• Journal Papers
  • Invention Patent

[35]    T. Zhao, J. Cao, X. Li, M. Xia, B. Xue, and H. Yuan, A Network-Based Visco-Hyperelastic Constitutive Model for Optically Clear Adhesives, Extreme Mechanics Letters 51, 101594 (2022).

[34]    T. Zhao, Y. Sun, Q. Zhu, X. Li, M. Baghaee, Y. Wang, and H. Yuan, A Contraction-Reaction-Diffusion Model for Circular Pattern Formation in Embryogenesis, Journal of the Mechanics and Physics of Solids 157, 104630 (2021).

[33]    T. Xie, J. Kang, C. Pak, H. Yuan, and Y. Sun, Temporal Modulations of NODAL, BMP, and WNT Signals Guide the Spatial Patterning in Self-Organized Human Ectoderm Tissues, Matter (2020).

[32]    S. Chen, Y. Pang, H. Yuan, X. Tan, and C. Cao, Smart Soft Actuators and Grippers Enabled by Self-Powered Tribo-Skins, Advanced Materials Technologies n/a, 1901075 (2020).

[31]    S. Chen, Y. Cao, M. Sarparast, H. Yuan, L. Dong, X. Tan, and C. Cao, Soft Crawling Robots: Design, Actuation, and Locomotion, Advanced Materials Technologies 5, 1900837 (2020).

[30]    Z. Wu, H. Yuan, X. Zhang, and X. Yi, Sidewall Contact Regulating the Nanorod Packing inside Vesicles with Relative Volumes, Soft Matter 15, 2552 (2019).

[29]    B. Marzban, J. Kang, N. Li, Y. Sun, and H. Yuan, A Contraction–Reaction–Diffusion Model: Integrating Biomechanics and Biochemistry in Cell Migration, Extreme Mechanics Letters 32, 100566 (2019).

[28]    R. Kfoury, B. Marzban, E. Makki, M. L. Greenfield, and H. Yuan, Effect of Pressure Profile of Shock Waves on Lipid Membrane Deformation, PLoS ONE 14, e0212566 (2019).

[27]    B. Marzban, X. Yi, and H. Yuan, A Minimal Mechanics Model for Mechanosensing of Substrate Rigidity Gradient in Durotaxis., Biomechanics and Modeling in Mechanobiology 17, 915 (2018).

[26]  H. Yuan, B. Marzban, and K. K. Parker, Myofibrils in Cardiomyocytes Tend to Assemble Along the Maximal Principle Stress Directions, Journal of Biomechanical Engineering 139, (2017).

[25]  B. Marzban and H. Yuan, The Effect of Thermal Fluctuation on the Receptor-Mediated Adhesion of a Cell Membrane to an Elastic Substrate, Membranes 7, (2017).

[24]  J. U. Lind, M. Yadid, I. Perkins, B. B. O’Connor, F. Eweje, C. O. Chantre, M. A. Hemphill, H. Yuan, P. Campbell, J. Vlassak, and K. K. Parker, Cardiac Microphysiological Devices with Flexible Thin Film Sensors for Higher-Throughput Drug Screening, Lab on a Chip Chip 17, 3692 (2017).

[23]  J. U. Lind, T. A. Busbee, A. D. Valentine, F. S. Pasqualini, H. Yuan, M. Yadid, S.-J. Park, A. Kotikian, A. P. Nesmith, P. H. Campbell, J. J. Vlassak, J. A. Lewis, and K. K. Parker, Instrumented Cardiac Microphysiological Devices via Multimaterial Three-Dimensional Printing, Nat Mater 16, 303 (2017).

[22]  S.-P. Fu, Z. Peng, R. Kfoury, H. Yuan, and Y.-N. Young, Lennard-Jones Type Pair-Potential Method for Coarse-Grained Lipid Bilayer Membrane Simulations in LAMMPS, Computer Physics Communications 193–203, (2017).

[21]  L. F. Deravi, N. R. Sinatra, C. O. Chantre, A. P. Nesmith, H. Yuan, S. K. Deravi, J. A. Goss, L. A. MacQueen, M. R. Badrossamy, G. M. Gonzalez, M. D. Phillips, and K. K. Parker, Design and Fabrication of Fibrous Nanomaterials Using Pull Spinning, Macromol. Mater. Eng. 302, 1600404 (2017).

[20]  S.-J. Park, M. Gazzola, K. S. Park, S. Park, V. Di Santo, E. L. Blevins, J. U. Lind, P. H. Campbell, S. Dauth, and A. K. Capulli, Phototactic Guidance of a Tissue-Engineered Soft-Robotic Ray, Science 353, 6295 (2016).

[19]  B. Marzban and H. Yuan, The Effect of Viscous Force on the Prediction of Muscle Contractility in Biohybrid Cantilever-Based Experiments, Extreme Mechanics Letters 9, 342 (2016).

[18]  Y. Aratyn-Schaus, F. S. Pasqualini, H. Yuan, M. L. McCain, G. J. C. Ye, S. P. Sheehy, P. H. Campbell, and K. K. Parker, Coupling Primary and Stem Cell-Derived Cardiomyocytes in an in Vitro Model of Cardiac Cell Therapy, The Journal of Cell Biology 212, 389 (2016).

[17] G. Wang, M. L. McCain, L. Yang, A. He, F. S. Pasqualini, A. Agarwal, H. Yuan, D. Jiang, D. Zhang, L. Zangi, J. Geva, A. E. Roberts, Q. Ma, J. Ding, J. Chen, D.-Z. Wang, K. Li, J. Wang, R. J. A. Wanders, W. Kulik, F. M. Vaz, M. A. Laflamme, C. E. Murry, K. R. Chien, R. I. Kelley, G. M. Church, K. K. Parker, and W. T. Pu, Modeling the Mitochondrial Cardiomyopathy of Barth Syndrome with Induced Pluripotent Stem Cell and Heart-on-Chip Technologies, Nature Medicine 20, 616 (2014).

[16]  M. L. McCain, H. Yuan, F. S. Pasqualini, P. H. Campbell, and K. K. Parker, Matrix Elasticity Regulates the Optimal Cardiac Myocyte Shape for Contractility, American Journal of Physiology. Heart and Circulatory Physiology 306, H1525 (2014).

[15] H. M. Golecki, H. Yuan, C. Glavin, B. Potter, M. R. Badrossamay, J. A. Goss, M. D. Phillips, and K. K. Parker, Effect of Solvent Evaporation on Fiber Morphology in Rotary Jet Spinning, Langmuir 30, 13369 (2014).

[14]  Y. Li, H. Yuan, A. von dem Bussche, M. Creighton, R. H. Hurt, A. B. Kane, and H. Gao, Graphene Microsheets Enter Cells through Spontaneous Membrane Penetration at Edge Asperities and Corner Sites, Proceedings of the National Academy of Sciences (2013).

[13]  C. Huang, Y. Zhang, H. Yuan, H. Gao, and S. Zhang, Role of Nanoparticle Geometry in Endocytosis: Laying down to Stand Up, Nano Letters 13, 4546 (2013).

[12]  H. Yuan and H. Gao, On the Mechanics of Integrin Clustering during Cell-Substrate Adhesion, Acta Mechanica Solida Sinica 25, 467 (2012).

[11]  H. Yuan, C. Huang, and S. Zhang, Membrane-Mediated Inter-Domain Interactions, BioNanoScience 1, 97 (2011).

[10]  C. Huang, H. Yuan, and S. Zhang, Coupled Vesicle Morphogenesis and Domain Organization, Applied Physics Letters 98, 043702 (2011).

[9]  H. Yuan and S. Zhang, Effects of Particle Size and Ligand Density on the Kinetics of Receptor-Mediated Endocytosis of Nanoparticles, Applied Physics Letters 10 (2010).

[8] H. Yuan, J. Li, G. Bao, and S. Zhang, Variable Nanoparticle-Cell Adhesion Strength Regulates Cellular Uptake, Physical Review Letters 105, 138101 (2010).

[7]  H. Yuan, J. H. Lee, and J. E. Guilkey, Stochastic Reconstruction of the Microstructure of Equilibrium Form Snow and Computation of Effective Elastic Properties, Journal of Glaciology 56, 405 (2010).

[6]  H. Yuan, C. Huang, and S. Zhang, Virus-Inspired Design Principles of Nanoparticle-Based Bioagents, PloS One 5, e13495 (2010).

[5]  H. Yuan, C. Huang, and S. Zhang, Dynamic Shape Transformations of Fluid Vesicles, Soft Matter 6, 4571 (2010).

[4]  H. Yuan, C. Huang, J. Li, G. Lykotrafitis, and S. Zhang, One-Particle-Thick, Solvent-Free, Coarse-Grained Model for Biological and Biomimetic Fluid Membranes, Physical Review E 82, 011905 (2010).

[3]  S. S. Terdalkar, S. Huang, H. Yuan, J. J. Rencis, T. Zhu, and S. Zhang, Nanoscale Fracture in Graphene, Chemical Physics Letters 494, 218 (2010).

[2  X. Huang, H. Yuan, W. Liang, and S. Zhang, Mechanical Properties and Deformation Morphologies of Covalently Bridged Multi-Walled Carbon Nanotubes: Multiscale Modeling, Journal of the Mechanics and Physics of Solids 58, 1847 (2010).

[1]  X. Huang, H. Yuan, K. J. Hsia, and S. Zhang, Coordinated Buckling of Thick Multi-Walled Carbon Nanotubes under Uniaxial Compression, Nano Research 3, 32 (2010).

一种具有自主弯曲功能的肠镜系统及其弯曲方法 ,发明专利申请号:202111120897.8


Copyright © 2018 All Rights Reserved.