2020)。目前,实验室正在基于这些重要发现开发新型的农作物转基因技术和高效的RNA干扰技术。

 

植物衰老与采后生物学:

衰老是生命周期不可获取的一部分,是任何有机体的最终归宿。有序的器官衰老进程有助于植物高效动员可移动的营养成分,促进新生组织的发育和生长。鉴于气体激素乙烯在植物叶片衰老和果实成熟中的重要作用,实验室一直关注植物叶片的衰老调控机制,在多种植物激素交叉调控叶片衰老的机制上做出了一系列重要发现(Plant Cell, 2013; 2017; 2021a; 2021b);此外,实验室还指导构建了世界上首个拟南芥激素数据库和叶片衰老数据库及其更新工作(NAR, 2009; 2011a; 2011b; 2014; 2019),分别为八大植物激素调控以及相互作用研究、植物衰老基因调控网络研究提供了最完整的数据开放平台。近年来,实验室开始建立以番茄和荔枝为模型的果实采后生物学研究平台,通过利用时下新兴的基因编辑技术和化学遗传学等手段发现了乙烯在果实发育及其采后生理中的一些新功能,推进了以往仅利用自然突变和转基因材料得到有限认识,为新型保鲜剂和优良采后性状品种的开发提供了重要理论基础。


教学

主讲:

生物学原理

植物生理学

高级植物生物学前沿与交叉

研究生科学研究规范训练


学术成果 查看更多

1)揭示了植物激素乙烯信号转导中一系列的分子及生化机制,在国际上率先建立了乙烯作用的蛋白降解模型和RNA降解模型;

2)揭示了乙烯与多种植物激素(生长素、茉莉素、赤霉素)以及与环境信号(光、胁迫)之间的相互作用机理;

3)报道了植物内源基因具有潜在的发生转录后基因沉默的风险,并发现了抑制内源转录后基因沉默的双保险模块,即功能冗余的两条细胞质RNA降解途径。

4)以拟南芥为模型开展了植物器官衰老调控机理研究,建立了世界上第一个植物叶片衰老数据库。同时,以重要园艺作物番茄为材料,对果实发育调控机理进行深入探索,综合利用分子遗传学,化学遗传学和系统生物学等手段,进行采后保鲜技术的研究开发。

新闻动态 更多新闻

  • 郭红卫教授入选2021年度全球“高被引科学家”

    2021-11-18
  • 南科大举行2021年教师节表彰大会

    2021-09-28
  • 南科大学子在知名期刊发表论文揭示细胞分裂素调控拟南芥顶端弯钩发育新机制

    2021-09-06

团队成员 查看更多

加入团队

 

      2016年初郭红卫教授全职加入南方科技大学,并新建植物学实验室。建设伊始,实验室定位“立足深圳,国际一流“,下设生化、分子、成像、种植等多个功能区域,配备了现代植物分子生物学实验室所需各种主要仪器设备,具有空间充足、布局合理等特点;2017年郭红卫教授受南科大委托筹建”南方科技大学-北京大学植物与食品联合研究所“。研究所进一步配置了各种先进仪器设施,如植物种植基地、高通量幼苗表型平台、超高分辨共聚焦显微成像系统、自动化蛋白纯化系统、质谱平台、小分子筛选平台等等。短短几年内,实验室广揽海内外优秀青年才俊,汇聚了生物信息学、分子遗传学、细胞生物学和化学遗传学等领域的多位优秀青年科学家,形成了特色鲜明的研究方向,开放、包容、合作的研究团队。

      自成立以来,实验室学术产出稳定而且优秀。除了在Nature、Plant Cell、PNAS、Nature Communications、Cell Research、Molecular Plant等一流刊物发表大量高水平学术论文外,实验室每一位新进青年科学家都获得了国家自然科学基金项目的资助,半数以上晋升为高级职称,为青年科学家走向独立和成熟提供了良好的学术环境。2016-2021五年间,实验室成员为第一作者或通讯作者累计发表SCI文章27篇,获得国家、省、市级科研项目共计20项,合计经费超过5582万元,培养广东省、深圳市各级高层次人才9名,获得人才奖励累计1620万元。

     多年来,实验室紧紧围绕“研究学术、培养人才”两大根本任务。根据每一位新进实验室学生、学者的特长和兴趣,因材施教、因势利导,在研究中培养人,在培养中促成研究。做到人尽其才的同时,使每一位过往实验室成员都得到完整的基础科学训练和切实的研究能力提升。实验室即崇尚独立思考,又鼓励合作研究,每一位高年级的学生既有独立主持的研究课题,又有合作参与的工作。实验室秉承 “爱科学、爱生活”的优良传统,紧张工作学习之余,积极开展体育锻炼和文艺活动,做到高效工作,科学休息。2016—2019届毕业生中,已有多名学生获得境外优秀高校深造的机会,包括常青藤盟校——美国康奈尔大学及约翰霍普金斯大学,纽约大学、圣路易斯华盛顿大学、西雅图华盛顿大学、德国哥廷根大学、香港科技大学、新加坡南洋理工大学等世界顶尖学府的入学橄榄枝。另有进入知名上市企业或机构,包括华为、华大基因和邦德教育等。

     长江后浪推前浪!实验室长期欢迎各位有志植物科学研究或者实验室服务的青年学生、学者加盟,只有你们的新鲜血液才能滋养我们大步向前,勇攀科研高峰!

     来信请附个人简历发送至:guohw@sustech.edu.cn

 

查看更多

联系我们

联系地址

广东省深圳市南山区学苑路1088号南方科技大学慧园1栋408室

办公电话

0755-88018451

电子邮箱

guohw@sustech.edu.cn

Copyright © 2018 All Rights Reserved.