戴建生

英国皇家工程院院士(FREng)、欧洲科学院院士(Academia Europaea)、讲席教授、机器人研究院院长 |工学院, 机械与能源工程系   课题组网站

戴建生,英国皇家工程院院士,欧洲科学院院士(Academia Europaea), IEEE Fellow, ASME Fellow, RSA Fellow, IMechE Fellow, CAA Fellow。国际机器人旗舰期刊 Robotica Editor-in-Chief(主编),Mechanism and Machine Theory 方向主编,高等教育出版社“机器人科学与技术”丛书主编。长期从事理论运动学、机构学与机器人学的基础理论与应用研究,在旋量代数、李群、李代数等领域具有深厚的数学基础和造诣。在变胞机构、可重构机构与可重构机器人各类机器人机构,以及这些机构在康复与制造技术领域应用上做出了许多开创性工作。2015年获得 ASME “机构学与机器人学终身成就奖”,为该奖设立41年来第27位获奖者。2020年获得 ASME “机械设计终身成就奖”,为该奖设立 62年来第58位获奖者。2020年获奖词:为建立可重构机构领域和变胞机构子领域做出了开拓性与奠基性贡献;并通过研究、应用、教学和服务对机械设计产生了持久性影响,弥合了通用但昂贵的机器人与高效但不灵活的机器之间的鸿沟。

戴院士于2021年获得天津市(省部级)自然科学一等奖(第一名)。除了2015年与2020年两个终身成就奖外,戴建生还获得了多项国内外学术奖励与荣誉以及多项国际期刊最佳论文奖,包括“2018年 Crossley Award”等5项最佳期刊论文奖、“2019年 AT Yang Memorial Award”理论运动学奖等9项最佳会议论文奖、伦敦国王学院 2010年度 “博士指导卓越奖”(1人/3200人)、2012年 ASME 杰出服务奖、中国机构学学会2012年“学术创新奖”和“国际学术交流奖”等12项个人奖。

戴院士发表SCI论文400余篇,出版英文著作4部、中文著作6部含在高等教育出版社知名品牌系列“现代数学基础”丛书中出版与再版的《旋量代数与李群、李代数》,在“机器人科学与技术”丛书中出版与再次印刷的《机构学与机器人学几何基础与旋量代数》以及获国家科学技术学术著作出版基金资助出版的《可重构机构与可重构机器人》。

戴建生院士部分研究工作情况、视频及创新展示,请点击这里 https://nms.kcl.ac.uk/jian.dai/

个人简介

研究领域:
◆ 理论:理论运动学,旋量代数与李群、李代数,机构学与机构理论、
◆ 机构:变胞机构,可重构机构与可重构机器人

◆ 操作:机器人操作,机器人灵巧手

◆ 应用:康复机器人,服务机器人,足式机器人
◆ 制造:机器人与智能制造
 
学习经历:
◆ 1989.06-1993.05   英国索尔福德大学,博士
◆ 1982.09-1984.12   上海交通大学,机械工程硕士
 1978.09-1982.07   上海交通大学,机械工程学士
 
工作经历:
◆ 2022.02-现在       南方科技大学机器人研究院院长
◆ 2022.02-现在       南方科技大学机械与能源工程系,讲席教授
◆ 2007.09-2021.12   英国伦敦国王学院,讲席教授
◆ 1999.09-2007.08   英国伦敦国王学院,准教授
◆ 1997.09-1999.08   英国桑德兰大学,高级讲师
◆ 1996.01-1997.08   英国联合利华利物浦研究中心,研究员
◆ 1993.05-1995.12   英国索尔福德大学,博士后

 

学术兼职 :

◆ Robotica, Editor-in-Chief

◆ Mechanism and Machine Theory, Subject Editor

◆ ASME Transactions: Journal of Mechanical Design, Associate Editor

◆ Journal of Mechanical Engineering Sciences, Associate Editor

◆ IFToMM 英国区主席

所获荣誉:

◆ 2023年,入选欧洲科学院院士(Academia Europaea)
◆ 2021年,入选英国皇家工程院院士
◆ 2020年,获得“ASME 机械设计终身成就奖”,1958年后第58
◆ 2019年,获得“AT Yang 理论运动学”奖(1/218
 2018年,获得“Crossley Award”奖(1/183

 2017年,入选国际电子电气工程师协会会士(IEEE Fellow)

◆ 2015年,获得“ASME 机构学与机器人学终身成就奖”,1974年后第 27

◆ 2013年,获得“中国机构学创新奖”

◆ 2011年,入选美国机械工程师协会会士(ASME Fellow)
 2011年,获得“Best Paper Award”(1/182),Journal of Systems and Control Engineering

◆ 2010年,获得“博士指导卓越奖”(1/3200),伦敦国王学院

◆ 2009年,获得“SAGE Award”(1/178),Journal of Systems and Control Engineering

◆ 2006年,入选英国机械工程院会士(IMechE Fellow)
◆ 1998年,获得 ASME 第25届机构学双年会最佳论文奖(1/186

◆ 1995年,英国注册(特许)工程师,欧洲注册工程师

 

研究领域

◆ 理论:理论运动学,旋量代数与李群、李代数,机构学与机构理论、

◆ 机构:变胞机构,可重构机构与可重构机器人

◆ 操作:机器人操作,机器人灵巧手

◆ 应用:康复机器人,服务机器人,足式机器人

◆ 制造:机器人与智能制造

◆ 仿艺学:折纸机构,艺术等效机构,艺术启示机构

 


学术成果 查看更多

著作:

  • Rodriguez-Leal and J.S. Dai, Evolutionary Design of Parallel Mechanisms: Kinematics of a Family of Parallel Mechanisms with Centralized Motion, Lambert Academic Publishing, Saarbruecken, Germany, 2010, ISBN: 3838378768.
  • Qiu and J.S. Dai, Analysis and Synthesis of Compliant Parallel Mechanisms—Screw Theory Approach, Springer, London, 2020, ISBN: 978-3-030-48312-8
  • Cui and J.S. Dai, Sliding-Rolling Contact & In-Hand Manipulation, World Scientific Publishing, London, 2020, ISBN:978-1-78634-842-5.
  • 戴建生 著,《旋量代数与李群李代数》,“现代数学基础”丛书第 42部,第70部,高等教育出版社,2014年第一版,2020年第二版(37万字/375页)。
  • 戴建生 著,《机构学与机器人学的几何基础与旋量代数》,“机器人科学与技术”丛书第1部,高等教育出版社,2014年第一版,2018年再次印刷(58万字/488页)。
  • 戴建生,康熙 ,宋亚庆,魏俊 著,《可重构机构与可重构机器人 — 分岔演变的运动学分析、综合及其控制》,由“国家科学技术学术著作出版基金”资助出版,高等教育出版社,2021年出版(64万字/516页)。
  • 张春松, 唐昭, 戴建生 著,《基于运动智能的机器人开发与控制》, ”十四五“ 时期国家重点出版物出版专项规划项目,高等教育出版社,2022年出版(26万字/208页)

理论:

  • Wu, and J.S. Dai, 2021, A novel ortho-triplex tensegrity derived by the linkage-truss transformation with prestress-stability analysis using screw theory, ASME J. Mech. Des., 143(1): 013302.
  • Fu, J. Pan, E. Spyrakos-Papastavridis, Y. Lin, X. Zhou, X. Chen, and J.S. Dai, 2021, A Lie-theory-based dynamic parameter identification methodology for serial manipulators, IEEE-ASME Trans. Mech., 26(5): 2688-2699.
  • Wu, A. Muller, and J.S. Dai, 2020, A matrix method to determine infinitesimally mobile linkages with only first-order infinitesimal mobility, Mech. Mach. Theory, 148: 103776.
  • Fu, J.S. Dai, K. Yang, X. Chen, and P. Lopez-Custodio, 2020, Analysis of unified error model and simulated parameters calibration for robotic machining based on Lie theory, Robot. Comput.-Integr. Manuf., 61: 101855.
  • S. Dai, and J. Sun, 2020, Geometrical revelation of correlated characteristics of the ray and axis order of the Plücker coordinates in line geometry, Mech. Mach. Theory, 153: 103983.
  • Wei, and J.S. Dai, 2019, Reconfiguration-aimed and manifold-operation based type synthesis of metamorphic parallel mechanisms with motion between 1R2T and 2R1T, Mech. Mach. Theory, 139: 66-80.
  • Lopez-Custodio, A. Muller, J. Rico, and J.S. Dai, 2019, A synthesis method for 1-DOF mechanisms with a cusp in the configuration space, Mech. Mach. Theory, 132: 154-175.
  • S. Dai, 2015, Euler-Rodrigues formula variations, quaternion conjugation and intrinsic connections, Mech. Mach. Theory, 92: 144-152.
  • S. Dai, 2012, Finite displacement screw operators with embedded Chasles’ motion, ASME J. Mech. Robot., 4(4): 041002.
  • Cui, and J.S. Dai, 2010, A Darboux-frame-based formulation of spin-rolling motion of rigid objects with point contact, IEEE Trans. Robot., 26(2): 383-388.
  • S. Dai, Z. Huang, and H. Lipkin, 2006, Mobility of overconstrained parallel mechanisms, ASME J. Mech. Des., 128(1): 220-229.
  • S. Dai, 2006, An historical review of the theoretical development of rigid body displacements from Rodrigues parameters to the finite twist, Mech. Mach. Theory, 41(1): 41-52.
  • S. Dai, and J. Jones, 2002, Null-space construction using cofactors from a screw-algebra context, Proc. Royal Soc. Math. Phy. Eng. Sci., 458(2024): 1845-1866.
  • S. Dai, and J. Jones, 2001, Interrelationship between screw systems and corresponding reciprocal systems and applications, Mech. Mach. Theory, 36(5): 633-651.

变胞机构:

  • Wang, Y. Song, and J.S. Dai, 2021, Reconfigurability of the origami-inspired integrated 8R kinematotropic metamorphic mechanism and its evolved 6R and 4R mechanisms, Mech. Mach. Theory, 161: 104245.
  • Chai, X. Kang, D. Gan, H. Yu, and J.S. Dai, 2021, Six novel 6R metamorphic mechanisms induced from three-series-connected Bennett linkages that vary among classical linkages, Mech. Mach. Theory, 156: 104133.
  • Kang, H. Feng, J.S. Dai, and H. Yu, 2020, High-order based revelation of bifurcation of novel Schatz-inspired metamorphic mechanisms using screw theory, Mech. Mach. Theory, 152: 103931.
  • Wang, Y. Liao, J.S. Dai, H. Chen, and G. Cai, 2019, The isomorphic design and analysis of a novel plane-space polyhedral metamorphic mechanism, Mech. Mach. Theory, 131: 152-171.
  • Chai, and J.S. Dai, 2019, Three novel symmetric Waldron-Bricard metamorphic and reconfigurable mechanisms and their isomerization, ASME J. Mech. Robot., 11(5): 051011.
  • Ma, K. Zhang, and J.S. Dai, 2018, Novel spherical-planar and Bennett-spherical 6R metamorphic linkages with reconfigurable motion branches, Mech. Mach. Theory, 128: 628-647.
  • Gan, J.S. Dai, J. Dias, and L. Seneviratne, 2016, Variable motion/force transmissibility of a metamorphic parallel mechanism with reconfigurable 3T and 3R motion, ASME J. Mech. Robot., 8(5): 051001.
  • Aimedee, G. Gogu, J.S. Dai, C. Bouzgarrou, and N. Bouton, 2016, Systematization of morphing in reconfigurable mechanisms, Mech. Mach. Theory, 96: 215-224.
  • Qin, J.S. Dai, and G. Gogu, 2014, Multi-furcation in a derivative queer-square mechanism, Mech. Mach. Theory, 81: 36-53.
  • Li, and J.S. Dai, 2012, Structure synthesis of single-driven metamorphic mechanisms based on the augmented assur groups, ASME J. Mech. Robot., 4(3): 031004.

折块机构、折纸机构:

  • Jia, H. Huang, H. Guo, B. Li, and J.S. Dai, 2021, Design of transformable hinged ori-block dissected from cylinders and cones, ASME J. Mech. Des., 143(9): 094501.
  • Salerno, K. Zhang, A. Menciassi, and J.S. Dai, 2016, A novel 4-dof origami grasper with an SMA-actuation system for minimally invasive surgery, IEEE Trans. Robot., 32(3): 484-498.
  • Qiu, K. Zhang, and J.S. Dai, 2016, Repelling-screw based force analysis of origami mechanisms, ASME J. Mech. Robot., 8(3): 031001.
  • Zhang, C. Qiu, and J.S. Dai, 2015, Helical kirigami-enabled centimeter-scale worm robot with shape-memory-alloy linear actuators, ASME J. Mech. Robot., 7(2): 021014.
  • S. Dai, and D. Caldwell, 2010, Origami-based robotic paper-and-board packaging for food industry, Trends Food Sci. Tech., 21(3): 153-157.
  • S. Dai, and J. Jones, 2005, Matrix representation of topological changes in metamorphic mechanisms, ASME J. Mech. Des., 127(4): 837-840.

并联机构:

  • Kuo, and J.S. Dai, 2021, Structure synthesis of a class of parallel manipulators with fully decoupled projective motion, ASME J. Mech. Robot., 13(3): 031011.
  • Song, X. Kang, and J.S. Dai, 2020, Instantaneous mobility analysis using the twist space intersection approach for parallel mechanisms, Mech. Mach. Theory, 151: 103866.
  • Kang, and J.S. Dai, 2019, Relevance and transferability for parallel mechanisms with reconfigurable platforms, ASME J. Mech. Robot., 11(3): 031012.
  • Zhang, P. Lopez-Custodio, and J.S. Dai, 2018, Compositional submanifolds of prismatic-universal-prismatic and skewed prismatic-revolute-prismatic kinematic chains and their derived parallel mechanisms, ASME J. Mech. Robot., 10(3): 031001.
  • Aimedee, G. Gogu, J.S. Dai, C. Bouzgarrou, and N. Bouton, 2016, Redundant singularities versus constraint singularities in parallel mechanisms, Proc. IMechE. Part C: J. Mech. Eng. Sci., 230(3): 445-453.

控制:

  • Spyrakos-Papastavridis, and J.S. Dai, 2021, Flexible-joint humanoid balancing augmentation via full-state feedback variable impedance control, ASME J. Mech. Robot., 13(2): 021014.
  • Zhao, Z. Song, T. Ma, and J.S. Dai, 2020, Optimization of stiffness to achieve increased bandwidth and torque resolution in nonlinear stiffness actuators, IEEE Trans. Ind. Electron., 67(4): 2925-2935.
  • Spyrakos-Papastavridis, P.N. Childs, and J.S. Dai, 2020, Passivity preservation for variable impedance control of compliant robots, IEEE-ASME Trans. Mechatron., 25(5): 2342-2353.
  • Spyrakos-Papastavridis, J.S. Dai, P.N. Childs, and N. Tsagarakis, 2018, Selective-compliance-based Lagrange model and multilevel noncollocated feedback control of a humanoid robot, ASME J. Mech. Robot., 10(3): 031009.

足式机器人:

  • Zhang, C. Zhang, J.S. Dai, and P. Qi, 2019, Stability margin of a metamorphic quadruped robot with a twisting trunk, ASME J. Mech. Robot., 11(6): 064501.
  • Zhang, and J.S. Dai, 2018, Continuous static gait with twisting trunk of a metamorphic quadruped robot, Mech. Sci., 9(1): 1-14.
  • Zhang, and J.S. Dai, 2018, Trot gait with twisting trunk of a metamorphic quadruped robot, J. Bio. Eng., 15(6): 971-981.

灵巧手:

  • Cui, and J.S. Dai, 2012, Reciprocity-based singular value decomposition for inverse kinematic analysis of the metamorphic multifingered hand, ASME J. Mech. Robot., 4(3): 034502.
  • Wei, J.S. Dai, S. Wang, and H. Luo, 2011, Kinematic analysis and prototype of a metamorphic anthropomorphic hand with a reconfigurable palm, Int. J. Humanoid Robot., 8(3): 459-479.
  • S. Dai, D. Wang, and L. Cui, 2009, Orientation and workspace analysis of the multifingered metamorphic hand-metahand, IEEE Trans. Robot., 25(4): 942-947.
  • Yao, and J.S. Dai, 2008, Dexterous manipulation of origami cartons with robotic fingers based on the interactive configuration space, ASME J. Mech. Des., 130(2): 022303.
  • S. Dai, and D. Wang, 2007, Geometric analysis and synthesis of the metamorphic robotic hand, ASME J. Mech. Des., 129(11): 1191-1197.

康复机器人:

  • Saglia, N. Tsagarakis, J.S. Dai, and D. Caldwell, 2009, Inverse-kinematics-based control of a redundantly actuated platform for rehabilitation, Proc. Ins. Mech. Eng. Part I-J. Sys. Cont. Eng., 223(I1): 53-70.
  • Saglia, N. Tsagarakis, J.S. Dai, and D. Caldwell, 2009, A high-performance redundantly actuated parallel mechanism for ankle rehabilitation, Int. J. Robot. Res., 28(9): 1216-1227.
  • Saglia, J.S. Dai, and D. Caldwell, 2008, Geometry and kinematic analysis of a redundantly actuated parallel mechanism that eliminates singularities and improves dexterity, ASME J. Mech. Des., 130(12): 124501.
  • S. Dai, T. Zhao, and C. Nester, 2004, Sprained ankle physiotherapy based mechanism synthesis and stiffness analysis of a robotic rehabilitation device, Auton. Robot., 16(2): 207-218.

软体机器人:

  • Wang, H. Huang, R. Xu, K. Li, and J.S. Dai, 2021, Design of a novel simulated “soft” mechanical grasper, Mech. Mach. Theory, 158: 104240.
  • Song, D. Gao, Y. Zhao, and J.S. Dai, 2021, An improved Bouc-Wen model based on equitorque discretization for a load-dependent nonlinear stiffness actuator, IEEE Trans. Autom. Sci. Eng., 18(2): 840-849.
  • Yang, S. Geng, I. Walker, D. Branson, J. Liu, J.S. Dai, and R. Kang, 2020, Geometric constraint-based modeling and analysis of a novel continuum robot with Shape Memory Alloy initiated variable stiffness, Int. J. Robot. Res., 39(14): 1620-1634: 0278364920913929.
  • Sun, L. Chen, J. Liu, J.S. Dai, and R. Kang, 2020, A hybrid continuum robot based on pneumatic muscles with embedded elastic rods, Proc. IMechE. Part C: J. Mech. Eng. Sci., 234(1): 318-328.
  • Meng, R. Kang, D. Gan, G. Chen, L. Chen, D. Branson, and J.S. Dai, 2020, A mechanically intelligent crawling robot driven by shape memory alloy and compliant bistable mechanism, ASME J. Mech. Robot., 12(6): 061005.
  • Wang, S. Geng, D. Branson, C. Yang, J.S. Dai, and R. Kang, 2019, Task space-based orientability analysis and optimization of a wire-driven continuum robot, Proc. IMechE. Part C: J. Mech. Eng. Sci., 233(23-24): 7658-7668.

制造:

  • Niazi, J.S. Dai, S. Balabani, and L. Seneviratne, 2007, A new overhead estimation methodology: a case study in an electrical engineering company, Proc. IMechE. Part B: J. Eng. Manuf., 221(4): 699-710.
  • Niazi, J.S. Dai, S. Balabani, and L. Seneviratne, 2006, Product cost estimation: Technique classification and methodology review, ASME J. Manuf. Sci. Eng., 128(2): 563-575.
  • Yao, Z. Ye, J.S. Dai, and H. Cai, 2005, Geometric analysis and tooth profiling of a three-lobe helical rotor of the Roots blower, J. Mater. Proc. Tech., 170(1-2): 259-267.
  • Silversides, J.S. Dai, and L. Seneviratne, 2005, Force analysis of a vibratory bowl feeder for automatic assembly, ASME J. Mech. Des., 127(4): 637-645.

戴建生院士部分研究工作情况、视频及创新展示,请点击这里https://nms.kcl.ac.uk/jian.dai/

加入团队

        本课题组长期招收助理教授、RAP、RA、博士后、博士。
导师介绍:
        戴建生,英国皇家工程院院士,欧洲科学院院士(Academia Europaea),IEEE 和 ASME双 Fellow。南方科技大学机器人研究院院长,伦敦国王学院荣誉教授,国际机器人著名期刊 ROBOTICA Editor-in-Chief,高等教育出版社“机器人科学与技术丛书”共同主编。
        2015年获得 ASME 机构学与机器人学学术最高奖,为41年第27位。2020年获得了美国机械工程师协会最高奖:ASME机械设计最高奖,为65年来第58位,首位华人获奖者。2023年获得 IFToMM 卓越成就奖,为20年第15位。此外,还获得了 2019年的 AT Yang 理论运动学奖,2018年的 Crossley 奖,以及 2010年的伦敦国王学院杰出博士指导教师奖。共发表700余篇学术论文,9部中英文专著。毕业了50余位博士研究生。
招聘要求:

机械,电子,医学工程,生物工程,材料,物理化学等工科类相关专业;
在上述研究方向或相似研究方向以第1作者或通讯作者发表高水平英文论文2篇及以上者优先;
具有扎实的数理基础和从事科学研究的热情,能够独立思考,具备创新精神和脚踏实地的工作作风;
具有实际操作能力以及严谨思维和独立解决问题的能力;
热爱科学研究,有团队协作精神,勤奋努力、服从安排、踏实好学。

 
        详细要求及具体待遇可与我们联系。欢迎加入戴院士团队,有意向可发邮件联系daijs@sustech.edu.cn。
查看更多

联系我们

联系地址

南方科技大学工学院北楼319 

办公电话

电子邮箱

daijs@sustech.edu.cn

Copyright © 2018 All Rights Reserved.