• Journal Papers

[88] Z. Cai, X. Wang, L. Li and W. Hong. Electrical treeing: A phase-field model. Extreme Mechanics Letters 28: 87-95(2019).

[87] D. Zhong, J. Liu, Y. Xiang, T. Yin, W. Hong, H. Yu, S. Qu and W. Yang, Effect of Partition on the Mechanical Behaviors of Soft Adhesive Layers. Journal of Applied Mechanics 86(6): 061003-(1-8) (2019). DOI: 10.1115/1.4042764.

[86] S. Yashima, S. Hirayama, T. Kurokawa, T. Salez,  H. Takefuji, W. Hong and J.-P. Gong, Shearing-induced contact pattern formation in hydrogels sliding in polymer solution. Soft Matter 15(9), 1953-1959 (2019) DOI: 10.1039/c8sm02428f.

[85] Z. Cai, X. Wang, W. Hong, B. Luo, Q. Zhao and L. Li. Grain-size–dependent dielectric properties in nanograin ferroelectrics. Journal of the American Ceramic Society 101(12): 5487-5496 (2018)

[84] Y. Tian, X. Gao, W. Hong, M. Du, P. Pan, J. Z. Sun, Z. L. Wu and Q. Zheng. Kinetic Insights into Marangoni Effect-Assisted Preparation of Ultrathin Hydrogel Films. Langmuir 34(41): 12310-12317 (2018) DOI: 10.1021/acs.langmuir.8b02626.

[83] G. Mao,  Y. Xiang, X. Huang, W. Hong, T. Lu and S. Qu. Viscoelastic Effect on the Wrinkling of an Inflated Dielectric-Elastomer Balloon. Journal of Applied Mechanics 85(7): 071003-(1-8) (2018) DOI: 10.1115/1.4039672.

[82] A. Almomani, L. Granadillo, W. Hong and R. Montazami. Engineering ionic conductivity of ionomeric membranes: influence of Van der Waals volume of counterions and temperature. Materials Research Express 5(6): (2018)

[81] Z. Cai, X. Wang, B. Luo, W. Hong, L. Wu and L. Li (2018). Multiscale design of high-voltage multilayer energy-storage ceramic capacitors. Journal of the American Ceramic Society 101(4): 1607-1615 (2018)

[80] J. Liu, Z. Chen, X. Liang, X. Huang, G. Mao, W. Hong, H. Yu and S. Qu. Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter. Journal of the Mechanics and Physics of Solids 112: 458-471 (2018)

[79] Y. Zhang, Y. Yong, D. An, W. Song, Q. Liu, L. Wang, Y. Pardo, V. R. Kern, P. H. Steen, W. Hong, Z. Liu and M. Ma. A drip-crosslinked tough hydrogel. Polymer 135: 327-330 (2018)

[78] Z.-J. Wang, W. Hong, Z. L. Wu and Q. Zheng. Site-Specific Pre-Swelling-Directed Morphing Structures of Patterned Hydrogels. Angewandte Chemie International Edition 56(50): 15974-15978 (2017) DOI: 10.1002/anie.201708926.

[77] Z. Cai, X. Wang, B. Luo, W. Hong, L. Wu and L. Li. Nanocomposites with enhanced dielectric permittivity and breakdown strength by microstructure design of nanofillers. Composites Science and Technology 151: 109-114(2017)

[76Z.-J. Wang, C.-N. Zhu, W. Hong, Z.-L. Wu and Q. Zheng. Cooperative deformations of periodically patterned hydrogels. Science Advances 3(9): 1700348(1-8)(2017) DOI: 10.1126/sciadv.1700348.

[75A. Almomani, W.-Y. Hong, W. Hong and R. Montazami. Influence of Temperature on the Electromechanical Properties of Ionic Liquid-Doped Ionic Polymer-Metal Composite Actuators. Polymers, 9(8): 358(2017) DOI: 10.3390/polym9080358.

[74] Z. Cai, X. Wang, B. Luo, W. Hong, L. Wu and L. Li. Dielectric response and breakdown behavior of polymer-ceramic nanocomposites: The effect of nanoparticle distribution. Composites Science and Technology 145: 105-113(2017) DOI:

[73]T.-L. Sun, F. Luo, W. Hong, K. Cui, Y. Huang, H. J. Zhang, D. R. King, T. Kurokawa, T. Nakajima and J. P. Gong. Bulk Energy Dissipation Mechanism for the Fracture of Tough and Self-Healing Hydrogels. Macromolecules 50(7): 2923-2931 (2017) DOI: 10.1021/acs.macromol.7b00162. 

[72] Zhu, F., L. Cheng, Z. J. Wang, W. Hong, Z. L. Wu, J. Yin, J. Qian and Q. Zheng . 3D-Printed Ultratough Hydrogel Structures with Titin-like Domains. ACS Applied Materials & Interfaces 9(13): 11363-11367 (2017) DOI: 10.1021/acsami.7b02007.

[71] D. Yavas, X. Shang, W. Hong and A. F. Bastawros. Utilization of nanoindentation to examine bond line integrity in adhesively bonded composite structures. International Journal of Fracture 204(1): 101-112 (2017) DOI: 10.1007/s10704-016-0165-z.

[70] H. Guo, T. Kurokawa, M. Takahata, W. Hong, Y. Katsuyama, Y. Huang, T. Nakajima, T. Nonoyama and J.-P. Gong. The counter-ion condensation behavior of linear polyelec-trolyte polymers and polyelectrolyte gels. APS Meeting Abstracts. 07 Nov. 2016.

[69] H. Guo, X. Liu, F. Xue, L.-Q. Chen, W. Hong, and X. Tan, Disrupting long-range polar order with an electric fieldPhys. Rev. B 93(17): 174114 (2016) DOI: 10.1103/PhysRevB.93.174114.

[68] M. A. Ali, W. Hong, S. Oren, Q. Wang, Y. Wang, H. Jiang, and L. Dong, Tunable bioelectrodes with wrinkled-ridged graphene oxide surfaces for electrochemical nitrate sensorsRSC Advances 6(71): 67184-67195 (2016) DOI: 10.1039/C6TB02178F.

[67] Z. J. Wang, C. N. Zhu, W. Hong, Z. L. Wu, and Q. Zheng, Programmed planar-to-helical shape transformations of composite hydrogels with bioinspired layered fibrous structuresJ. Mater. Chem.4: 7075-7079 (2016) DOI: 10.1039/C6TB02178F.

[66] X. Feng, Z. Ma, J. V. MacArthur, C. J. Giuffre, A. F. Bastawros, and W. Hong, A Highly Stretchable Double-Network CompositeSoft Matter 12: 8999-9006 (2016) DOI: 10.1039/C6SM01781A .

[65] W. Hong, Inverse lagrangian formulation for the deformation of hyperelastic solidsExtreme Mech. Lett. 9(1): 30-39 (2016) DOI: 10.1016/j.eml.2016.04.009 .

[64] H. Guo, T. Kurokawa, M. Takahata, W. Hong, Y. Katsuyama, F. Luo, J. Ahmed, T. Nakajima, T. Nonoyama, and J.-P. Gong, Quantitative observation of electric potential distribution of polyelectrolyte hydrogels using microelectrode techniqueMacromolecule 49(8): 3100-3108 (2016) DOI: 10.1021/acs.macromol.6b00037 .

[63] F. Gao and W. Hong, Phase-field model for two-phase lithiation of siliconJ. Mech. Phys. Solids 94, 18-23 (2016) DOI: 10.1016/j.jmps.2016.04.020 .

[62] Q. Wang, W. Hong, and L. Dong, Graphene "Microdrums" on Freestanding Perforated Thin Membrane for High Sensitivity MEMS Pressure SensorNanoscale 8: 7663-7671 (2016) DOI: 10.1039/C5NR09274D .

[61] T. Matsuda, T. Nakajima, Y. Fukuda, W. Hong, T. Sakai, T. Kurokawa, C. Ung-il, and J.-P. Gong, A Yielding Criterion of Double Network HydrogelsMacromolecule 49(5): 1865-1872 (2016) DOI: 10.1021/acs.macromol.5b02592 .

[60] X. Huang, B. Li, W. Hong, Y.P. Cao, and X.Q. Feng, Effects of tension-compression asymmetry on the surface wrinkling of film-substrate systemsJ. Mech. Phys. Solids 94: 88-104 (2016) DOI: 10.1016/j.jmps.2016.04.014 .

[59] Z. Ma, X. Feng, and W. Hong, Fracture of Soft Elastic FoamASME. J. Appl. Mech. 83(3): 031007 (2015) DOI: 10.1115/1.4032050.

[58] W. Hong and K. C. Pitike Modeling breakdown-resistant composite dielectricsProc. IUTAM 12: 73-82 (2015) DOI: 10.1016/j.piutam.2014.12.009.

[57] W. Hong A kinetic model for anisotropic reactions in amorphous solidsExtreme Mech. Lett. 2: 46-51 (2015) DOI: 10.1016/j.eml.2015.01.002.

[56] Y. Zhao, Y. Cao, W. Hong, M. K. Wadee, X.-Q. Feng Towards a quantitative understanding of the wrinkling pattern transition in hyperelastic bilayer systems from sinusoidal to period-doublingProc. R. Soc. A 471: 20140695 (2015) DOI: 10.1098/rspa.2014.0695.

[55] X. Huang, H.-P. Zhao, W.-H. Xie, W. Hong, X.-Q. Feng Radial wrinkles on film-substrate system induced by local prestretch: A theoretical analysisInt. J. Solids. Struct. 58: 12-19 (2015); DOI: 10.1016/j.ijsolstr.2014.12.011.

[54] Y. Han, A. Mohla, X. Huang, W. Hong and L. E. Faidley Magnetostriction and field stiffening of magneto-active elastomersInt. J. Appl. Mech. 7: 1550001 (2015); DOI: 10.1142/S1758825115400013.

[53] Y. Xu, W. Hong, Y. Feng, and X. Tan Antiferroelectricity induced by electric field in NaNbO3-based lead-free ceramicsAppl. Phys. Lett. 104: 052903 (2014); DOI: 10.1063/1.4863850.

[52] K. C. Pitike and W. Hong Phase-field model for dielectric breakdown in solidsJ. Appl. Phys. 115: 044101 (2014); DOI: 10.1063/1.4862929.

[51] X. Huang, A. Mohla, W. Hong, A. F. Bastawros, and X.-Q. Feng Magnetorheological brush - a soft structure with highly tuneable stiffnessSoft Matter 10: 1537 (2014); DOI: 10.1039/C3SM52159A.

[50] X. Tan, S. E. Young, Y. H. Seo, J. Y. Zhang, W. Hong, K. G. Webber Transformation toughening in an antiferroelectric ceramicActa Materialia 62: 114-121 (2014); DOI: 10.1016/j.actamat.2013.09.038.

[49] W. Toh, Z. Liu, T. Y. Ng, and W. Hong (2013). Inhomogeneous large deformation kinetics of polymeric gelsInt. J. Appl. Mech. 5: 1350001 (2013); DOI: 10.1142/S1758825113500014.

[48] W. Hong and X. Wang, A phase-field model for systems with coupled large deformation and mass transportJ. Mech. Phys. Solids 61: 1281-1294 (2013); DOI: 10.1016/j.jmps.2013.03.001.

[47] S. E. Young, J. Y. Zhang, W. Hong, and X. Tan, Mechanical self-confinement to enhance energy storage density of antiferroelectric capacitorsJ. Appl. Phys. 113: 054101 (2013); DOI: 10.1063/1.4790135.

[46] Z. Liu, S. Swaddiwudhipong, and W. Hong, Pattern formation in plants via instability theory of hydrogelsSoft Matter 9: 577-587 (2013); DOI: 10.1039/C2SM26642C.

[45] W. Lai, A. F. Bastawros, W. Hong, and S.-J. Chung, Fabrication and Analysis of Planar Dielectric Elastomer Actuators Capable of Complex 3-D Deformation. Proc. IEEE International Conference on Robotics and Automation (ICRA), 4968-4973 (2012).

[44] W. Lai, A. F. Bastawros, and W. Hong, Out-of-Plane Motion of a Planar Dielectric Elastomer Actuator with Distributed StiffenersProc. SPIE 8340: 834011 (2012); DOI: 10.1117/12.917494.

[43] Y. Han, Z. Zhang, L. E. Faidley, and W. Hong, Microstructure-based modeling of magneto-rheological elastomers. Proc. SPIE 8342: 83421B (2012); DOI: 10.1117/12.925492.

[42] H. Yang, X. Qiao, W. Hong, and L. Dong, Core-shell microcapsules With embedded microactuators for regulated releaseJ. Microelectromech. Sys. 22: 509-518 (2013). DOI:10.1109/JMEMS.2012.2227950.

[41] X. Wang and W. Hong, A visco-poroelastic theory for polymeric gelsProc. R. Soc. A 468: 3824 (2012); DOI:10.1098/rspa.2012.0385.

[40] J. P. Gong and W. Hong, Mechanics and physics of hydrogels (Editorial)Soft Matter 8: 8006 (2012);DOI: 10.1039/c2sm90083a.

[39] X. Wang and W. Hong, Delayed fracture in gelsSoft Matter 8: 8171 (2012); DOI: 10.1039/C2SM25553G.

[38] H. Yang, W. Hong, and L. Dong, A controlled biochemical release device with embedded nanofluidic channelsAppl. Phys. Lett. 100: 153510 (2012); DOI: 10.1063/1.4704143.

[37] W. Hong, and X. Wang, Modeling mechano-chromatic lamellar gelsPhys. Rev. E 85: 031801 (2012).

[36] Y. Han, W. Hong, and L. Faidley, Field-stiffening effect of magneto-rheological elastomersI. J. Solids. Struct. 50, 2281-2288 (2013). DOI: 10.1016/j.ijsolstr.2013.03.030

[35] X. Wang and W. Hong, Pseudo-elasticity of double network gels. Soft Matter7, 8576-8581 (2011) DOI: 10.1039/C1SM05787A.

[34] Z. S. Liu, S. Swaddiwudhipong, F. S. Cui, W. Hong, Z. Suo and Y. W. Zhang, Analytical solutions of polymeric gel structures under buckling and wrinkleInt. J. Appl. Mech. 3, 235-257 (2011).

[33] Y. Han, W. Hong, and L. Faidley, Rate dependent finite deformation of magneto-active polymersProc. SPIE 7978, 797819 (2011).

[32] W. Hong, Mechanics of polymeric gels, in Advances in Soft Matter Mechanics. S. Li and B. Sun Eds., 1st Ed., Springer (2011).

[31] S. J. A. Koh, T. Li, J. Zhou, X. Zhao, W. Hong, J. Zhu, and Z. Suo. Mechanisms of large actuation strain in dielectric elastomersJ. Polym. Phys. B, 49 (7), 504-515 (2011)

[30] Y. Han, W. Hong, and L. Faidley, Coupled magnetic field and viscoelasticity of ferrogelInt. J. Appl. Mech.3, 259-278 (2011).

[29] X. Wang and W. Hong, Theory of Ionic Polymer Conductor Network CompositeAppl. Phys. Lett98, 081910 (2011). doi:10.1063/1.3555437

[28] W. Hong, Modeling viscoelastic dielectricsJ. Mech. Phys. Solids59, 637-650 (2011).

[27] Z. Liu, W. Hong, Z. Suo, S. Swaddiwudhipong, Y. Zhang, Modeling and simulation of buckling of polymeric membrane thin film gelComp. Mater. Sci. 49, S60-S64 (2010).

[26] W. Hong and X. Wang, Actuation and ion transportation of polyelectrolyte gelsProc. SPIE 7644, 764417 (2010).

[25] L. E. Faidley, Y. Han, K. Tucker, S. Timmons and W. Hong, Axial strain of ferrogels under cyclic magnetic fieldsSmart Mater. Struct. 19, 075001 (2010).

[24] X. Wang and W. Hong, Surface interactions between two like-charged polyelectrolyte gelsPhys. Rev. E 81, 041803 (2010).

[23] R. Marcombe, S. Cai, W. Hong, X. Zhao, Y. Lapusta, Z. Suo, A theory of constrained swelling of a pH-sensitive hydrogelSoft Matter 6, 784-793 (2010).

[22] X. Tan, J. Frederick, C. Ma, E. Aulbach, M. Marsilius, W. Hong, T. Granzow, W. Jo, and J. Rödel, Electric-field-induced antiferroelectric to ferroelectric phase transition in mechanically confined Pb0.99Nb0.02[(Zr0.57Sn0.43)0.94Ti0.06]0.98O3Phys. Rev. B 31, 014103 (2010)

[21] W. Hong, X. Zhao, and Z. Suo, Formation of creases on the surfaces of elastomers and gelsAppl. Phys. Lett. 95, 111901 (2009); DOI:10.1063/1.3211917

[20] W. Hong, X. Zhao, and Z. Suo, Large deformation and electrochemistry of polyelectrolyte gelsJ. Mech. Phys. Solids 58, 558-577 (2010).

[19] W. Hong, Z. Liu, and Z. Suo, Inhomogeneous swelling of a gel in equilibrium with a solvent and mechanical loadInt. J. Solids Struct. 46, 3282-3289 (2009).

[18] W. Hong, X. Zhao, Z. Suo, Drying-induced bifurcation in a hydrogel-actuated nanostructureJ. Appl. Phys.104, 084905 (2008).

[17] J. Zhou, W. Hong, X. Zhao, and Z. Suo, Instantaneous surface stresses of swelling and drying of polymeric gels. Advances in Heterogeneous Material Mechanics 2008, 602-604 (2008).

[16] X. Zhao, W. Hong, Z. Suo, Inhomogeneous and anisotropic equilibrium state of a swollen hydrogel containing a hard coreApp. Phys. Lett.92, 051904 (2008).

[15] W. Hong, X. Zhao, J. Zhou, and Z. Suo, A theory of coupled diffusion and large deformation in polymeric gelsJ. Mech. Phys. Solids56, 1779-1793 (2008).

[14] X. Zhao, W. Hong and Z. Suo, Stretching and polarizing a dielectric gel immersed in a solventInt. J. Solids Struct. 45, 4021-4031 (2008).

[13] J. Zhou, W. Hong, X. Zhao, Z. Zhang, and Z. Suo, Propagation of instability in dielectric elastomersInt. J. Solids Struct45, 3739-3750 (2008).

[12] X. Zhao, W. Hong and Z. Suo, Electromechanical coexistent states and hysteresis in dielectric elastomersPhys. Rev. B76,134113 (2007).

[11] W. Hong, Z. Suo and Z.-Y. Zhang, Dynamics of terraces on a silicon surface due to combined action of strain and electric currentJ. Mech. Phys. Solids56, 267-278 (2008).

[10] M. Yoon, H. N. Lee, W. Hong, H. M. Christen, Z.-Y. Zhang, Z. Suo, Dynamics of step bunching in heteroepitaxial growth on vicinal substratesPhys. Rev. Lett. 99, 055503 (2007).

[9] W. Hong, Z.-Y. Zhang, and Z. Suo, Interplay between elastic interactions and kinetic processes in stepped Si (001) homoepitaxyPhys. Rev. B74, 235318 (2006).

[8] W. Hong, H. N. Lee, M. Yoon, H. M. Christen, D. H. Lowndes, Z. Suo, and Z.-Y. Zhang, Persistent step-flow growth of strained films on vicinal substratesPhys. Rev. Lett. 95, 095501 (2005).

[7] Z.Y. Huang, W. Hong, Z. Suo, Nonlinear analyses of wrinkles in films on soft elastic substratesJ. Mech. Phys. Solids 53, 2101-2118 (2005).

[6] W. Hong and Z. Suo, Electric field-directed patterning of molecules on a solid surface. Proceedings of Workshop on Nanomechanics, Pacific Groves, California, 14-17 July 2004.

[5] Z.Y. Huang, W. Hong, Z. Suo, Evolution of wrinkles in hard films on soft substratesPhys. Rev. E 70, 030601(R), (2004).

[4] W. Hong and Z. Suo, Molecular assembly on cylindrical surfacesInt. J. Solids Struct. 41, 6895-6903 (2004).

[3] Z. Suo, W. Hong. Programmable motion and assembly of molecules on solid surfacesProc. Natl. Acad. Sci. USA 101, 7874-7879 (2004).

[2] W. Yang, W. Hong, Numerical simulation for deformation of nano-grained metalsActa Mechanica Sinica18 (5): 506-515 (2002).

[1] W. Yang, H. Wang, W. Hong, Proc. Int. Symp. Yg. Sch. Mech. Mater. Eng. Sci. Exper., Science Press New York Ltd, 1-12 (2001).

Copyright © 2018 All Rights Reserved.