研究副教授 力学与航空航天工程系
陈瑜研究副教授于2006年和2012年毕业于北京大学工学院,分别获得理论与应用力学专业学士学位和流体力学专业博士学位。2012年至2015在清华大学工程热物理所,2015年至2018年在伊利诺伊大学香槟分校土木环境系,2018年至2021年在洛斯阿拉莫斯国家实验室计算地球科学组做博士后研究工作。2021年6月至今在南方科技大学力学与航空航天工程系任研究副教授。
个人简介
研究领域
格子玻尔兹曼方法及其应用
现代高性能并行计算、异构计算
微流体和多孔介质内复杂流动模拟
颗粒输运模拟
工业软件开发
开源软件开发
学术成果 查看更多
[1] K. Wang, Y. Chen, M. Mehana, et al., “A physics-informed and hierarchically regularized data-driven model for predicting fluid flow through porous media,” Journal of Computational Physics, vol. 443, p. 110 526, 2021, issn: 0021-9991. doi: https://doi.org/10.1016/j. jcp.2021.110526.
[2] J. Jiménez-Martínez, J. D. Hyman, Y. Chen, et al., “Homogenization of Dissolution and Enhanced Precipitation Induced by Bubbles in Multiphase Flow Systems,” Geophysical Research Letters, vol. 47, no. 7, e2020GL087163, 2020, issn: 19448007. doi: 10.1029/2020GL087163.
[3] N. Lubbers, A. Agarwal, Y. Chen, et al., “Modeling and scale-bridging using machine learning: Nanoconfinement effects in porous media,” Scientific Reports, vol. 10, no. 1, pp. 1–13, 2020.
[4] D. P. Ryan, Y. Chen, P. Nguyen, et al., “3d particle transport in multichannel microfluidic networks with rough surfaces,” Scientific reports, vol. 10, no. 1, pp. 1–10, 2020.
[5] Chen, Yu, A. J. Valocchi, Q. Kang, and H. S. Viswanathan, “Inertial Effects During the Process of Supercritical CO2 Displacing Brine in a Sandstone: Lattice Boltzmann Simulations Based on the Continuum-Surface-Force and Geometrical Wetting Models,” Water Resources Research, vol. 55, no. 12, pp. 11 144–11 165, 2019, issn: 19447973. doi: 10.1029/2019WR025746.
[6] B. Zhao, C. W. MacMinn, B. K. Primkulov, Y. Chen, et al., “Comprehensive comparison of pore-scale models for multiphase flow in porous media,” Proceedings of the National Academy of Sciences of the United States of America, vol. 116, no. 28, pp. 13 799–13 806, 2019, issn: 10916490. doi: 10.1073/pnas.1901619116.
[7] Chen, Yu, Y. Li, A. J. Valocchi, and K. T. Christensen, “Lattice Boltzmann simulations of liquid CO2 displacing water in a 2D heterogeneous micromodel at reservoir pressure conditions,” Journal of Contaminant Hydrology, vol. 212, pp. 14–27, 2018, issn: 18736009. doi: 10.1016/j.jconhyd.2017.09.005.
[8] J. Tudek, D. Crandall, S. Fuchs, et al., “In situ contact angle measurements of liquid CO2, brine, and Mount Simon sandstone core using micro X-ray CT imaging, sessile drop, and Lattice Boltzmann modeling,” Journal of Petroleum Science and Engineering, vol. 155, pp. 3–10, 2017, issn: 09204105. doi: 10.1016/j.petrol.2017.01.047.
[9] Z. Chen, C. Xie, Y. Chen, and M. Wang, “Bonding strength effects in hydro-mechanical coupling transport in granular porous media by pore-scale modeling,” Computation, vol. 4, no. 1, p. 15, 2016, issn: 20793197. doi: 10.3390/computation4010015.
[10] Z. Wu, Y. Chen, M. Wang, and A. J. Chung, “Continuous inertial microparticle and blood cell separation in straight channels with local microstructures,” Lab on a Chip, vol. 16, no. 3, pp. 532–542, 2016, issn: 14730189. doi: 10.1039/c5lc01435b.
[11] Chen, Yu, Q. Kang, Q. Cai, M. Wang, and D. Zhang, “Lattice Boltzmann Simulation of Particle Motion in Binary Immiscible Fluids,” Communications in Computational Physics, vol. 18, no. 3, pp. 757–786, 2015, issn: 19917120. doi: 10.4208/cicp.101114.150415a.
[12] Z. Xia, Y. Shi, Y. Chen, M. Wang, and S. Chen, “Comparisons of different implementations of turbulence modelling in lattice Boltzmann method,” Journal of Turbulence, vol. 16, no. 1, pp. 67–80, 2015, issn: 14685248. doi: 10.1080/14685248.2014.954709.
[13] Chen, Yu, Q. Cai, Z. Xia, M. Wang, and S. Chen, “Momentum-exchange method in lattice Boltzmann simulations of particle-fluid interactions,” Physical Review E – Statistical, Nonlinear, and Soft Matter Physics, vol. 88, no. 1, p. 13 303, 2013, issn: 15393755. doi: 10.1103/PhysRevE.88.013303.
[14] Chen, Yu, Q. Kang, Q. Cai, and D. Zhang, “Lattice Boltzmann method on quadtree grids,” Physical Review E – Statistical, Nonlinear, and Soft Matter Physics, vol. 83, no. 2, 2011, issn: 15393755. doi: 10.1103/PhysRevE.83.026707.
Open-source Projects:
1. MF-LBM, a portable, scalable and high-performance lattice Boltzmann code for complex flow simulation in porous media (lanl/MF-LBM (github.com))
2. dfnWorks, a parallelized computational suite to generate three-dimensional discrete fracture networks (DFN) and simulate flow and transport (dfnWorks (lanl.gov))