Assistant Professor Department of Physics

The research interest of our team is experimental investigation of superconducting quantum computation and quantum simulation.

As the means and precision of manipulating quantum systems have advanced, the idea of quantum information, namely, processing information based on the basic principles of quantum mechanics, has also become more plausible. Quantum information processing uses quantum resources that have no classical counterparts, such as quantum superposition and entanglement, to process information, and has been shown, both theoretically and experimentally, to have tremendous advantage over classical information processing in certain scenarios. For example, quantum algorithms for integer factorization and searching unsorted database are much more efficient then known classical algorithms. Furthermore, classical simulation of a quantum system is believed to be practically intractable, while quantum simulation, using one quantum system to simulate another one, may be a straightforward and natural solution.

Among the various proposed schemes of realizing quantum computation and quantum simulation, the one based on superconducting quantum circuits appears to be promising, due to the fact that such circuits are relatively easy to fabricate, control, and scale up. Using quantum circuits based on superconducting Josephson junctions, we can build the basic block for quantum information processing, namely, the qubits (quantum bits), as well as controllable coupling between qubits. It is believed by many researchers that quantum computation based on superconducting circuits may first reach the so called Quantum Supremacy, a clear demonstration of the ability of quantum computing devices to solve problems that classical computers practically cannot.

Personal Profile

Research Interest

The research interest of our team is experimental investigation of superconducting quantum computation and quantum simulation.

As the means and precision of manipulating quantum systems have advanced, the idea of quantum information, namely, processing information based on the basic principles of quantum mechanics, has also become more plausible. Quantum information processing uses quantum resources that have no classical counterparts, such as quantum superposition and entanglement, to process information, and has been shown, both theoretically and experimentally, to have tremendous advantage over classical information processing in certain scenarios. For example, quantum algorithms for integer factorization and searching unsorted database are much more efficient then known classical algorithms. Furthermore, classical simulation of a quantum system is believed to be practically intractable, while quantum simulation, using one quantum system to simulate another one, may be a straightforward and natural solution.

Among the various proposed schemes of realizing quantum computation and quantum simulation, the one based on superconducting quantum circuits appears to be promising, due to the fact that such circuits are relatively easy to fabricate, control, and scale up. Using quantum circuits based on superconducting Josephson junctions, we can build the basic block for quantum information processing, namely, the qubits (quantum bits), as well as controllable coupling between qubits. It is believed by many researchers that quantum computation based on superconducting circuits may first reach the so called Quantum Supremacy, a clear demonstration of the ability of quantum computing devices to solve problems that classical computers practically cannot.

Our team devotes to experimentally advancing the field of superconducting quantum computation and quantum simulation. The current research focus includes:

1. Superconducting quantum chips. We use Josephson-junction-based superconducting quantum devices to build qubits and various qubit-coupling schemes, as well as measurement apparatus approaching quantum limits. Besides widely adapted design, we are also interested in developing novel architectures such as hybrid quantum systems that couple superconducting circuits and other quantum devices.

2. Quantum computation and quantum simulation based on superconducting circuits. We closely collaborate with theorists to explore the possibility of realizing quantum computation and quantum simulation on superconducting quantum chips. Our current interest includes, but limited to, geometric quantum computation, quantum automata, quantum few-body systems, and quantum simulation of exemplary models in condensed matter physics. In addition, we always have a keen interest in using superconducting quantum systems to explore fundamental issues of quantum mechanics.

 

Professional Experience

◆2015/3 - present: Southern University of Science and Technology, Assistant Professor

◆2009/1 - 2015/2: Rutgers, the State University of New Jersey, Research Associate

◆2006/7 - 2008/7: University of Pennsylvania, Postdoctoral Fellow

◆2005/6 - 2006/6: University of South Carolina, Postdoctoral Fellow

 

Educational Background

◆1998/9 - 2005/5: University of Maryland, Ph.D.

◆1995/9 - 1998/6: Chinese Academy of Sciences, Institute of Semiconductors, M.S.

◆1991/9 - 1995/6: University of Electronic Science and Technology of China, B.S.

 

Selected Publications

◆Experimental realization of non-adiabatic shortcut to non-Abelian geometric gates,

Tongxing Yan et al., Phys. Rev. Lett. 122, 080501 (2019).

◆Trap healing and ultralow-noise Hall effect at the surface of organic semiconductors,

B. Lee*, Y. Chen*, D. Fu, H. T. Yi, K. Czelen and V. Podzorov, Nature Mater. 12, 1125-1129 (2013)

◆Bias stress effect in “air-gap” organic field-effect transistors,

Y. Chen and V. Podzorov, Advanced Materials 24, 2679-2684 (2012).

◆The origin of a 650 nm photoluminescence band in rubrene,

Y. Chen, B. Lee, D. Fu, and V. Podzorov, Advanced Materials 23, 5370-5375 (2011).

◆Positive current correlations associated with super-Poissonian shot noise,

Y. Chen and R. A. Webb, Phys. Rev. Lett., 97, 066604 (2006)

◆Full Shot Noise in Mesoscopic Tunnel Barriers,

Y. Chen and R. A. Webb, Phys. Rev. B, 73, 035424 (2006)

(*: equal contribution).

 

Contact

◆Email:chenyz@sustc.edu.cn

◆Tel:0755-88018226

◆Address: Room 130, Faculty Research Building 2, Department of Physics, Southern University of Science and Technology, No. 1088, Xueyuan Rd., Xili, Nanshan District, Shenzhen, Guangdong, China

◆Zipcode:518055

Research

Our team devotes to experimentally advancing the field of superconducting quantum computation and quantum simulation. The current research focus includes:

1. Superconducting quantum chips. We use Josephson-junction-based superconducting quantum devices to build qubits and various qubit-coupling schemes, as well as measurement apparatus approaching quantum limits. Besides widely adapted design, we are also interested in developing novel architectures such as hybrid quantum systems that couple superconducting circuits and other quantum devices.

2. Quantum computation and quantum simulation based on superconducting circuits. We closely collaborate with theorists to explore the possibility of realizing quantum computation and quantum simulation on superconducting quantum chips. Our current interest includes, but limited to, geometric quantum computation, quantum automata, quantum few-body systems, and quantum simulation of exemplary models in condensed matter physics. In addition, we always have a keen interest in using superconducting quantum systems to explore fundamental issues of quantum mechanics.


Teaching

Main Course: University physics B


Publications Read More

Recently, a team led by Man-Hong Yung (associate professor) and Yuanzhen Chen (assistant professor) from the SUSTech Institute for Quantum Science and Technology and the Department of Physics has made progress towards the realization of quantum computation based on superconducting quantum circuits. The result was published in the journal of Physical Review Letters titled “Experimental Realization of Nonadiabatic Shortcut to non-Abelian Geometric Gates.”

Prof. Man-Hong Yung, together with graduate student Bao-Jie Liu, proposed a scheme employing a three-level quantum system. The ground and the second excited states of the system are used to form a qubit, whereas the first excited state is an auxiliary state. By applying two microwave pulses that are slightly off-resonant with the two quantum transitions of the system, and precisely designing the shape of the two pulses, researchers can accurately generate any desired geometric phases and realize arbitrary geometric quantum gates.

Prof. Yuanzhen Chen, together with postdoctoral researcher Tongxing Yan, successfully demonstrated this proposal on superconducting quantum circuits and achieved a fidelity of 97% for single-qubit quantum gates. These gates are several times faster than most conventional geometric quantum gates and exhibit a better fault tolerance about errors in the control pulses. The significant contributions to the infidelity include decoherence caused by the interaction between the qubit and the environment and errors in the microwave control signals.

The work of the SUSTech team may inspire further interest in some regions of geometric quantum computation. The team is now pursuing the realization of two-qubit quantum gates following the same idea of shortcut-to-adiabaticity, as well as even more straightforward ways of implementing geometric quantum computation.

Article link https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.122.080501

News More

  • Progress in superconducting quantum computing research by Man-Hong Yung's research group and Yuanzhen Chen's research group

    Recently, a team led by Man-Hong Yung (associate professor) and Yuanzhen Chen (assistant professor) from the SUSTech Institute for Quantum Science and Technology and the Department of Physics has made progress towards the realization of quantum computation based on superconducting quantum circuits. The result was published in the journal of Physical Review Letters titled “Experimental […]

    2019-10-31

Lab members Read More

Join us

Contact Us

Contact Address

Room 130, Research Building 2, No. 1088, Xueyuan Rd., Nanshan District, Shenzhen, Guangdong,China 518055

Office Phone

0755-88018226

Email

chenyz@sustech.edu.cn

Copyright © 2018 All Rights Reserved.