吴勇波

讲席教授 机械与能源工程系

吴勇波,1997年初毕业于日本东北大学(Tohoku University)精密工程专业,获博士学位,其后担任日本尼康公司主任级工程师,1998年任日本东北大学助理教授,2000年加入日本秋田県立大学(Akita Prefectural University)先后担任讲师/副教授/教授,回国前任日本秋田県立大学材料创制加工实验室主任教授。2017年5月回国后任南方科技大学机械与能源工程系讲席教授。吴勇波教授的研究领域包括磁场/电场辅助纳米精度抛光,超声辅助精密加工,电场-超声复合辅助加工等。他在国际知名学术期刊和学术会议上发表论文两百多篇,日本专利16项,中国专利31项,参与撰写英日文著作5部。吴教授还是国际磨粒加工技术委员会委员、国际纳米制造学会会士、国际微纳机械加工制造学术研讨会系列组委会主席。

个人简介

吴勇波,1997年获得东北大学(日本)博士学位,回国前任日本秋田县立大学终身正教授,国际磨粒技术委员会委员、国际纳米制造学会会士、国际微纳机械加工制造学术研讨会ISMNM系列组委会主席。在精密加工制造领域开展了多年卓越的科研教学工作,率先在国际上提出多场辅助精密加工概念,并开展了一系列前瞻性的原创性研究。发表高水平论文200多篇,日本专利16项,中国专利31项,参与撰写英日文著作5部,先后承担项目50余项,获得超3亿日元的研究经费。接受与培养访问研究员、博士生、硕士生60余人。

研究领域:
◆ 超声辅助精密加工工艺与设备
◆ 基于磁流变效应的纳米精度研抛工艺与设备
◆ 固相化学反应利用/超声辅助复合加工工艺与设备
◆ 生物组织的椭圆超声切除机理研究与超声手术器械的研发

学习经历:
◆ 1978.10 - 1982.07 :合肥工业大学 ,机械制造工程,学士
◆ 1982.09 - 1985.02 :北京航空航天大学,航空制造工程,硕士
◆ 1992.04 - 1997.03 :东北大学(日本),精密工学工程,博士

工作经历:
◆ 2017.05 - 现在   南方科技大学,讲座教授
◆ 2007.04 - 2017.04  秋田県立大学 教授,研究室主任
◆ 2004.04 - 2007.03  秋田県立大学,副教授
◆ 2000.04 - 2004.03  秋田県立大学,专任讲师
◆ 1998.07 - 2000.03  东北大学(日本),研究助理教授
◆ 1997.04 - 1998.06  尼康公司,高级工程师
◆ 1991.10 - 1992.03  东北大学(日本),客座研究员
◆ 1989.06 - 1991.09  南昌航空大学,讲师
◆ 1987.10 - 1989.05   丰桥技术科学大学,客座研究员
◆ 1985.03 - 1987.09   南昌航空大学,助教

所获荣誉:
◆ 2018年入选深圳市南山区“领航人才”A类
◆ 2017年入选深圳市海外高层次人才“孔雀人才”A类
◆ 2012,Fellow, International Society of NanoManufacturing (ISNM)
◆ 2013,Representative, Japan Society for Precision Engineering (JSPE)
◆ 2012, Advisor/Supervisor of outstanding young scholar Award Winnerat 12theuspen,Stockholm, Sweden,
◆ 2013,Advisor/Supervisor of best paper Award Winner at 8th LEM21, Matsushima, Japan
◆ 2014,Advisor/Supervisor of outstanding young scholar Award Winner at 14theuspen, Dubrovnik, Croatia,
◆ 2015,Advisor of best paper Award winner at 11th CJUMP, Itabashi, Tokyo, Japan
◆ 2011年江西省“赣鄱英才555工程”第一批入选者
◆ 2009,30th Machine Tools Technology Award, Japanese Machine Tools Technology Promotion Foundation
◆ 2004,Best Paper Award of JSAT (Japan Society for Abrasive Technology)
◆ 2002,Kumagai Award of JSPE (Japan Society for Precision Engineering)
◆ 1999,Manufacturing and Machine Tool Research Award of JSME (Japan Society of Mechanical Engineers)

 
代表性学术论文:
  1. Sun,Linhe, Duan,Wenhong, Wu,Hanqiang, Chen,Minghan, Zeng,Jiang, Wu,Yongbo*, Chen,Yuhan, Investigation on the ultra-precision diamond turning of ZnSe aspheric surfaces using straight-nosed cutting tools, Journal of Manufacturing Processes, 104 (2023) 108-122.
  2. Wu,Hanqiang, Duan,Wenhong, Sun,Linhe, Zeng,Jiang, Li,Sisi, Wang,Qiang, Wu,Yongbo*, Chen,Yuhan, Effect of ultrasonic vibration on the machining performance and mechanism of hybrid ultrasonic vibration/plasma oxidation assisted grinding, Journal of Manufacturing Processes,94 (2023) 466-478. 
  3. Li,Gengzhuo, Xiao,Chen,Zhang,Shibo, Luo,Shengquan, Chen,Yuhan, Wu,Yongbo*,Study of the humidity-controlled CeO2 fixed-abrasive chemical mechanical polishing of a single crystal silicon wafer, TRIBOLOGY INTERNATIONAL, 178 (2023) . 
  4. Yuhan Chen, Linhe Sun, Yongbo Wu*, Improving the machining performance in single-point diamond turning of curved Zerodur optics by using straight-nosed cutting tools, Journal of Materials Processing Tech., 310 (2022) 117777.
  5. Gengzhuo Li, Chen Xiao, Shibo Zhang, Ruoyu Sun, Yongbo Wu*, An experimental investigation of silicon wafer thinning by sequentially using constant-pressure diamond grinding and fixed-abrasive chemical mechanical polishing, Journal of Materials Processing Technology, 301 (2022) 117453.
  6. Shibo Zhang,Zhirui Chen, Gengzhuo Li,Yongbo Wu*,A novel Z-shapedelastic flange structure for increasing the amplitude output of a piezoelectric ultrasonictransducer. Sensors and Actuators, A: Physical, 331 (2021) 112995.
  7. Shibo Zhang, Yifan Guo, Zhenchang Chen, Gengzhuo Li, Yongbo Wu*, Proposal of a novel elliptical ultrasonic scalpel and its fundamental performance in cartilage removal, Ultrasonics, 109 (2021) 106259.
  8. Sisi Li, Yongbo Wu*, Shijing Wu, Jiaping Qiao, Jiang Zeng, Small hole drilling of Ti-6Al-4V using ultrasonic assisted plasma electric oxidation grinding, Precision Engineering, 67(2021) 189-198.
  9. Ming Feng, Yongbo Wu*, Youliang Wang, etc. Effect of the components of magnetic compound fluid (MCF) slurry on polishing characteristics in aspheric-surface finishing with the doughnut-shaped MCF tool, Precision Engineering, 65 (2020) 216-229.
  10. Zhi Zeng, Jing He, Ziting Xiang, Qingqing Sun, Yongbo Wu and Shuai Wang*, Embrittlement of 316L stainless steel in electropulsing treatment, Journal of Materials Research and Technology, Vol.9, No.5, 2020,10669-10678.
  11. Ming Feng, Yongbo Wu*, et al. Investigation on the polishing of aspheric surfaces with a doughnut-shaped magnetic compound fluid (MCF) tool using an industrial robot[J]. Precision Engineering, 2020, 61:182-193.
  12. Wang Q, Wu Y*, Li Y, et al. Proposal of a tilted helical milling technique for high-quality hole drilling of CFRP: analysis of hole surface finish[J]. The International Journal of Advanced Manufacturing Technology, 2019, 101(1-4): 1041-1049.
  13. Nomura M*, Makita N, Fujii T, et al. Effects of Water Supply Using Ultrasonic Atomization on the Working Life of MCF Slurry in MCF Polishing[J]. International Journal of Automation Technology, 2019, 13(6): 743-748.
  14. Xu W*, Wu Y*. Piezoelectric actuator for machining on macro-to-micro cylindrical components by a precision rotary motion control[J]. Mechanical Systems and Signal Processing, 2019, 114: 439-447.
  15. Feng M, Wang Y, Bitou T, Yongbo Wu*. Polishing investigation on zirconia ceramics using magnetic compound fluid slurry[J]. International Journal of Abrasive Technology, 2019, 9(4): 257-275.
  16. Wang Z, Yang Y, Liu Y, Yongbo Wu. Prediction of time-varying chatter stability: effect of tool wear[J]. The International Journal of Advanced Manufacturing Technology, 2018, 99(9-12): 2705-2716.
  17. Wu*, Q. Wang, S. Li, D. Lu, Ultrasonic Assisted Machining of Nickle-based Superalloy Inconel 718, in: Superalloys, In Tech Publishers, ISBN 978-953-51-5335-1, Croatia-EU, 2018.3.1.
  18. Li, Y. Wu*, M. Nomura, T. Fujii, Proposal of an ultrasonic assisted electrochemical grinding method and its fundamental machining characteristics in the grinding of Ti–6Al–4V, ASME Journal of Manufacturing Science and Engineering, 140 (2018) 071009-1-9.
  19. Xu* and Y. Wu*, A novel approach to fabricate high aspect ratio micro-rod using ultrasonic vibration-assisted centerless grinding,International Journal of Mechanical Sciences, 141 (2018) 21-30.
  20. Wang, Y. Wu*, T. Bitou, M. Nomura, T. Fujii, Proposal of a tilted helical milling technique for high quality hole drilling of CFRP: Kinetic analysis of hole formation and material removal, International Journal of Advanced Manufacturing Technology, 94 (2018)4221-4235,DOI 10.1007/s00170-017-1106-3
  21. Li, Y. Wu*, K. Yamamura, M. Nomura, T. Fujii, Improving the grindability of titanium alloy Ti-6Al-4V with the assistance of ultrasonic vibration and plasma electrolytic oxidation, CIRP Annals Manufacturing Technology, Vol.66, Issue 1 (2017) DOI: 10.1016/j.cirp.2017.04.089
  22. Wu*, S. Li, M. Nomura, S. Kobayashi, T. Tachibana, Ultrasonic assisted electrolytic grinding of titanium alloy Ti-6Al-4V, International Journal of Nanomanufacturing, Vol.13, Issue 2( 2017) 152-160.
  23. Li, Y. Wu*, M. Nomura, Effect of grinding wheel ultrasonic vibration on chip formation in surface grinding of Inconel 718, Int. J. of Advanced Manufacturing Technology, 2016; DOI: 10.1007/s00170-015-8149-0.
  24. Wang, Y. Wu* and M. Nomura, Feasibility study on surface finishing of miniature V-grooves with magnetic compound fluid slurry, Precision Engineering, Vol.45, (2016) pp.67-78.
  25. Li, Y. Wu*, M. Nomura, Improving the working surface condition of electroplated cBN grinding quill in surface grinding of Inconel 718 by the assistance of ultrasonic vibration, ASME J. of Manufacturing Science and Engineering, Vol.138, (2016) pp.071008-1_8.
  26. Lu, Q. Wang, Y. Wu*, J. Cao, H. Guo, Fundamental Turning Characteristics of Inconel 718 by Applying Ultrasonic Elliptical Vibration on the Base Plane, Materials and Manufacturing Processes, Vol.30, No.8 (2015) pp.1010-1017.
  27. Cao, Y. Wu*, J. Li, Q. Zhang, A grinding force model for ultrasonic assisted internal grinding (UAIG) of SiC ceramics, Int. J. of Advanced Manufacturing Technology, Vol.81, No.5 (2015) pp.875-885.
  28. Wang, Y. Wu*, H. Guo, M. Fujimoto, M. Nomura and K. Shimada, A New MCF (Magnetic Compound Fluid) Slurry and its Performance in Magnetic Field-assisted Polishing of Oxygen- free Copper, J. of Applied Physics, 117 (2015) pp.17D712-1_4.
  29. Guo, Y. Wu*, D. Lu, M. Fujimoto, M. Nomura, Effects of pressure and shear stress on material removal rate in ultra-fine polishing of optical glass with magnetic compound fluid slurry, J. of Materials Processing Technology, Vol.214, No.11 (2014) pp.2759-2769.
  30. Cao, Y. Wu*, D. Lu, M. Fujimoto, M. Nomura, Material removal behavior in ultrasonic- assisted scratching of SiC ceramics with a single diamond tool, Int. J. of Machine Tools and Manufacture, Vol. 79 (2014) pp.49-61.
  31. Li, Y. Wu*, L. Zhou, M. Fujimoto, Vibration-Assisted Dry Polishing of Fused Silica Using a Fixed-Abrasive Polisher, Int. J. of Machine Tools and Manufacture, Vol. 77, No.1 (2014) pp.93- 102.
  32. Jiao, Y. Wu*, X. Wang, H. Guo, Z. Liang, Fundamental performance of magnetic compound fluid (MCF) wheel in ultra-fine surface finishing of optical glass, Int. J. of Machine Tools and Manufacture, Vol. 75 (2013) pp.109-118.
  33. Liang, X. Wang, Y. Wu, L. Xie, L. Jiao, W. Zhao, Experimental Study on Brittle - Ductile Transition in Elliptical Ultrasonic Assisted Grinding (EUAG) of Monocrystal Sapphire using Single Diamond Abrasive Grain, Int. J. of Machine Tools and Manufacture, Vol. 71, (2013) pp.41-51.
  34. Wu* and H. Guo, “Polishing Mechanism and Applications of Magnetic Compound Fluid (MCF) Slurry”, in: Manufacturing Technologies for the Performance Enhancement of Optical Glasses, Chapter 4.5, Science and Technology Publications, Tokyo, Japan, 2012.
  35. Xu, Y. Wu*, Simulation investigation of through-feed centerless grinding process performed on a surface grinder, Journal of Materials Processing Technology, Vol. 212 (2012), pp.927-935.
  36. Li, Y. Wu*, J. Wang, W. Yang, Y. Guo and Q. Xu, Tentative investigation towards precision polishing of optical components with ultrasonically vibrating bound-abrasive pellets, Optics Express, Vol.20, No.1 (2012), pp.568-575.
  37. Wu*, Y. Li, J. Cao and Z. Liang, “Ultrasonic Assisted Fixed Abrasive Machining of Hard- Brittle Materials”, in: Ultrasonics: Theory, Techniques and Practical Application, NOVA SCIENCE PUBLISHERS, INC., NY, USA, 2012.
  38. Peng, Y. Wu*, Z.Q. Liang, Y. B. Guo and X. Lin, An Experimental Study of Ultrasonic Vibration-assisted Grinding of Polysilicon Using Two-Dimensional Vertical Workpiece Vibration, Int. J. of Advanced Manufacturing Technology, Vol.54, (2011) pp.941-947.
  39. Xu and Y. Wu*, A new in-feed centerless grinding technique using a surface grinder J. of materials Processing Technology, Vol.211, (2011) pp.141-149.
  40. Liang, Y. Wu*, X. Wang, W. Zhao, T. Sato, W. Lin, A New Two-dimensional Ultrasonic Assisted Grinding (2D-UAG) Method and Its Fundamental Performance in Monocrystal Silicon Machining, Int. J. of Machine Tools and Manufacture, Vol.50, (2010) pp.728-736.
  41. Xu, Y. Wu*, T. Sato, W. Lin, Effects of process parameters on workpiece roundness in tangential-feed centerless grinding using a surface grinder, J. of Materials Processing Technology, Vol.210, (2010) pp.759-766.
  42. Wu*, S. Yokoyama, T. Sato, W. Lin, T. Tachibana, Development of a new rotary ultrasonic spindle for precision ultrasonically assisted grinding, Int. J. of Machine Tools and Manufacture, Vol.49, No.12/13, (2009) pp.933-938.
  43. Furuya, Y. Wu*, M. Nomura, Y. Shimada and K. Yamamoto, Fundamental performance of magnetic compound fluid polishing liquid in contact-free polishing of metal surface, J. of Materials Processing Technology, Vol. 201, (2008) pp.536-541.
  44. Wu*, “Ultrasonic-shoe Centerless Grinding”, in: Illustration of Abrasive Technology, Chapter 2.2.4, edited by Japan Society for Abrasive Technology, Nihon Kogyo Chosakai Publications, Tokyo, Japan, 2005.
  45. Wu*, “Ultra-precision Centerless Grinding”, in: Ultra-precision Machining and Aspherical Machining, Chapter 1.7, edited by Katsuo Syoji, NTS Publications, Tokyo, Japan, 2004.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

研究领域

方向一:电场/磁场辅助抛光

1. 磁性复合流体(MCF)及其在纳米精密表面抛光中的基本特性

2. TAS/Fresnel透镜模具抛光

3. 石英/蓝宝石/精细陶瓷的纳米级MCF表面处理

4. 非球面(凹面和凸面)镜面光整加工

5. MCF抛光轮的开发与应用研究

6. 毛细管内表面纳米级抛光技术研究

 

方向二:超声辅助加工

1. 超声辅助内圆镜面磨削

2. 超声振动主轴开发研究

3. 椭圆超声辅助磨削技术及其在蓝宝石、硅、碳化硅高效精密加工中的应用

4. 超声辅助固定磨料化学机械抛光技术及其在硅/光学玻璃精密加工和晶圆边缘处理中的应用

5. 难切削材料(钛合金、镍基合金)的超声辅助切削和磨削

 

方向三:电场超声复合辅助加工

1. 难加工材料(钛合金、镍基合金、碳化钨)的超声辅助电解/等离子氧化磨削(E/POG)

2. 难加工材料的电塑性效应/超声复合辅助加工

 

方向四:斜螺旋铣磨(THM/G)方法

1. THM/G法在CFRP及陶瓷材料钻孔中的应用

2. THM/G陶瓷开槽

 

方向五:无心磨削

1. 一种在平面磨床上进行无心磨削的新方法

2. 超声无心磨削微柱/球加工

 

方向六:超声手术器械

1. 椭圆超声吸引器及其对软骨、软组织的去除

2. 面向硬骨精细化低损伤去除的超声骨刀

3. 多模态超声吸引器

 

 

 

 


教学

主讲课程:机械制造基础(本科),复合制造技术前沿(研究生)


学术成果 查看更多

吴勇波教授首先提出多场(声场:超声,磁场:磁流变,电场:等离子放电/电致塑性/微波,光场:激光/紫外线,化学场:固相反应)辅助精密加工,并在此领域开展了一系列前瞻性、原创性研究,被公认为这一领域的权威专家,发表论文两百多篇,申请或授权专利40余项(日本16项,中国31项),参与撰写英日文著作5部,受邀在学术研讨会上做专题报告近30次。

新闻动态 更多新闻

  • 2024年(第四届)全国超声加工技术研讨会在深圳成功举办

    2024-04-23
  • 会议通知(第二轮)| 2024年(第四届)全国超声加工技术研讨会

    2024-02-01
  • 南科大2023年毕业典礼|研究生毕业生代表张诗博:一以贯之的努力,不得懈怠的人生!

    2023-06-30

加入团队

联系我们

联系地址

深圳市南山区学苑大道1088号

办公电话

0755-88015371

电子邮箱

wuyb@sustech.edu.cn

Copyright © 2018 All Rights Reserved.