Lei Li

2021-01-16

Education experience


2010.06-2016.05      University of Nebraska-Lincoln    Department of Chemistry   PhD

2005.09-2009.07      University of Science and Technology of China  Department of Materials Science and Engineering   BS

 

Work experience


2020.11-present          Southern University of Science and Technology        Associate Professor

2016.07-2020.10      University of Texas at Austin      Postdoc

 

Research


  1. Computational method development: developing the machine-learning method and long timescale dynamics method.
  2. Catalytic mechanism study and catalyst optimal design: applying theoretical methods, such as dynamic methods, saddle-point searching methods, the Monte Carlo method, etc., to investigate catalytic mechanism of catalysts.
  3. Database development for catalytic systems.

 

Publications


 

[1]. Zhang, P.; Han, B.; Yang, X.; Zou, Y.; Lu, X.; Liu, X.; Zhu, Y.; Wu, D.; Shen, S.; Li, L.; Zhao, Y.; Francisco, J. S.; Gu, M.; Revealing the Intrinsic Atomic Structure and Chemistry of Amorphous LiO2 Containing Products in Li-O2 Batteries Using Cryogenic Electron Microscopy. J. Am. Chem. Soc., 2022, DOI: 10.1021/jacs.lc10146.

[2]. Wang, Q.; Zhang Z.; Cai, C.; Wang, M.; Zhao, Z. L.; Li, M.; Huang, X.; Han, S.; Zhou, H.; Feng, Z.; Li, L.; Li, J.; Xu, H.; Francisco, J. S.*; Gu, M.* Single Iridium Atom Doped Ni2P Catalyst for Optimal Oxygen Evolution. J. Am. Chem. Soc., 2021, 143(34), 13605-13615.

[3]. Zhu, Y.; Wang, S.; Li, B.; Yang, X.; Wu, D.; Feng, S.; Li, L.*; Rogach, A., L.; Gu, M.* Twist-to-Untwist Evolution and Cation Polarization Behavior of Hybrid Halide Perovskite Nanoplatelets Revealed by Cryogenic Transmission Electron Microscopy. J. Phys. Chem. Lett., 2021, 12 (51), 12187-12195.

[4]. Jiang, J.; Marin, C. M.; Both, A. K.; Cheung, C. L.; Li, L.*; Zeng, X. C.* Formation of dimethyl carbonate via direct esterification of CO2 with methanol on reduced or stoichiometric CeO2(111) and (110) surfaces. Phys. Chem. Chem. Phys., 2021, 23(30), 16150-16156

[5]. Li, L.; Li, H.; Seymour, I.; Koziol, L.; Henkelman, G. Pair-distribution-function Guided Optimization of Fingerprints for Atom-centered Neural Network Potentials. J. Chem. Phys., 2020, 152(22): 224102.

[6]. Yang, J.; Li, L.; Wang, S.; Li, H.; Francisco, J.; Zeng, X. C.; Gao, Y. Unraveling a New Chemical Mechanism of Missing Sulfate Formation in Aerosol Haze: Gaseous NO2 with Aqueous HSO3-/SO32-J. Am. Chem. Soc.2019, 141, 19312-19320

[7]. Li, L.; Li, X.; Duan, Z.; Koziol, L.; Henkelman, G. Adaptive Kinetic Monte Carlo Simulations of Surface Segregation in PdAu Nanoparticles. Nanoscale, 2019, 21, 10524-10535.

[8]. Li, L.; Duan, H. Li, C. Zhu, G. Henkelman, J. S. Francisco, and X.-C. Zeng, Formation of HONO from the NH3-promoted hydrolysis of NO2 dimers in the atmosphere. Proc. Natl. Acad. Sci. U. S. A., 2018,  115, 7736-7241.

[9]. Li, L.; Kumar, M.; Zhu, C.; Zhong, J.; Francisco, J. S.; Zeng, X. C. Near-Barrierless Ammonium Bisulfate Formation via a Loop-Structure Promoted Proton Transfer Mechanism on the Surface of Water.  J. Am. Chem. Soc., 2016138, 1816. (Highlighted in C&EN)

[10]. Li, L.; Zeng, X. C. Direct Simulation Evidence of Generation of Oxygen Vacancies at the Golden Cage Au16 and TiO2 (110) Interface for CO Oxidation. J. Am. Chem. Soc., 2014, 136, 15857-15860.

[11]. Li, L.; Gao, Y.; Li, H.; Zhao, Y.; Pei, Y.; Chen, Z.; Zeng, X. C.  CO Oxidation on TiO2 (110) Supported Subnanometer Gold Clusters: Size and Shape Effects. J. Am. Chem. Soc., 2013, 135, 19336.

[12]. He, R.#; Li, L.#; Zhong, J.; Zhu, C.; Francisco, J. S.; Zeng, X. C. Resolving the HONO formation mechanism in the ionosphere via ab initio molecular dynamic simulations. Proc. Natl. Acad. Sci. U. S. A., 2016, 113, 4629.

[13]. Li, H.#; Li, L.#; Pedersen, A.#; Gao, Y.; Khetrapal, N.; Jonsson, H.; Zeng, X. C. Magic-Number Gold Nanoclusters with Diameters from 1 to 3.5 nm: Relative Stability and Catalytic Activity for CO oxidation. Nano Lett.2015, 15, 682-688.

[14]. Li, L.#; Li, P.#; Lu, L.; Dai J.; Zeng, X. C. Simulation Evidence of Hexagonal-tetragonal ZnSe Structure Transition: a Monolayer Material with Wide-range Tunable Direct Bandgap.  Adv. Sci., 2015, 2, 1500290. (Cover Article)

[15]. Li, L.; Li, H.; Zeng, X. C. Structural Transition of Au18 from Pyramidal to Hollow-cage during Soft-landing onto the TiO(110) Surface: Molecular Dynamic Simulation. Chem. Comm., 2015, 51, 9535-9538.