MARK JAMES HOPWOOD

副教授 海洋科学与工程系

Mark Hopwood,南方科技大学海洋科学与工程系副教授。Hopwood博士于2015年在英国南安普顿大学获得海洋和地球科学博士学位,其导师Peter Statham是痕量金属超净技术方面领先的研究学者,而该技术是研究海洋中超低浓度金属所必需的技术。同年,Hopwood博士加入了德国GEOMAR基尔亥姆霍兹海洋研究中心,在Eric Achterberg教授课题组——全球最大的海洋化学研究组完成了博士后研究工作。同时还在美国北卡罗莱纳大学威尔明顿分校进行交流学习。2017年,Hopwood博士被任命为智利高纬度海洋生态系统动态研究中心的副研究员(瓦尔迪维亚,智利)。2019年,Hopwood博士获得了德国科学基金会(DFG)资助的独立研究项目,用于研究格陵兰岛和南极洲区域的冰-洋相互作用。2021年4月,Hopwood博士作为助理教授加入南方科技大学,同年12月破格提升为副教授。

Hopwood教授已经累计参与9个科考航次并在斯瓦尔巴德岛、格陵兰和南极洲上进行了累计10个月的极地科学考察。在Nature Communications、Nature Geoscience、Geophysical Research Letters等海洋学一流期刊上共发表文章50篇。Hopwood教授目前是Journal of Geophysical Research: Oceans (AGU) 期刊的副编辑。

Hopwood教授目前教授两门课程(春季学期开设的本科生课程OCE108碳中和概论和秋季学期开设的研究生课程OCE5030海洋生物地球化学循环,同时兼任学校射箭社团的教练。Hopwood教授的研究团队目前也在中国科学院大学大亚湾生物综合实验站(深圳)开展大规模(100,000 升)实验,研究负排放技术的潜力如提高海洋碱度,以便在海洋中安全地储存更多的二氧化碳。

Mark老师还利用自己的业余时间,作为海阔体育的助教,教授小朋友们海洋科学的相关知识和浆板技能,从而让小朋友们感受到海洋科学的魅力。

个人简介

研究领域

海洋生物地球化学、极地环境、海洋养分、痕量金属


教学

主要教授课程:研究生课程OCE5030海洋生物地球化学循环(秋季学期)、本科生课程OCE108碳中和概论(春季学期)。


学术成果 查看更多

在研项目

  1. POLAR BEAST cruise (5 weeks) – a polar cruise investigating Arctic/Atlantic connectivity via the EGC
  2. EUROFLEETS Ice Disko cruise (2 weeks) – biogeochemistry of icebergs in Disko Bay
  3. NSFC RFIS Investigating cobalt dynamics in the cryosphere (Arctic and Antarctic)

发表论文

  1. Krisch, S. et al.The effect of ice cavities on ice sheet nutrient export: A case study at Nioghalvfjerdsbrae, the 79°N Glacier. Nat. Commun. (Accepted)
  2. Vergara-Jara, M. J. et al.A mosaic of phytoplankton responses across Patagonia, the SE Pacific and SW Atlantic Ocean to ash deposition and trace metal release from the Calbuco 2015 volcanic eruption. Ocean Sci. Discuss.2020, 1–42 (2020). (Accepted)
  3. Browning, T. J. et al.Iron regulation of North Atlantic eddy phytoplankton productivity. Geophys. Res. Lett.(2021) doi:10.1029/2020gl091403.
  4. Geißler, F. et al.Lab-on-chip analyser for the in situ determination of dissolved manganese in seawater. Sci. Rep.11, (2021).
  5. Cantoni, C. et al.Glacial drivers of marine biogeochemistry indicate a future shift to more corrosive conditions in an Arctic fjord. J. Geophys. Res. Biogeosciencesn/a, e2020JG005633 (2020).
  6. Bach, L. T. et al.Factors controlling plankton community production, export flux, and particulate matter stoichiometry in the coastal upwelling system off Peru. Biogeosciences17, (2020).
  7. Krisch, S. et al.The influence of Arctic Fe and Atlantic fixed N on summertime primary production in Fram Strait, North Greenland Sea. Sci. Rep.10, 15230 (2020).
  8. Browning, T. J. et al.Nutrient regulation of late spring phytoplankton blooms in the midlatitude North Atlantic. Limnol. Oceanogr.(2019) doi:10.1002/lno.11376.
  9. Hopwood, M. J.et al. Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosph. (2020) doi:10.5194/tc-14-1347-2020.
  10. Vieira, L. H. et al.Unprecedented Fe delivery from the Congo River margin to the South Atlantic Gyre. Nat. Commun.(2020) doi:10.1038/s41467-019-14255-2.
  11. Hopwood, M. J. et al.Fe(II) stability in coastal seawater during experiments in Patagonia, Svalbard, and Gran Canaria. Biogeosciences (2020) doi:10.5194/bg-17-1327-2020.
  12. Straneo, F. et al.The case for a sustained Greenland Ice sheet-Ocean Observing System (GrIOOS). Frontiers in Marine Science(2019) doi:10.3389/fmars.2019.00138.
  13. Höfer, J. et al.The role of water column stability and wind mixing in the production/export dynamics of two bays in the Western Antarctic Peninsula. Prog. Oceanogr.(2019) doi:10.1016/j.pocean.2019.01.005.
  14. Hopwood, M. J.et al. Non-linear response of summertime marine productivity to increased meltwater discharge around Greenland. Nat. Commun. 9, 3256 (2018).
  15. Hopwood, M. Iron from ice. Nat. Geosci.(2018) doi:10.1038/s41561-018-0167-8.
  16. Hopwood, M. J.et al. Photochemical vs. Bacterial Control of H2O2 Concentration Across a pCO2 Gradient Mesocosm Experiment in the Subtropical North Atlantic. Frontiers in Marine Science vol. 5 105 (2018).
  17. Menzel Barraqueta, J.-L. et al.Aluminium in the North Atlantic Ocean and the Labrador Sea (GEOTRACES GA01 section): roles of continental inputs and biogenic particle removal. Biogeosciences2018, 1–28 (2018).
  18. Hopwood, M. J., Rapp, I., Schlosser, C. & Achterberg, E. P. Hydrogen peroxide in deep waters from the Mediterranean Sea, South Atlantic and South Pacific Oceans. Sci. Rep.7, (2017).
  19. Hopwood, M. J. et al.A Comparison between Four Analytical Methods for the Measurement of Fe(II) at Nanomolar Concentrations in Coastal Seawater. Frontiers in Marine Science vol. 4 192 (2017).
  20. Geißler, F. et al.Evaluation of a ferrozine based autonomous in situ lab-on-chip analyzer for dissolved iron species in coastal waters. Front. Mar. Sci.4, (2017).
  21. Hopwood, M. J., Cantoni, C., Clarke, J. S., Cozzi, S. & Achterberg, E. P. The heterogeneous nature of Fe delivery from melting icebergs. Geochemical Perspect. Lett.3, 200–209 (2017).
  22. Meire, L. et al.High export of dissolved silica from the Greenland Ice Sheet. Geophys. Res. Lett.43, 9173–9182 (2016).
  23. Hopwood, M. J.et al. Seasonal Changes in Fe along a Glaciated Greenlandic Fjord. Front. Earth Sci. 4, (2016).
  24. Hopwood, M. J., Statham, P. J., Skrabal, S. A. & Willey, J. D. Dissolved iron(II) ligands in river and estuarine water. Mar. Chem.173, 173–182 (2015).
  25. Hopwood, M. J.,Bacon, S., Arendt, K., Connelly, D. P. & Statham, P. J. Glacial meltwater from Greenland is not likely to be an important source of Fe to the North Atlantic. Biogeochemistry 124, (2015).
  26. Willey, J. D., et al.The role of fossil fuel combustion on the stability of dissolved iron in rainwater. Atmos. Environ.107, 187–193 (2015).
  27. Hopwood, M. J., Statham, P. J. & Milani, A. Dissolved Fe(II) in a river-estuary system rich in dissolved organic matter. Estuar. Coast. Shelf Sci.151, 1–9 (2014).
  28. Hopwood, M. J., Statham, P. J., Tranter, M. & Wadham, J. L. Glacial flours as a potential source of Fe(II) and Fe(III) to polar waters. Biogeochemistry118, 443–452 (2014).
  29. Vergara-Jara, M. J. et al., A mosaic of phytoplankton responses across Patagonia, the southeast Pacific and the southwest Atlantic to ash deposition and trace metal release from the Calbuco volcanic eruption in 2015. Ocean Sci. 17, 561–578 (2021)
  30. Krisch, S. et al., The 79°N Glacier cavity modulates subglacial iron export to the NE Greenland Shelf. Nat. Commun. 12, 3030 (2021).
  31. Zhu, K. et al., Influence of pH and Dissolved Organic Matter on Iron Speciation and Apparent Iron Solubility in the Peruvian Shelf and Slope Region. Environ. Sci. Technol. (2021)
  32. Krahmann, G. et al., Climate-Biogeochemistry Interactions in the Tropical Ocean: Data collection and legacy. Front. Mar. Sci. (2021)
  33. van Genuchten G. M. et al., Decoupling of particles and dissolved iron downstream of Greenlandic glacier outflows, Earth and Planetary Science Letters 576 (2021)
  34. Wallmann, K. et al., Biogeochemical feedbacks may amplify ongoing and future ocean deoxygenation: a case study from the Peruvian oxygen minimum zone, Biogeochemistry 159 (1), 45-67 (2022)
  35. Krisch, S. et al., Arctic–Atlantic exchange of the dissolved micronutrients Iron, Manganese, Cobalt, Nickel, Copper and Zinc with a focus on Fram Strait, Global Biogeochemical Cycles (2022)
  36. Slater, D. A. et al., Characteristic depths, fluxes and timescales for Greenland’s tidewater glacier fjords from subglacial discharge‐driven upwelling during summer, Geophysical Research Letters (2022)
  37. van Genuchten G. M. et al., Solid-phase Mn speciation in suspended particles along meltwater-influenced fjords of West Greenland, Geochimica et Cosmochimica Acta 326, 180-198 (2022)
  38. Liu T. et al., Sediment release in the Benguela Upwelling System dominates trace metal input to the shelf and eastern South Atlantic Ocean, Global Biogeochemical Cycles (2022)
  39. Krisch S. et al., Quantifying ice-sheet derived lead (Pb) fluxes into the ocean; a case study at Nioghalvfjerdsbrae, Geophysical Research Letters, (2022)
  40. Hunt H. R. et al., Distinguishing the influence of sediments, the Congo River, and water-mass mixing on the distribution of iron and its isotopes in the Southeast Atlantic Ocean, Marine Chemistry, (2022)
  41. Chen X. G. et al., Dissolved, labile and total particulate trace metal dynamics on the northeast Greenland Shelf, Global Biogeochemical Cycles, (2022)
  42. Kittu L. R. et al., Coastal N2 fixation rates coincide spatially with N loss in the Humboldt Upwelling System off Peru, Global Biogeochemical Cycles, (2023)
  43. Stuart-Lee A. E. et al., Influence of glacier type on bloom phenology in two southwest Greenland fjords, Estuarine, Coastal and Shelf Science, (2023)
  44. Zhu K. et al., Influence of Changes in pH and Temperature on the Distribution of Apparent Iron Solubility in the Oceans, Global Biogeochemical Cycles, (2023)
  45. Oliver H. et al., Greenland Subglacial Discharge as a Driver of Hotspots of Increasing Coastal Chlorophyll Since the Early 2000s, Geophysical Research Letters, (2023)
  46. Meire L. et al., Glacier retreat alters downstream fjord ecosystem structure and function in Greenland, Nature Geoscience, (2023)
  47. Krause J. et al., Glacier‐derived particles as a regional control on marine dissolved Pb concentrations, J. Geophys. Res. Biogeosciences (2023)
  48. Vonnahme T. et al., Impact of winter freshwater from tidewater glaciers on fjords in Svalbard and Greenland; A review, Progress in Oceanography (2023)
  49. Liu T. et al., Trace metal (Cd, Cu, Pb and Zn) fluxes from the Congo River into the South Atlantic Ocean are supplemented by atmospheric inputs, Geophysical Research Letters, (2023)
  50. Gu, Y. et al., Spatial and temporal variations in the micronutrient Fe across the Peruvian shelf from 1984-2017, Progress in Oceanography (2024)

加入团队

南方科技大学招聘海洋碱度增强方向博士后
 
课题组简介:
南方科技大学海洋科学与工程系Mark Hopwood教授课题组拟招聘1-2名海洋碱度增强方向博士后研究人员。合作导师Mark Hopwood,是南方科技大学副教授,Hopwood教授将和HONG CHEN教授一起,指导博士后研究人员进行海洋碱度增强方面的研究。
两位教授目前的研究兴趣是如何利用垃圾填埋场的废弃矿物质。利用废矿物材料来产生碱度,不仅可以实现废物利用,还可以避免因电化学或采矿活动产生的“新”碱度对环境造成影响。与围绕负排放技术进行大肆宣传以至可能对负排放技术的发展产生负面影响不同,我们的研究重点不是围绕负排放技术发展,而是观测海洋碱度的增加是否在技术和环境方面对环境产生副作用。负排放技术是国内外相关领域研究的兴趣点,已经见于政府间气候变化专门委员会 (IPCC)的科研项目中——尽管目前这种技术还不存在。课题组鼓励博士后研究人员对负排放技术的社会和经济价值持开放态度,并与相关学科科研人员积极合作。
目前课题组科研经费充足,痕量金属净化实验室建设即将完工,全新设备已配置到位。因科研需要,拟招聘1-2名博士后研究人员,预计2023年2月-6月期间入职,应聘成功者将有机会获得前往其他科研机构进行为期4-6个月的交流机会。合作导师可提供机会前往德国GEOMAR进行交流,也会考虑与GEOMAR联合培养博士后研究人员。根据应聘者的职业发展和个人兴趣,合作导师会提供指导学生学习和实验的机会,或者科研外宣事宜等。
岗位职责:

设计、开展实验并进行分析,以研究增加海洋碱度对海洋化学和海洋生物的影响,并能够在该领域内拓展自己的研究路线。
研究增加海洋碱度可能对海洋生态系统产生的副作用(比如:游生物群落的组成变化、矿物颗粒对海洋生物的直接影响、硅酸盐和微量金属等矿物成分的释放等)、海洋碱度增加与二氧化碳下降之间的定量关系、以及扩大海洋碱度增加技术的可行性,以便确定增加海洋碱度是否能够作为提高二氧化碳负排放的有效技术手段。

岗位要求:
应聘者应具有海洋化学或海洋生物学背景、具有实验实操经验、有文章或数据等科研成果产出。
岗位待遇:

博士后聘用期两年,年薪33万元起,含广东省生活补贴15万元(税前)及深圳市生活补贴6万元(税前),并按深圳市有关规定参加社会保险及住房公积金。博士后福利费参照学校教职工标准发放。
特别优秀候选人可以申请校长卓越博士后,年薪可达50万元以上。(含广东省及深圳市在站生活补贴)。
在站期间,可依托学校申请深圳市公租房,未依托学校使用深圳市公租房的博士后,可享受两年税前2800元/月的住房补贴。
拥有优良的工作环境和境内外合作交流机会,博士后在站期间享受两年共计5万学术交流经费资助。
课题组协助符合条件的博士后申请博士后人才项目。如成功申请,最高可享受总计100万元补贴(与广东省及深圳市在站博士后生活补贴不同时享受)。
博士后出站选择留深从事科研工作,且与本市企事业单位签订3年以上劳动(聘用)合同的,可以申请深圳市博士后留深来深科研资助。深圳市政府给予每人每年10万元科研资助,共资助3年(以深圳市最新申报要求为准)。
根据《深圳市新引进博士人才生活补贴工作实施办法》规定,新引进博士人才生活补贴(10万元)与省市博士后在站生活补贴不同时享受。

应聘方式:
有意者请将个人英文简历和代表性论文全文发送至:mark@sustech.edu.cn,邮件正文请用英文,标题为“Post-Doctoral Fellow Application+Name”
查看更多

联系我们

联系地址

南方科技大学工学院南楼406

办公电话

电子邮箱

mark@sustech.edu.cn

Copyright © 2018 All Rights Reserved.